version 1.2, 1999/12/21 02:47:31 |
version 1.23, 2019/09/13 09:31:00 |
|
|
@comment $OpenXM$ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.22 2019/03/29 04:54:25 noro Exp $ |
\BJP |
\BJP |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
|
|
* $B4pK\E*$JH!?t(B:: |
* $B4pK\E*$JH!?t(B:: |
* $B7W;;$*$h$SI=<($N@)8f(B:: |
* $B7W;;$*$h$SI=<($N@)8f(B:: |
* $B9`=g=x$N@_Dj(B:: |
* $B9`=g=x$N@_Dj(B:: |
|
* Weight:: |
* $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B:: |
* $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B:: |
* $B4pDlJQ49(B:: |
* $B4pDlJQ49(B:: |
|
* Weyl $BBe?t(B:: |
|
* $BB?9`<04D>e$N2C72(B:: |
* $B%0%l%V%J4pDl$K4X$9$kH!?t(B:: |
* $B%0%l%V%J4pDl$K4X$9$kH!?t(B:: |
\E |
\E |
\BEG |
\BEG |
|
|
* Fundamental functions:: |
* Fundamental functions:: |
* Controlling Groebner basis computations:: |
* Controlling Groebner basis computations:: |
* Setting term orderings:: |
* Setting term orderings:: |
|
* Weight:: |
* Groebner basis computation with rational function coefficients:: |
* Groebner basis computation with rational function coefficients:: |
* Change of ordering:: |
* Change of ordering:: |
|
* Weyl algebra:: |
|
* Module over a polynomial ring:: |
* Functions for Groebner basis computation:: |
* Functions for Groebner basis computation:: |
\E |
\E |
@end menu |
@end menu |
Line 197 In an @b{Asir} session, it is displayed in the form li |
|
Line 203 In an @b{Asir} session, it is displayed in the form li |
|
\EG and also can be input in such a form. |
\EG and also can be input in such a form. |
|
|
\BJP |
\BJP |
@itemx $BF,C19`<0(B (head monomial) |
|
@item $BF,9`(B (head term) |
@item $BF,9`(B (head term) |
|
@itemx $BF,C19`<0(B (head monomial) |
@itemx $BF,78?t(B (head coefficient) |
@itemx $BF,78?t(B (head coefficient) |
$BJ,;6I=8=B?9`<0$K$*$1$k3FC19`<0$O(B, $B9`=g=x$K$h$j@0Ns$5$l$k(B. $B$3$N;~=g(B |
$BJ,;6I=8=B?9`<0$K$*$1$k3FC19`<0$O(B, $B9`=g=x$K$h$j@0Ns$5$l$k(B. $B$3$N;~=g(B |
$B=x:GBg$NC19`<0$rF,C19`<0(B, $B$=$l$K8=$l$k9`(B, $B78?t$r$=$l$>$lF,9`(B, $BF,78?t(B |
$B=x:GBg$NC19`<0$rF,C19`<0(B, $B$=$l$K8=$l$k9`(B, $B78?t$r$=$l$>$lF,9`(B, $BF,78?t(B |
$B$H8F$V(B. |
$B$H8F$V(B. |
\E |
\E |
\BEG |
\BEG |
@itemx head monomial |
|
@item head term |
@item head term |
|
@itemx head monomial |
@itemx head coefficient |
@itemx head coefficient |
|
|
Monomials in a distributed polynomial is sorted by a total order. |
Monomials in a distributed polynomial is sorted by a total order. |
Line 216 the head term and the head coefficient respectively. |
|
Line 222 the head term and the head coefficient respectively. |
|
\E |
\E |
@end table |
@end table |
|
|
|
@noindent |
|
ChangeLog |
|
@itemize @bullet |
\BJP |
\BJP |
|
@item $BJ,;6I=8=B?9`<0$OG$0U$N%*%V%8%'%/%H$r78?t$K$b$F$k$h$&$K$J$C$?(B. |
|
$B$^$?2C72$N(Bk$B@.J,$NMWAG$r<!$N7A<0(B <<d0,d1,...:k>> $B$GI=8=$9$k$h$&$K$J$C$?(B (2017-08-31). |
|
\E |
|
\BEG |
|
@item Distributed polynomials accept objects as coefficients. |
|
The k-th element of a free module is expressed as <<d0,d1,...:k>> (2017-08-31). |
|
\E |
|
@item |
|
1.15 algnum.c, |
|
1.53 ctrl.c, |
|
1.66 dp-supp.c, |
|
1.105 dp.c, |
|
1.73 gr.c, |
|
1.4 reduct.c, |
|
1.16 _distm.c, |
|
1.17 dalg.c, |
|
1.52 dist.c, |
|
1.20 distm.c, |
|
1.8 gmpq.c, |
|
1.238 engine/nd.c, |
|
1.102 ca.h, |
|
1.411 version.h, |
|
1.28 cpexpr.c, |
|
1.42 pexpr.c, |
|
1.20 pexpr_body.c, |
|
1.40 spexpr.c, |
|
1.27 arith.c, |
|
1.77 eval.c, |
|
1.56 parse.h, |
|
1.37 parse.y, |
|
1.8 stdio.c, |
|
1.31 plotf.c |
|
@end itemize |
|
|
|
\BJP |
@node $B%U%!%$%k$NFI$_9~$_(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $B%U%!%$%k$NFI$_9~$_(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $B%U%!%$%k$NFI$_9~$_(B |
@section $B%U%!%$%k$NFI$_9~$_(B |
\E |
\E |
Line 228 the head term and the head coefficient respectively. |
|
Line 272 the head term and the head coefficient respectively. |
|
@noindent |
@noindent |
\BJP |
\BJP |
$B%0%l%V%J4pDl$r7W;;$9$k$?$a$N4pK\E*$JH!?t$O(B @code{dp_gr_main()} $B$*$h$S(B |
$B%0%l%V%J4pDl$r7W;;$9$k$?$a$N4pK\E*$JH!?t$O(B @code{dp_gr_main()} $B$*$h$S(B |
@code{dp_gr_mod_main()} $B$J$k(B 2 $B$D$NAH$_9~$_H!?t$G$"$k$,(B, $BDL>o$O(B, $B%Q%i%a%?(B |
@code{dp_gr_mod_main()}, @code{dp_gr_f_main()} |
|
$B$J$k(B 3 $B$D$NAH$_9~$_H!?t$G$"$k$,(B, $BDL>o$O(B, $B%Q%i%a%?(B |
$B@_Dj$J$I$r9T$C$?$N$A$3$l$i$r8F$S=P$9%f!<%6H!?t$rMQ$$$k$N$,JXMx$G$"$k(B. |
$B@_Dj$J$I$r9T$C$?$N$A$3$l$i$r8F$S=P$9%f!<%6H!?t$rMQ$$$k$N$,JXMx$G$"$k(B. |
$B$3$l$i$N%f!<%6H!?t$O(B, $B%U%!%$%k(B @samp{gr} $B$r(B @code{load()} $B$K$h$jFI(B |
$B$3$l$i$N%f!<%6H!?t$O(B, $B%U%!%$%k(B @samp{gr} $B$r(B @code{load()} $B$K$h$jFI(B |
$B$_9~$`$3$H$K$h$j;HMQ2DG=$H$J$k(B. @samp{gr} $B$O(B, @b{Asir} $B$NI8=`(B |
$B$_9~$`$3$H$K$h$j;HMQ2DG=$H$J$k(B. @samp{gr} $B$O(B, @b{Asir} $B$NI8=`(B |
$B%i%$%V%i%j%G%#%l%/%H%j$KCV$+$l$F$$$k(B. $B$h$C$F(B, $B4D6-JQ?t(B @code{ASIR_LIBDIR} |
$B%i%$%V%i%j%G%#%l%/%H%j$KCV$+$l$F$$$k(B. |
$B$rFC$K0[$J$k%Q%9$K@_Dj$7$J$$8B$j(B, $B%U%!%$%kL>$N$_$GFI$_9~$`$3$H$,$G$-$k(B. |
|
