version 1.2, 1999/12/21 02:47:31 |
version 1.4, 2003/04/19 15:44:56 |
|
|
@comment $OpenXM$ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.3 1999/12/24 04:38:04 noro Exp $ |
\BJP |
\BJP |
@node グレブナ基底の計算,,, Top |
@node グレブナ基底の計算,,, Top |
@chapter グレブナ基底の計算 |
@chapter グレブナ基底の計算 |
Line 1239 Refer to the sections for each functions. |
|
Line 1239 Refer to the sections for each functions. |
|
* katsura hkatsura cyclic hcyclic:: |
* katsura hkatsura cyclic hcyclic:: |
* dp_vtoe dp_etov:: |
* dp_vtoe dp_etov:: |
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
|
* primadec primedec:: |
@end menu |
@end menu |
|
|
\JP @node gr hgr gr_mod,,, グレブナ基底に関する函数 |
\JP @node gr hgr gr_mod,,, グレブナ基底に関する函数 |
Line 1262 Refer to the sections for each functions. |
|
Line 1263 Refer to the sections for each functions. |
|
@item return |
@item return |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item plist, vlist, procs |
@item plist vlist procs |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item order |
@item order |
Line 1371 for communication. |
|
Line 1372 for communication. |
|
@item return |
@item return |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item plist, vlist1, vlist2, procs |
@item plist vlist1 vlist2 procs |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item order |
@item order |
|
|
@item return |
@item return |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item plist, vlist1, vlist2, procs |
@item plist vlist1 vlist2 procs |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item order |
@item order |
|
|
@item return |
@item return |
\JP 多項��� |
\JP 多項��� |
\EG polynomial |
\EG polynomial |
@item plist, vlist |
@item plist vlist |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item order |
@item order |
Line 1788 for @code{gr_minipoly()}. |
|
Line 1789 for @code{gr_minipoly()}. |
|
@item return |
@item return |
\JP @code{tolexm()} : リスト, @code{minipolym()} : 多項��� |
\JP @code{tolexm()} : リスト, @code{minipolym()} : 多項��� |
\EG @code{tolexm()} : list, @code{minipolym()} : polynomial |
\EG @code{tolexm()} : list, @code{minipolym()} : polynomial |
@item plist, vlist1, vlist2 |
@item plist vlist1 vlist2 |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item order |
@item order |
Line 1853 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
Line 1854 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
@item return |
@item return |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item plist, vlist |
@item plist vlist |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item order |
@item order |
Line 1965 Actual computation is controlled by various parameters |
|
Line 1966 Actual computation is controlled by various parameters |
|
@item return |
@item return |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item plist, vlist |
@item plist vlist |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item order |
@item order |
Line 2790 selection strategy of critical pairs in Groebner basis |
|
Line 2791 selection strategy of critical pairs in Groebner basis |
|
@item return |
@item return |
\JP 分散表現多項��� |
\JP 分散表現多項��� |
\EG distributed polynomial |
\EG distributed polynomial |
@item dpoly1, dpoly2 |
@item dpoly1 dpoly2 |
\JP 分散表現多項��� |
\JP 分散表現多項��� |
\EG distributed polynomial |
\EG distributed polynomial |
@end table |
@end table |
Line 2833 two polynomials, where coefficient is always set to 1. |
|