\E |
\E |
\BEG |
\BEG |
Facilities for computing Groebner bases are provided not by built-in |
Facilities for computing Groebner bases are |
functions but by a set of user functions written in @b{Asir}. |
@code{dp_gr_main()}, @code{dp_gr_mod_main()}and @code{dp_gr_f_main()}. |
The set of functions is provided as a file (sometimes called package), |
To call these functions, |
named @samp{gr}. |
it is necessary to set several parameters correctly and it is convenient |
|
to use a set of interface functions provided in the library file |
|
@samp{gr}. |
The facilities will be ready to use after you load the package by |
The facilities will be ready to use after you load the package by |
@code{load()}. The package @samp{gr} is placed in the standard library |
@code{load()}. The package @samp{gr} is placed in the standard library |
directory of @b{Asir}. Therefore, it is loaded simply by specifying |
directory of @b{Asir}. |
its file name, unless the environment variable @code{ASIR_LIBDIR} |
|
is set to a non-standard one. |
|
\E |
\E |
|
|
@example |
@example |
Line 350 These parameters can be set and examined by a built-in |
|
Line 394 These parameters can be set and examined by a built-in |
|
|
|
@example |
@example |
[100] dp_gr_flags(); |
[100] dp_gr_flags(); |
[Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0,ShowMag,1, |
[Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0, |
Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0] |
ShowMag,1,Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0] |
[101] |
[101] |
@end example |
@end example |
|
|
Line 447 If `on', various informations during a Groebner basis |
|
Line 491 If `on', various informations during a Groebner basis |
|
displayed. |
displayed. |
\E |
\E |
|
|
|
@item PrintShort |
|
\JP on $B$G!"(BPrint $B$,(B off $B$N>l9g(B, $B%0%l%V%J4pDl7W;;$NESCf$N>pJs$rC;=L7A$GI=<($9$k(B. |
|
\BEG |
|
If `on' and Print is `off', short information during a Groebner basis computation is |
|
displayed. |
|
\E |
|
|
@item Stat |
@item Stat |
\BJP |
\BJP |
on $B$G(B @code{Print} $B$,(B off $B$J$i$P(B, @code{Print} $B$,(B on $B$N$H$-I=<($5(B |
on $B$G(B @code{Print} $B$,(B off $B$J$i$P(B, @code{Print} $B$,(B on $B$N$H$-I=<($5(B |
Line 469 is shown after every normal computation. After comlet |
|
Line 520 is shown after every normal computation. After comlet |
|
computation the maximal value among the sums is shown. |
computation the maximal value among the sums is shown. |
\E |
\E |
|
|
@item Multiple |
@item Content |
|
@itemx Multiple |
\BJP |
\BJP |
0 $B$G$J$$@0?t$N;~(B, $BM-M}?t>e$N@55,7A7W;;$K$*$$$F(B, $B78?t$N%S%C%HD9$NOB$,(B |
0 $B$G$J$$M-M}?t$N;~(B, $BM-M}?t>e$N@55,7A7W;;$K$*$$$F(B, $B78?t$N%S%C%HD9$NOB$,(B |
@code{Multiple} $BG\$K$J$k$4$H$K78?tA4BN$N(B GCD $B$,7W;;$5$l(B, $B$=$N(B GCD $B$G(B |
@code{Content} $BG\$K$J$k$4$H$K78?tA4BN$N(B GCD $B$,7W;;$5$l(B, $B$=$N(B GCD $B$G(B |
$B3d$C$?B?9`<0$r4JLs$9$k(B. @code{Multiple} $B$,(B 1 $B$J$i$P(B, $B4JLs$9$k$4$H$K(B |
$B3d$C$?B?9`<0$r4JLs$9$k(B. @code{Content} $B$,(B 1 $B$J$i$P(B, $B4JLs$9$k$4$H$K(B |
GCD $B7W;;$,9T$o$l0lHL$K$O8zN($,0-$/$J$k$,(B, @code{Multiple} $B$r(B 2 $BDxEY(B |
GCD $B7W;;$,9T$o$l0lHL$K$O8zN($,0-$/$J$k$,(B, @code{Content} $B$r(B 2 $BDxEY(B |
$B$H$9$k$H(B, $B5pBg$J@0?t$,78?t$K8=$l$k>l9g(B, $B8zN($,NI$/$J$k>l9g$,$"$k(B. |
$B$H$9$k$H(B, $B5pBg$J@0?t$,78?t$K8=$l$k>l9g(B, $B8zN($,NI$/$J$k>l9g$,$"$k(B. |
|
backward compatibility $B$N$?$a!"(B@code{Multiple} $B$G@0?tCM$r;XDj$G$-$k(B. |
\E |
\E |
\BEG |
\BEG |
If a non-zero integer, in a normal form computation |
If a non-zero rational number, in a normal form computation |
over the rationals, the integer content of the polynomial being |
over the rationals, the integer content of the polynomial being |
reduced is removed when its magnitude becomes @code{Multiple} times |
reduced is removed when its magnitude becomes @code{Content} times |
larger than a registered value, which is set to the magnitude of the |
larger than a registered value, which is set to the magnitude of the |
input polynomial. After each content removal the registered value is |
input polynomial. After each content removal the registered value is |
set to the magnitude of the resulting polynomial. @code{Multiple} is |
set to the magnitude of the resulting polynomial. @code{Content} is |
equal to 1, the simiplification is done after every normal form computation. |
equal to 1, the simiplification is done after every normal form computation. |
It is empirically known that it is often efficient to set @code{Multiple} to 2 |
It is empirically known that it is often efficient to set @code{Content} to 2 |
for the case where large integers appear during the computation. |
for the case where large integers appear during the computation. |
|
An integer value can be set by the keyword @code{Multiple} for |
|
backward compatibility. |
\E |
\E |
|
|
@item Demand |
@item Demand |
|
|
(0,0)(0,0)(0,0)(0,0) |
(0,0)(0,0)(0,0)(0,0) |
gbcheck total 8 pairs |
gbcheck total 8 pairs |
........ |
........ |
UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0)ZNFM=(0.010002,0)PZ=(0,0) |
UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0)ZNFM=(0.010002,0) |
NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6 D=12 ZR=5 NZR=6 |
PZ=(0,0)NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6 |
Max_mag=6 |
D=12 ZR=5 NZR=6 Max_mag=6 |
[94] |
[94] |
@end example |
@end example |
|
|
Line 992 time as well as the choice of types of term orderings. |
|
Line 1047 time as well as the choice of types of term orderings. |
|
-40*t^8+70*t^7+252*t^6+30*t^5-140*t^4-168*t^3+2*t^2-12*t+16)*z^2*y |
-40*t^8+70*t^7+252*t^6+30*t^5-140*t^4-168*t^3+2*t^2-12*t+16)*z^2*y |
+(-12*t^16+72*t^13-28*t^11-180*t^10+112*t^8+240*t^7+28*t^6-127*t^5 |
+(-12*t^16+72*t^13-28*t^11-180*t^10+112*t^8+240*t^7+28*t^6-127*t^5 |
-167*t^4-55*t^3+30*t^2+58*t-15)*z^4, |
-167*t^4-55*t^3+30*t^2+58*t-15)*z^4, |
(y+t^2*z^2)*x+y^7+(20*t^2+6*t+1)*y^2+(-t^17+6*t^14-21*t^12-15*t^11+84*t^9 |
(y+t^2*z^2)*x+y^7+(20*t^2+6*t+1)*y^2+(-t^17+6*t^14-21*t^12-15*t^11 |
+20*t^8-35*t^7-126*t^6-15*t^5+70*t^4+84*t^3-t^2+5*t-9)*z^2*y+(6*t^16-36*t^13 |
+84*t^9+20*t^8-35*t^7-126*t^6-15*t^5+70*t^4+84*t^3-t^2+5*t-9)*z^2*y |
+14*t^11+90*t^10-56*t^8-120*t^7-14*t^6+64*t^5+84*t^4+27*t^3-16*t^2-30*t+7)*z^4, |
+(6*t^16-36*t^13+14*t^11+90*t^10-56*t^8-120*t^7-14*t^6+64*t^5+84*t^4 |
(t^3-1)*x-y^6+(-6*t^13+24*t^10-20*t^8-36*t^7+40*t^5+24*t^4-6*t^3-20*t^2-6*t-1)*y |
+27*t^3-16*t^2-30*t+7)*z^4, |
+(t^17-6*t^14+9*t^12+15*t^11-36*t^9-20*t^8-5*t^7+54*t^6+15*t^5+10*t^4-36*t^3 |
(t^3-1)*x-y^6+(-6*t^13+24*t^10-20*t^8-36*t^7+40*t^5+24*t^4-6*t^3-20*t^2 |
-11*t^2-5*t+9)*z^2, |
-6*t-1)*y+(t^17-6*t^14+9*t^12+15*t^11-36*t^9-20*t^8-5*t^7+54*t^6+15*t^5 |
|
+10*t^4-36*t^3-11*t^2-5*t+9)*z^2, |
-y^8-8*t*y^3+16*z^2*y^2+(-8*t^16+48*t^13-56*t^11-120*t^10+224*t^8+160*t^7 |
-y^8-8*t*y^3+16*z^2*y^2+(-8*t^16+48*t^13-56*t^11-120*t^10+224*t^8+160*t^7 |
-56*t^6-336*t^5-112*t^4+112*t^3+224*t^2+24*t-56)*z^4*y+(t^24-8*t^21+20*t^19 |
-56*t^6-336*t^5-112*t^4+112*t^3+224*t^2+24*t-56)*z^4*y+(t^24-8*t^21 |
+28*t^18-120*t^16-56*t^15+14*t^14+300*t^13+70*t^12-56*t^11-400*t^10-84*t^9 |
+20*t^19+28*t^18-120*t^16-56*t^15+14*t^14+300*t^13+70*t^12-56*t^11 |
+84*t^8+268*t^7+84*t^6-56*t^5-63*t^4-36*t^3+46*t^2-12*t+1)*z, |
-400*t^10-84*t^9+84*t^8+268*t^7+84*t^6-56*t^5-63*t^4-36*t^3+46*t^2 |
2*t*y^5+z*y^2+(-2*t^11+8*t^8-20*t^6-12*t^5+40*t^3+8*t^2-10*t-20)*z^3*y+8*t^14 |
-12*t+1)*z,2*t*y^5+z*y^2+(-2*t^11+8*t^8-20*t^6-12*t^5+40*t^3+8*t^2 |
-32*t^11+48*t^8-t^7-32*t^5-6*t^4+9*t^2-t, |
-10*t-20)*z^3*y+8*t^14-32*t^11+48*t^8-t^7-32*t^5-6*t^4+9*t^2-t, |
-z*y^3+(t^7-2*t^4+3*t^2+t)*y+(-2*t^6+4*t^3+2*t-2)*z^2, |
-z*y^3+(t^7-2*t^4+3*t^2+t)*y+(-2*t^6+4*t^3+2*t-2)*z^2, |
2*t^2*y^3+z^2*y^2+(-2*t^5+4*t^2-6)*z^4*y+(4*t^8-t^7-8*t^5+2*t^4-4*t^3+5*t^2-t)*z, |
2*t^2*y^3+z^2*y^2+(-2*t^5+4*t^2-6)*z^4*y |
|
+(4*t^8-t^7-8*t^5+2*t^4-4*t^3+5*t^2-t)*z, |
z^3*y^2+2*t^3*y+(-t^7+2*t^4+t^2-t)*z^2, |
z^3*y^2+2*t^3*y+(-t^7+2*t^4+t^2-t)*z^2, |
-t*z*y^2-2*z^3*y+t^8-2*t^5-t^3+t^2, |
-t*z*y^2-2*z^3*y+t^8-2*t^5-t^3+t^2, |
-t^3*y^2-2*t^2*z^2*y+(t^6-2*t^3-t+1)*z^4, |
-t^3*y^2-2*t^2*z^2*y+(t^6-2*t^3-t+1)*z^4,z^5-t^4] |
z^5-t^4] |
|
[93] gr(B,[t,z,y,x],2); |
[93] gr(B,[t,z,y,x],2); |
[x^10-t,x^8-z,x^31-x^6-x-y] |
[x^10-t,x^8-z,x^31-x^6-x-y] |
@end example |
@end example |
Line 1041 beforehand, and some heuristic trial may be inevitable |
|
Line 1097 beforehand, and some heuristic trial may be inevitable |
|
\E |
\E |
|
|
\BJP |
\BJP |
|
@node Weight ,,, $B%0%l%V%J4pDl$N7W;;(B |
|
@section Weight |
|
\E |
|
\BEG |
|
@node Weight,,, Groebner basis computation |
|
@section Weight |
|
\E |
|
\BJP |
|
$BA0@a$G>R2p$7$?9`=g=x$O(B, $B3FJQ?t$K(B weight ($B=E$_(B) $B$r@_Dj$9$k$3$H$G(B |
|
$B$h$j0lHLE*$J$b$N$H$J$k(B. |
|
\E |
|
\BEG |
|
Term orderings introduced in the previous section can be generalized |
|
by setting a weight for each variable. |
|
\E |
|
@example |
|
[0] dp_td(<<1,1,1>>); |
|
3 |
|
[1] dp_set_weight([1,2,3])$ |
|
[2] dp_td(<<1,1,1>>); |
|
6 |
|
@end example |
|
\BJP |
|
$BC19`<0$NA4<!?t$r7W;;$9$k:](B, $B%G%U%)%k%H$G$O(B |
|
$B3FJQ?t$N;X?t$NOB$rA4<!?t$H$9$k(B. $B$3$l$O3FJQ?t$N(B weight $B$r(B 1 $B$H(B |
|
$B9M$($F$$$k$3$H$KAjEv$9$k(B. $B$3$NNc$G$O(B, $BBh0l(B, $BBhFs(B, $BBh;0JQ?t$N(B |
|
weight $B$r$=$l$>$l(B 1,2,3 $B$H;XDj$7$F$$$k(B. $B$3$N$?$a(B, @code{<<1,1,1>>} |
|
$B$NA4<!?t(B ($B0J2<$G$O$3$l$rC19`<0$N(B weight $B$H8F$V(B) $B$,(B @code{1*1+1*2+1*3=6} $B$H$J$k(B. |
|
weight $B$r@_Dj$9$k$3$H$G(B, $BF1$89`=g=x7?$N$b$H$G0[$J$k9`=g=x$,Dj5A$G$-$k(B. |
|
$BNc$($P(B, weight $B$r$&$^$/@_Dj$9$k$3$H$G(B, $BB?9`<0$r(B weighted homogeneous |
|
$B$K$9$k$3$H$,$G$-$k>l9g$,$"$k(B. |
|
\E |
|
\BEG |
|
By default, the total degree of a monomial is equal to |
|
the sum of all exponents. This means that the weight for each variable |
|
is set to 1. |
|
In this example, the weights for the first, the second and the third |
|
variable are set to 1, 2 and 3 respectively. |
|
Therefore the total degree of @code{<<1,1,1>>} under this weight, |