Line 2834 two polynomials, where coefficient is always set to 1. |
|
@item return |
@item return |
\JP 整数 |
\JP 整数 |
\EG integer |
\EG integer |
@item dpoly1, dpoly2 |
@item dpoly1 dpoly2 |
\JP 分散表現多項��� |
\JP 分散表現多項��� |
\EG distributed polynomial |
\EG distributed polynomial |
@end table |
@end table |
Line 2888 Used for finding candidate terms at reduction of polyn |
|
Line 2889 Used for finding candidate terms at reduction of polyn |
|
@item return |
@item return |
\JP 分散表現多項��� |
\JP 分散表現多項��� |
\EG distributed polynomial |
\EG distributed polynomial |
@item dpoly1, dpoly2 |
@item dpoly1 dpoly2 |
\JP 分散表現多項��� |
\JP 分散表現多項��� |
\EG distributed polynomial |
\EG distributed polynomial |
@end table |
@end table |
Line 3112 values of @code{dp_mag()} for intermediate basis eleme |
|
Line 3113 values of @code{dp_mag()} for intermediate basis eleme |
|
@item return |
@item return |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item dpoly1, dpoly2, dpoly3 |
@item dpoly1 dpoly2 dpoly3 |
\JP 分散表現多項��� |
\JP 分散表現多項��� |
\EG distributed polynomial |
\EG distributed polynomial |
@item vlist |
@item vlist |
Line 3136 values of @code{dp_mag()} for intermediate basis eleme |
|
Line 3137 values of @code{dp_mag()} for intermediate basis eleme |
|
ならない. |
ならない. |
@item |
@item |
引数が整数係数の時, 簡約は, 分数が現れないよう瘢雹, 整数 @var{a}, @var{b}, |
引数が整数係数の時, 簡約は, 分数が現れないよう瘢雹, 整数 @var{a}, @var{b}, |
項 @var{t} により @var{a(dpoly1 + dpoly2)-bt dpoly3} として計算される. |
項 @var{t} により @var{a}(@var{dpoly1} + @var{dpoly2})-@var{bt} @var{dpoly3} として計算される. |
@item |
@item |
結果は, @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]} なるリストでう髟阡擦�. |
結果は, @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]} なるリストでう髟阡擦�. |
\E |
\E |
Line 3155 the divisibility of the head term of @var{dpoly2} by t |
|
Line 3156 the divisibility of the head term of @var{dpoly2} by t |
|
When integral coefficients, computation is so carefully performed that |
When integral coefficients, computation is so carefully performed that |
no rational operations appear in the reduction procedure. |
no rational operations appear in the reduction procedure. |
It is computed for integers @var{a} and @var{b}, and a term @var{t} as: |
It is computed for integers @var{a} and @var{b}, and a term @var{t} as: |
@var{a(dpoly1 + dpoly2)-bt dpoly3}. |
@var{a}(@var{dpoly1} + @var{dpoly2})-@var{bt} @var{dpoly3}. |
@item |
@item |
The result is a list @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]}. |
The result is a list @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]}. |
\E |
\E |
Line 3196 The result is a list @code{[@var{a dpoly1},@var{a dpol |
|
Line 3197 The result is a list @code{[@var{a dpoly1},@var{a dpol |
|
@item return |
@item return |
\JP 分散表現多項��� |
\JP 分散表現多項��� |
\EG distributed polynomial |
\EG distributed polynomial |
@item dpoly1, dpoly2 |
@item dpoly1 dpoly2 |
\JP 分散表現多項��� |
\JP 分散表現多項��� |
\EG distributed polynomial |
\EG distributed polynomial |
@item mod |
@item mod |
Line 3272 as a form of @code{[numerator, denominator]}) |
|
Line 3273 as a form of @code{[numerator, denominator]}) |
|
@item poly |
@item poly |
\JP 多項��� |
\JP 多項��� |
\EG polynomial |
\EG polynomial |
@item plist,vlist |
@item plist vlist |
\JP リスト |
\JP リスト |
\EG list |
\EG list |
@item order |
@item order |
Line 3427 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
Line 3428 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
@table @var |
@table @var |
\JP @item return 0 または 1 |