|
which is called the weight of the monomial, is @code{1*1+1*2+1*3=6}. |
|
By setting weights, different term orderings can be set under a type of |
|
term ordeing. In some case a polynomial can |
|
be made weighted homogeneous by setting an appropriate weight. |
|
\E |
|
|
|
\BJP |
|
$B3FJQ?t$KBP$9$k(B weight $B$r$^$H$a$?$b$N$r(B weight vector $B$H8F$V(B. |
|
$B$9$Y$F$N@.J,$,@5$G$"$j(B, $B%0%l%V%J4pDl7W;;$K$*$$$F(B, $BA4<!?t$N(B |
|
$BBe$o$j$KMQ$$$i$l$k$b$N$rFC$K(B sugar weight $B$H8F$V$3$H$K$9$k(B. |
|
sugar strategy $B$K$*$$$F(B, $BA4<!?t$NBe$o$j$K;H$o$l$k$+$i$G$"$k(B. |
|
$B0lJ}$G(B, $B3F@.J,$,I,$:$7$b@5$H$O8B$i$J$$(B weight vector $B$O(B, |
|
sugar weight $B$H$7$F@_Dj$9$k$3$H$O$G$-$J$$$,(B, $B9`=g=x$N0lHL2=$K$O(B |
|
$BM-MQ$G$"$k(B. $B$3$l$i$O(B, $B9TNs$K$h$k9`=g=x$N@_Dj$K$9$G$K8=$l$F(B |
|
$B$$$k(B. $B$9$J$o$A(B, $B9`=g=x$rDj5A$9$k9TNs$N3F9T$,(B, $B0l$D$N(B weight vector |
|
$B$H8+$J$5$l$k(B. $B$^$?(B, $B%V%m%C%/=g=x$O(B, $B3F%V%m%C%/$N(B |
|
$BJQ?t$KBP1~$9$k@.J,$N$_(B 1 $B$GB>$O(B 0 $B$N(B weight vector $B$K$h$kHf3S$r(B |
|
$B:G=i$K9T$C$F$+$i(B, $B3F%V%m%C%/Kh$N(B tie breaking $B$r9T$&$3$H$KAjEv$9$k(B. |
|
\E |
|
|
|
\BEG |
|
A list of weights for all variables is called a weight vector. |
|
A weight vector is called a sugar weight vector if |
|
its elements are all positive and it is used for computing |
|
a weighted total degree of a monomial, because such a weight |
|
is used instead of total degree in sugar strategy. |
|
On the other hand, a weight vector whose elements are not necessarily |
|
positive cannot be set as a sugar weight, but it is useful for |
|
generalizing term order. In fact, such a weight vector already |
|
appeared in a matrix order. That is, each row of a matrix defining |
|
a term order is regarded as a weight vector. A block order |
|
is also considered as a refinement of comparison by weight vectors. |
|
It compares two terms by using a weight vector whose elements |
|
corresponding to variables in a block is 1 and 0 otherwise, |
|
then it applies a tie breaker. |
|
\E |
|
|
|
\BJP |
|
weight vector $B$N@_Dj$O(B @code{dp_set_weight()} $B$G9T$&$3$H$,$G$-$k(B |
|
$B$,(B, $B9`=g=x$r;XDj$9$k:]$NB>$N%Q%i%a%?(B ($B9`=g=x7?(B, $BJQ?t=g=x(B) $B$H(B |
|
$B$^$H$a$F@_Dj$G$-$k$3$H$,K>$^$7$$(B. $B$3$N$?$a(B, $B<!$N$h$&$J7A$G$b(B |
|
$B9`=g=x$,;XDj$G$-$k(B. |
|
\E |
|
\BEG |
|
A weight vector can be set by using @code{dp_set_weight()}. |
|
However it is more preferable if a weight vector can be set |
|
together with other parapmeters such as a type of term ordering |
|
and a variable order. This is realized as follows. |
|
\E |
|
|
|
@example |
|
[64] B=[x+y+z-6,x*y+y*z+z*x-11,x*y*z-6]$ |
|
[65] dp_gr_main(B|v=[x,y,z],sugarweight=[3,2,1],order=0); |
|
[z^3-6*z^2+11*z-6,x+y+z-6,-y^2+(-z+6)*y-z^2+6*z-11] |
|
[66] dp_gr_main(B|v=[y,z,x],order=[[1,1,0],[0,1,0],[0,0,1]]); |
|
[x^3-6*x^2+11*x-6,x+y+z-6,-x^2+(-y+6)*x-y^2+6*y-11] |
|
[67] dp_gr_main(B|v=[y,z,x],order=[[x,1,y,2,z,3]]); |
|
[x+y+z-6,x^3-6*x^2+11*x-6,-x^2+(-y+6)*x-y^2+6*y-11] |
|
@end example |
|
|
|
\BJP |
|
$B$$$:$l$NNc$K$*$$$F$b(B, $B9`=g=x$O(B option $B$H$7$F;XDj$5$l$F$$$k(B. |
|
$B:G=i$NNc$G$O(B @code{v} $B$K$h$jJQ?t=g=x$r(B, @code{sugarweight} $B$K$h$j(B |
|
sugar weight vector $B$r(B, @code{order}$B$K$h$j9`=g=x7?$r;XDj$7$F$$$k(B. |
|
$BFs$DL\$NNc$K$*$1$k(B @code{order} $B$N;XDj$O(B matrix order $B$HF1MM$G$"$k(B. |
|
$B$9$J$o$A(B, $B;XDj$5$l$?(B weight vector $B$r:8$+$i=g$K;H$C$F(B weight $B$NHf3S(B |
|
$B$r9T$&(B. $B;0$DL\$NNc$bF1MM$G$"$k$,(B, $B$3$3$G$O(B weight vector $B$NMWAG$r(B |
|
$BJQ?tKh$K;XDj$7$F$$$k(B. $B;XDj$,$J$$$b$N$O(B 0 $B$H$J$k(B. $B;0$DL\$NNc$G$O(B, |
|
@code{order} $B$K$h$k;XDj$G$O9`=g=x$,7hDj$7$J$$(B. $B$3$N>l9g$K$O(B, |
|
tie breaker $B$H$7$FA4<!?t5U<-=q<0=g=x$,<+F0E*$K@_Dj$5$l$k(B. |
|
$B$3$N;XDjJ}K!$O(B, @code{dp_gr_main}, @code{dp_gr_mod_main} $B$J$I(B |
|
$B$NAH$_9~$_4X?t$G$N$_2DG=$G$"$j(B, @code{gr} $B$J$I$N%f!<%6Dj5A4X?t(B |
|
$B$G$OL$BP1~$G$"$k(B. |
|
\E |
|
\BEG |
|
In each example, a term ordering is specified as options. |
|
In the first example, a variable order, a sugar weight vector |
|
and a type of term ordering are specified by options @code{v}, |
|
@code{sugarweight} and @code{order} respectively. |
|
In the second example, an option @code{order} is used |
|
to set a matrix ordering. That is, the specified weight vectors |
|
are used from left to right for comparing terms. |
|
The third example shows a variant of specifying a weight vector, |
|
where each component of a weight vector is specified variable by variable, |
|
and unspecified components are set to zero. In this example, |
|
a term order is not determined only by the specified weight vector. |
|
In such a case a tie breaker by the graded reverse lexicographic ordering |
|
is set automatically. |
|
This type of a term ordering specification can be applied only to builtin |
|
functions such as @code{dp_gr_main()}, @code{dp_gr_mod_main()}, not to |
|
user defined functions such as @code{gr()}. |
|
\E |
|
|
|
\BJP |
@node $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B |
@section $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B |
\E |
\E |
Line 1200 Refer to the sections for each functions. |
|
Line 1389 Refer to the sections for each functions. |
|
\E |
\E |
|
|
\BJP |
\BJP |
|
@node Weyl $BBe?t(B,,, $B%0%l%V%J4pDl$N7W;;(B |
|
@section Weyl $BBe?t(B |
|
\E |
|
\BEG |
|
@node Weyl algebra,,, Groebner basis computation |
|
@section Weyl algebra |
|
\E |
|
|
|
@noindent |
|
|
|
\BJP |
|
$B$3$l$^$G$O(B, $BDL>o$N2D49$JB?9`<04D$K$*$1$k%0%l%V%J4pDl7W;;$K$D$$$F(B |
|
$B=R$Y$F$-$?$,(B, $B%0%l%V%J4pDl$NM}O@$O(B, $B$"$k>r7o$rK~$?$9Hs2D49$J(B |
|
$B4D$K$b3HD%$G$-$k(B. $B$3$N$h$&$J4D$NCf$G(B, $B1~MQ>e$b=EMW$J(B, |
|
Weyl $BBe?t(B, $B$9$J$o$AB?9`<04D>e$NHyJ,:nMQAG4D$N1i;;$*$h$S(B |
|
$B%0%l%V%J4pDl7W;;$,(B Risa/Asir $B$K<BAu$5$l$F$$$k(B. |
|
|
|
$BBN(B @code{K} $B>e$N(B @code{n} $B<!85(B Weyl $BBe?t(B |
|
@code{D=K<x1,@dots{},xn,D1,@dots{},Dn>} $B$O(B |
|
\E |
|
|
|
\BEG |
|
So far we have explained Groebner basis computation in |
|
commutative polynomial rings. However Groebner basis can be |
|
considered in more general non-commutative rings. |
|
Weyl algebra is one of such rings and |
|
Risa/Asir implements fundamental operations |
|
in Weyl algebra and Groebner basis computation in Weyl algebra. |
|
|
|
The @code{n} dimensional Weyl algebra over a field @code{K}, |
|
@code{D=K<x1,@dots{},xn,D1,@dots{},Dn>} is a non-commutative |
|
algebra which has the following fundamental relations: |
|
\E |
|
|
|
@code{xi*xj-xj*xi=0}, @code{Di*Dj-Dj*Di=0}, @code{Di*xj-xj*Di=0} (@code{i!=j}), |
|
@code{Di*xi-xi*Di=1} |
|
|
|
\BJP |
|
$B$H$$$&4pK\4X78$r;}$D4D$G$"$k(B. @code{D} $B$O(B $BB?9`<04D(B @code{K[x1,@dots{},xn]} $B$r78?t(B |
|
$B$H$9$kHyJ,:nMQAG4D$G(B, @code{Di} $B$O(B @code{xi} $B$K$h$kHyJ,$rI=$9(B. $B8r494X78$K$h$j(B, |
|
@code{D} $B$N85$O(B, @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn} $B$J$kC19`(B |
|
$B<0$N(B @code{K} $B@~7A7k9g$H$7$F=q$-I=$9$3$H$,$G$-$k(B. |
|
Risa/Asir $B$K$*$$$F$O(B, $B$3$NC19`<0$r(B, $B2D49$JB?9`<0$HF1MM$K(B |
|
@code{<<i1,@dots{},in,j1,@dots{},jn>>} $B$GI=$9(B. $B$9$J$o$A(B, @code{D} $B$N85$b(B |
|
$BJ,;6I=8=B?9`<0$H$7$FI=$5$l$k(B. $B2C8:;;$O(B, $B2D49$N>l9g$HF1MM$K(B, @code{+}, @code{-} |
|
$B$K$h$j(B |
|
$B<B9T$G$-$k$,(B, $B>h;;$O(B, $BHs2D49@-$r9MN8$7$F(B @code{dp_weyl_mul()} $B$H$$$&4X?t(B |
|
$B$K$h$j<B9T$9$k(B. |
|
\E |
|
|
|
\BEG |
|
@code{D} is the ring of differential operators whose coefficients |
|
are polynomials in @code{K[x1,@dots{},xn]} and |
|
@code{Di} denotes the differentiation with respect to @code{xi}. |
|
According to the commutation relation, |
|
elements of @code{D} can be represented as a @code{K}-linear combination |
|
of monomials @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn}. |
|
In Risa/Asir, this type of monomial is represented |
|
by @code{<<i1,@dots{},in,j1,@dots{},jn>>} as in the case of commutative |
|
polynomial. |
|
That is, elements of @code{D} are represented by distributed polynomials. |
|
Addition and subtraction can be done by @code{+}, @code{-}, |
|
but multiplication is done by calling @code{dp_weyl_mul()} because of |
|
the non-commutativity of @code{D}. |
|
\E |
|
|
|
@example |
|
[0] A=<<1,2,2,1>>; |
|
(1)*<<1,2,2,1>> |
|
[1] B=<<2,1,1,2>>; |
|
(1)*<<2,1,1,2>> |
|
[2] A*B; |
|
(1)*<<3,3,3,3>> |
|
[3] dp_weyl_mul(A,B); |
|
(1)*<<3,3,3,3>>+(1)*<<3,2,3,2>>+(4)*<<2,3,2,3>>+(4)*<<2,2,2,2>> |
|
+(2)*<<1,3,1,3>>+(2)*<<1,2,1,2>> |
|
@end example |
|
|
|
\BJP |
|
$B%0%l%V%J4pDl7W;;$K$D$$$F$b(B, Weyl $BBe?t@lMQ$N4X?t$H$7$F(B, |
|
$B<!$N4X?t$,MQ0U$7$F$"$k(B. |
|
\E |
|
\BEG |
|
The following functions are avilable for Groebner basis computation |
|
in Weyl algebra: |
|
\E |
|
@code{dp_weyl_gr_main()}, |
|
@code{dp_weyl_gr_mod_main()}, |
|
@code{dp_weyl_gr_f_main()}, |
|
@code{dp_weyl_f4_main()}, |
|
@code{dp_weyl_f4_mod_main()}. |
|
\BJP |
|
$B$^$?(B, $B1~MQ$H$7$F(B, global b $B4X?t$N7W;;$,<BAu$5$l$F$$$k(B. |
|
\E |
|
\BEG |
|
Computation of the global b function is implemented as an application. |
|
\E |
|
|
|
\BJP |
|
@node $BB?9`<04D>e$N2C72(B,,, $B%0%l%V%J4pDl$N7W;;(B |
|
@section $BB?9`<04D>e$N2C72(B |
|
\E |
|
\BEG |
|
@node Module over a polynomial ring,,, Groebner basis computation |
|
@section Module over a polynomial ring |
|
\E |
|
|
|
@noindent |
|
|
|
\BJP |
|
$BB?9`<04D>e$N<+M32C72$N85$O(B, $B2C72C19`<0(B te_i $B$N@~7?OB$H$7$FFbItI=8=$5$l$k(B. |
|
$B$3$3$G(B t $B$OB?9`<04D$NC19`<0(B, e_i $B$O<+M32C72$NI8=`4pDl$G$"$k(B. $B2C72C19`<0$O(B, $BB?9`<04D$NC19`<0(B |
|
$B$K0LCV(B i $B$rDI2C$7$?(B @code{<<a,b,...,c:i>>} $B$GI=$9(B. $B2C72B?9`<0(B, $B$9$J$o$A2C72C19`<0$N@~7?OB$O(B, |
|
$B@_Dj$5$l$F$$$k2C729`=g=x$K$7$?$,$C$F9_=g$K@0Ns$5$l$k(B. $B2C729`=g=x$K$O0J2<$N(B3$B<oN`$,$"$k(B. |
|
|
|
@table @code |
|
@item TOP $B=g=x(B |
|
|
|
$B$3$l$O(B, te_i > se_j $B$H$J$k$N$O(B t>s $B$^$?$O(B (t=s $B$+$D(B i<j) $B$H$J$k$h$&$J9`=g=x$G$"$k(B. $B$3$3$G(B, |
|