\JP @item return 0 または 1 |
\EG @item return 0 or 1 |
\EG @item return 0 or 1 |
@item plist1, plist2 |
@item plist1 plist2 |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
Line 3547 u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2] |
|
Line 3548 u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2] |
|
@fref{dp_dtop}. |
@fref{dp_dtop}. |
@end table |
@end table |
|
|
|
\JP @node primadec primedec,,, グレブナ基底に関する函数 |
|
\EG @node primadec primedec,,, Functions for Groebner basis computation |
|
@subsection @code{primadec}, @code{primedec} |
|
@findex primadec |
|
@findex primedec |
|
|
|
@table @t |
|
@item primadec(@var{plist},@var{vlist}) |
|
@item primedec(@var{plist},@var{vlist}) |
|
\JP :: イデウ髟阡札襪諒�� |
|
\EG :: Computes decompositions of ideals. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
@itemx plist |
|
\JP 多項��哀螢好� |
|
\EG list of polynomials |
|
@item vlist |
|
\JP 変数リスト |
|
\EG list of variables |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
@code{primadec()}, @code{primedec} は @samp{primdec} で定義されている. |
|
@item |
|
@code{primadec()}, @code{primedec()} はそれう苳擦賤㌫��陸苳糸でのイデウ髟阡札襪� |
|
準素分解, 根基の素イデウ髟阡札詈�鬚鮃圓�逅�. |
|
@item |
|
引数は多項��哀螢好箸�茲喨竸凜螢好箸任���る. 多項��阿詫㌫��舷瑤里澆��気譴�. |
|
@item |
|
@code{primadec} は @code{[準素成分, 付属素イデウ髟阡札�]} のリストを返す. |
|
@item |
|
@code{primadec} は 素因子のリストを返す. |
|
@item |
|
結果において, 多項��哀螢好箸箸靴読拾踉雑されている各イデウ髟阡札襪倭瓦� |
|
グレブナ基底でう髟阡擦�. 対応する項順序は, それう苳擦� |
|
変数 @code{PRIMAORD}, @code{PRIMEORD} に格忍踉擦気譴討い�. |
|
@item |
|
@code{primadec} は @code{[Shimoyama,Yokoyama]} の準素分解ウ髟阡札襯乾螢坤� |
|
を��汰�靴討い�. |
|
@item |
|
もし素因子のみを求めたいなら, @code{primedec} を使う瘢雹方がよい. |
|
これは, 入力イデウ髟阡札襪��陬ぅ妊���ルでない��豺腓�, @code{primadec} |
|
の計算に勇苳司�淵灰好箸��廚箸覆襴苳詞合がう髟阡擦襪�蕕任���る. |
|
\E |
|
\BEG |
|
@item |
|
Function @code{primadec()} and @code{primedec} are defined in @samp{primdec}. |
|
@item |
|
@code{primadec()}, @code{primedec()} are the function for primary |
|
ideal decomposition and prime decomposition of the radical over the |
|
rationals respectively. |
|
@item |
|
The arguments are a list of polynomials and a list of variables. |
|
These functions accept ideals with rational function coefficients only. |
|
@item |
|
@code{primadec} returns the list of pair lists consisting a primary component |
|
and its associated prime. |
|
@item |
|
@code{primedec} returns the list of prime components. |
|
@item |
|
Each component is a Groebner basis and the corresponding term order |
|
is indicated by the global variables @code{PRIMAORD}, @code{PRIMEORD} |
|
respectively. |
|
@item |
|
@code{primadec} implements the primary decompostion algorithm |
|
in @code{[Shimoyama,Yokoyama]}. |
|
@item |
|
If one only wants to know the prime components of an ideal, then |
|
use @code{primedec} because @code{primadec} may need additional costs |
|
if an input ideal is not radical. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[84] load("primdec")$ |
|
[102] primedec([p*q*x-q^2*y^2+q^2*y,-p^2*x^2+p^2*x+p*q*y, |
|
(q^3*y^4-2*q^3*y^3+q^3*y^2)*x-q^3*y^4+q^3*y^3, |
|
-q^3*y^4+2*q^3*y^3+(-q^3+p*q^2)*y^2],[p,q,x,y]); |
|
[[y,x],[y,p],[x,q],[q,p],[x-1,q],[y-1,p],[(y-1)*x-y,q*y^2-2*q*y-p+q]] |
|
[103] primadec([x,z*y,w*y^2,w^2*y-z^3,y^3],[x,y,z,w]); |
|
[[[x,z*y,y^2,w^2*y-z^3],[z,y,x]],[[w,x,z*y,z^3,y^3],[w,z,y,x]]] |
|
@end example |
|
|
|
@table @t |
|
\JP @item 参��� |
|
\EG @item References |
|
@fref{fctr sqfr}, |
|
\JP @fref{項順序の設定}. |
|
\EG @fref{Setting term orderings}. |
|
@end table |