t, s $B$NHf3S$OB?9`<04D$K@_Dj$5$l$F$$$k=g=x$G9T$&(B. |
|
$B$3$N7?$N=g=x$O(B, @code{dp_ord([0,Ord])} $B$K(B |
|
$B$h$j@_Dj$9$k(B. $B$3$3$G(B, @code{Ord} $B$OB?9`<04D$N=g=x7?$G$"$k(B. |
|
|
|
@item POT $B=g=x(B |
|
|
|
$B$3$l$O(B, te_i > se_j $B$H$J$k$N$O(B i<j $B$^$?$O(B (i=j $B$+$D(B t>s) $B$H$J$k$h$&$J9`=g=x$G$"$k(B. $B$3$3$G(B, |
|
t, s $B$NHf3S$OB?9`<04D$K@_Dj$5$l$F$$$k=g=x$G9T$&(B. |
|
$B$3$N7?$N=g=x$O(B, @code{dp_ord([1,Ord])} $B$K(B |
|
$B$h$j@_Dj$9$k(B. $B$3$3$G(B, @code{Ord} $B$OB?9`<04D$N=g=x7?$G$"$k(B. |
|
|
|
@item Schreyer $B7?=g=x(B |
|
|
|
$B3FI8=`4pDl(B e_i $B$KBP$7(B, $BJL$N<+M32C72$N2C72C19`<0(B T_i $B$,M?$($i$l$F$$$F(B, te_i > se_j $B$H$J$k$N$O(B |
|
tT_i > sT_j $B$^$?$O(B (tT_i=sT_j $B$+$D(B i<j) $B$H$J$k$h$&$J9`=g=x$G$"$k(B. $B$3$3$G(B tT_i, sT_j $B$N(B |
|
$BHf3S$O(B, $B$3$l$i$,=jB0$9$k<+M32C72$K@_Dj$5$l$F$$$k=g=x$G9T$&(B. |
|
$B$3$N7?$N=g=x$O(B, $BDL>o:F5"E*$K@_Dj$5$l$k(B. $B$9$J$o$A(B, T_i $B$,=jB0$9$k<+M32C72$N=g=x$b(B Schreyer $B7?(B |
|
$B$G$"$k$+(B, $B$^$?$O%\%H%`$H$J$k(B TOP, POT $B$J$I$N9`=g=x$H$J$k(B. |
|
$B$3$N7?$N=g=x$O(B @code{dpm_set_schreyer([H_1,H_2,...])} $B$K$h$j;XDj$9$k(B. $B$3$3$G(B, |
|
@code{H_i=[T_1,T_2,...]} $B$O2C72C19`<0$N%j%9%H$G(B, @code{[H_2,...]} $B$GDj5A$5$l$k(B Schreyer $B7?9`=g=x$r(B |
|
@code{tT_i} $B$i$KE,MQ$9$k$H$$$&0UL#$G$"$k(B. |
|
@end table |
|
|
|
$B2C72B?9`<0$rF~NO$9$kJ}K!$H$7$F$O(B, @code{<<a,b,...:i>>} $B$J$k7A<0$GD>@\F~NO$9$kB>$K(B, |
|
$BB?9`<0%j%9%H$r:n$j(B, @code{dpm_ltod()} $B$K$h$jJQ49$9$kJ}K!$b$"$k(B. |
|
\E |
|
\BEG |
|
not yet |
|
\E |
|
|
|
\BJP |
@node $B%0%l%V%J4pDl$K4X$9$kH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $B%0%l%V%J4pDl$K4X$9$kH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
@section $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\E |
\E |
Line 1214 Refer to the sections for each functions. |
|
Line 1553 Refer to the sections for each functions. |
|
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* gr_minipoly minipoly:: |
* gr_minipoly minipoly:: |
* tolexm minipolym:: |
* tolexm minipolym:: |
* dp_gr_main dp_gr_mod_main:: |
* dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main:: |
* dp_f4_main dp_f4_mod_main:: |
* dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main:: |
|
* nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace:: |
|
* nd_gr_postproc nd_weyl_gr_postproc:: |
* dp_gr_flags dp_gr_print:: |
* dp_gr_flags dp_gr_print:: |
* dp_ord:: |
* dp_ord:: |
|
* dp_set_weight dp_set_top_weight dp_weyl_set_weight:: |
* dp_ptod:: |
* dp_ptod:: |
* dp_dtop:: |
* dp_dtop:: |
* dp_mod dp_rat:: |
* dp_mod dp_rat:: |
* dp_homo dp_dehomo:: |
* dp_homo dp_dehomo:: |
* dp_ptozp dp_prim:: |
* dp_ptozp dp_prim:: |
* dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod:: |
* dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod:: |
* dp_hm dp_ht dp_hc dp_rest:: |
* dp_hm dp_ht dp_hc dp_rest:: |
|
* dpm_hm dpm_ht dpm_hc dpm_hp dpm_rest:: |
* dp_td dp_sugar:: |
* dp_td dp_sugar:: |
* dp_lcm:: |
* dp_lcm:: |
* dp_redble:: |
* dp_redble:: |
Line 1239 Refer to the sections for each functions. |
|
Line 1582 Refer to the sections for each functions. |
|
* katsura hkatsura cyclic hcyclic:: |
* katsura hkatsura cyclic hcyclic:: |
* dp_vtoe dp_etov:: |
* dp_vtoe dp_etov:: |
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
|
* primadec primedec:: |
|
* primedec_mod:: |
|
* bfunction bfct generic_bfct ann ann0:: |
@end menu |
@end menu |
|
|
\JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
Line 1262 Refer to the sections for each functions. |
|
Line 1608 Refer to the sections for each functions. |
|
@item return |
@item return |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item plist, vlist, procs |
@item plist vlist procs |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
Line 1278 Refer to the sections for each functions. |
|
Line 1624 Refer to the sections for each functions. |
|
@item |
@item |
$BI8=`%i%$%V%i%j$N(B @samp{gr} $B$GDj5A$5$l$F$$$k(B. |
$BI8=`%i%$%V%i%j$N(B @samp{gr} $B$GDj5A$5$l$F$$$k(B. |
@item |
@item |
|
gr $B$rL>A0$K4^$`4X?t$O8=:_%a%s%F$5$l$F$$$J$$(B. @code{nd_gr}$B7O$N4X?t$rBe$o$j$KMxMQ$9$Y$-$G$"$k(B(@fref{nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace}). |
|
@item |
$B$$$:$l$b(B, $BB?9`<0%j%9%H(B @var{plist} $B$N(B, $BJQ?t=g=x(B @var{vlist}, $B9`=g=x7?(B |
$B$$$:$l$b(B, $BB?9`<0%j%9%H(B @var{plist} $B$N(B, $BJQ?t=g=x(B @var{vlist}, $B9`=g=x7?(B |
@var{order} $B$K4X$9$k%0%l%V%J4pDl$r5a$a$k(B. @code{gr()}, @code{hgr()} |
@var{order} $B$K4X$9$k%0%l%V%J4pDl$r5a$a$k(B. @code{gr()}, @code{hgr()} |
$B$O(B $BM-M}?t78?t(B, @code{gr_mod()} $B$O(B GF(@var{p}) $B78?t$H$7$F7W;;$9$k(B. |
$B$O(B $BM-M}?t78?t(B, @code{gr_mod()} $B$O(B GF(@var{p}) $B78?t$H$7$F7W;;$9$k(B. |
Line 1289 Refer to the sections for each functions. |
|
Line 1637 Refer to the sections for each functions. |
|
strategy $B$K$h$k7W;;(B, @code{hgr()} $B$O(B trace-lifting $B$*$h$S(B |
strategy $B$K$h$k7W;;(B, @code{hgr()} $B$O(B trace-lifting $B$*$h$S(B |
$B@F<!2=$K$h$k(B $B6:@5$5$l$?(B sugar strategy $B$K$h$k7W;;$r9T$&(B. |
$B@F<!2=$K$h$k(B $B6:@5$5$l$?(B sugar strategy $B$K$h$k7W;;$r9T$&(B. |
@item |
@item |
@code{dgr()} $B$O(B, @code{gr()}, @code{dgr()} $B$r(B |
@code{dgr()} $B$O(B, @code{gr()}, @code{hgr()} $B$r(B |
$B;R%W%m%;%9%j%9%H(B @var{procs} $B$N(B 2 $B$D$N%W%m%;%9$K$h$jF1;~$K7W;;$5$;(B, |
$B;R%W%m%;%9%j%9%H(B @var{procs} $B$N(B 2 $B$D$N%W%m%;%9$K$h$jF1;~$K7W;;$5$;(B, |
$B@h$K7k2L$rJV$7$?J}$N7k2L$rJV$9(B. $B7k2L$OF10l$G$"$k$,(B, $B$I$A$i$NJ}K!$,(B |
$B@h$K7k2L$rJV$7$?J}$N7k2L$rJV$9(B. $B7k2L$OF10l$G$"$k$,(B, $B$I$A$i$NJ}K!$,(B |
$B9bB.$+0lHL$K$OITL@$N$?$a(B, $B<B:]$N7P2a;~4V$rC;=L$9$k$N$KM-8z$G$"$k(B. |
$B9bB.$+0lHL$K$OITL@$N$?$a(B, $B<B:]$N7P2a;~4V$rC;=L$9$k$N$KM-8z$G$"$k(B. |
@item |
@item |
@code{dgr()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$G$N(B |
@code{dgr()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$G$N(B |
CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$N$?$a$N;~4V$G$"$k(B. |
CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$N$?$a$N;~4V$G$"$k(B. |
|
@item |
|
$BB?9`<0%j%9%H(B @var{plist} $B$NMWAG$,J,;6I=8=B?9`<0$N>l9g$O(B |
|
$B7k2L$bJ,;6I=8=B?9`<0$N%j%9%H$G$"$k(B. |
|
$B$3$N>l9g(B, $B0z?t$NJ,;6B?9`<0$OM?$($i$l$?=g=x$K=>$$(B @code{dp_sort} $B$G(B |
|
$B%=!<%H$5$l$F$+$i7W;;$5$l$k(B. |
|
$BB?9`<0%j%9%H$NMWAG$,J,;6I=8=B?9`<0$N>l9g$b(B |
|
$BJQ?t$N?tJ,$NITDj85$N%j%9%H$r(B @var{vlist} $B0z?t$H$7$FM?$($J$$$H$$$1$J$$(B |
|
($B%@%_!<(B). |
\E |
\E |
\BEG |
\BEG |
@item |
@item |
These functions are defined in @samp{gr} in the standard library |
These functions are defined in @samp{gr} in the standard library |
directory. |
directory. |
|
@item |
|
Functions of which names contains gr are obsolted. |
|
Functions of @code{nd_gr} families should be used (@fref{nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace}). |
@item |
@item |
They compute a Groebner basis of a polynomial list @var{plist} with |
They compute a Groebner basis of a polynomial list @var{plist} with |
respect to the variable order @var{vlist} and the order type @var{order}. |
respect to the variable order @var{vlist} and the order type @var{order}. |
Line 1324 Therefore this function is useful to reduce the actual |
|
Line 1683 Therefore this function is useful to reduce the actual |
|
The CPU time shown after an exection of @code{dgr()} indicates |
The CPU time shown after an exection of @code{dgr()} indicates |
that of the master process, and most of the time corresponds to the time |
that of the master process, and most of the time corresponds to the time |
for communication. |
for communication. |
|
@item |
|
When the elements of @var{plist} are distributed polynomials, |
|
the result is also a list of distributed polynomials. |
|
In this case, firstly the elements of @var{plist} is sorted by @code{dp_sort} |
|
and the Grobner basis computation is started. |
|
Variables must be given in @var{vlist} even in this case |
|
(these variables are dummy). |
\E |
\E |
@end itemize |
@end itemize |
|
|
Line 1341 for communication. |
|
Line 1707 for communication. |
|
@table @t |
@table @t |
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@comment @fref{dp_gr_main dp_gr_mod_main}, |
@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main}, |
@fref{dp_gr_main dp_gr_mod_main}, |
|
@fref{dp_ord}. |
@fref{dp_ord}. |
@end table |
@end table |
|
|
Line 1371 for communication. |
|
Line 1736 for communication. |
|
@item return |
@item return |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item plist, vlist1, vlist2, procs |
@item plist vlist1 vlist2 procs |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
|
|
@table @t |
@table @t |
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@fref{dp_gr_main dp_gr_mod_main}, |
@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main}, |
\JP @fref{dp_ord}, @fref{$BJ,;67W;;(B} |
\JP @fref{dp_ord}, @fref{$BJ,;67W;;(B} |
\EG @fref{dp_ord}, @fref{Distributed computation} |
\EG @fref{dp_ord}, @fref{Distributed computation} |
@end table |
@end table |
|
|
@item lex_hensel_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
@item lex_hensel_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
\JP :: GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B |
\JP :: GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B |
\EG ::Computation of an GSL form ideal basis |
\EG ::Computation of an GSL form ideal basis |
@item tolex_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
@item tolex_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2}) |
@itemx tolex_gsl_d(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo},@var{procs}) |
@itemx tolex_gsl_d(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{procs}) |
\JP :: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B |
\JP :: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B |
\EG :: Computation of an GSL form ideal basis stating from a Groebner basis |
\EG :: Computation of an GSL form ideal basis stating from a Groebner basis |
@end table |
@end table |
|
|
@item return |
@item return |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item plist, vlist1, vlist2, procs |
@item plist vlist1 vlist2 procs |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
|
|
[108] GSL[1]; |
[108] GSL[1]; |
[u2,10352277157007342793600000000*u0^31-...] |
[u2,10352277157007342793600000000*u0^31-...] |
[109] GSL[5]; |
[109] GSL[5]; |
[u0,11771021876193064124640000000*u0^32-...,376672700038178051988480000000*u0^31-...] |
[u0,11771021876193064124640000000*u0^32-..., |
|
376672700038178051988480000000*u0^31-...] |
@end example |
@end example |
|
|
@table @t |
@table @t |
|
|
@item return |
@item return |
\JP $BB?9`<0(B |
\JP $BB?9`<0(B |
\EG polynomial |
\EG polynomial |
@item plist, vlist |
@item plist vlist |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
Line 1788 for @code{gr_minipoly()}. |
|
Line 2154 for @code{gr_minipoly()}. |
|
@item return |
@item return |
\JP @code{tolexm()} : $B%j%9%H(B, @code{minipolym()} : $BB?9`<0(B |
\JP @code{tolexm()} : $B%j%9%H(B, @code{minipolym()} : $BB?9`<0(B |
\EG @code{tolexm()} : list, @code{minipolym()} : polynomial |
\EG @code{tolexm()} : list, @code{minipolym()} : polynomial |
@item plist, vlist1, vlist2 |
@item plist vlist1 vlist2 |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
Line 1836 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
Line 2202 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
@fref{gr_minipoly minipoly}. |
@fref{gr_minipoly minipoly}. |
@end table |
@end table |
|
|
\JP @node dp_gr_main dp_gr_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node dp_gr_main dp_gr_mod_main,,, Functions for Groebner basis computation |
\EG @node dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main,,, Functions for Groebner basis computation |
@subsection @code{dp_gr_main}, @code{dp_gr_mod_main} |
@subsection @code{dp_gr_main}, @code{dp_gr_mod_main}, @code{dp_gr_f_main}, @code{dp_weyl_gr_main}, @code{dp_weyl_gr_mod_main}, @code{dp_weyl_gr_f_main} |
@findex dp_gr_main |
@findex dp_gr_main |
@findex dp_gr_mod_main |
@findex dp_gr_mod_main |
|
@findex dp_gr_f_main |
|
@findex dp_weyl_gr_main |
|
@findex dp_weyl_gr_mod_main |
|
@findex dp_weyl_gr_f_main |
|
|
@table @t |
@table @t |
@item dp_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) |
@item dp_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) |
@itemx dp_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) |
@itemx dp_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) |
|
@itemx dp_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order}) |
|
@itemx dp_weyl_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) |
|
@itemx dp_weyl_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) |
|
@itemx dp_weyl_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order}) |
\JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) |
\JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) |
\EG :: Groebner basis computation (built-in functions) |
\EG :: Groebner basis computation (built-in functions) |
@end table |
@end table |
Line 1853 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
Line 2227 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
@item return |
@item return |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item plist, vlist |
@item plist vlist |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
Line 1872 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
Line 2246 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
@item |
@item |
$B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;$N4pK\E*AH$_9~$_H!?t$G$"$j(B, @code{gr()}, |
$B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;$N4pK\E*AH$_9~$_H!?t$G$"$j(B, @code{gr()}, |
@code{hgr()}, @code{gr_mod()} $B$J$I$O$9$Y$F$3$l$i$NH!?t$r8F$S=P$7$F7W;;(B |
@code{hgr()}, @code{gr_mod()} $B$J$I$O$9$Y$F$3$l$i$NH!?t$r8F$S=P$7$F7W;;(B |
$B$r9T$C$F$$$k(B. |
$B$r9T$C$F$$$k(B. $B4X?tL>$K(B weyl $B$,F~$C$F$$$k$b$N$O(B, Weyl $BBe?t>e$N7W;;(B |
|
$B$N$?$a$N4X?t$G$"$k(B. |
@item |
@item |
|
@code{dp_gr_f_main()}, @code{dp_weyl_f_main()} $B$O(B, $B<o!9$NM-8BBN>e$N%0%l%V%J4pDl$r7W;;$9$k(B |
|
$B>l9g$KMQ$$$k(B. $BF~NO$O(B, $B$"$i$+$8$a(B, @code{simp_ff()} $B$J$I$G(B, |
|
$B9M$($kM-8BBN>e$K<M1F$5$l$F$$$kI,MW$,$"$k(B. |
|
@item |
$B%U%i%0(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, $BF~NO$r@F<!2=$7$F$+$i(B Buchberger $B%"%k%4%j%:%`(B |
$B%U%i%0(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, $BF~NO$r@F<!2=$7$F$+$i(B Buchberger $B%"%k%4%j%:%`(B |
$B$r<B9T$9$k(B. |
$B$r<B9T$9$k(B. |
@item |
@item |
Line 1905 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
Line 2284 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
@item |
@item |
These functions are fundamental built-in functions for Groebner basis |
These functions are fundamental built-in functions for Groebner basis |
computation and @code{gr()},@code{hgr()} and @code{gr_mod()} |
computation and @code{gr()},@code{hgr()} and @code{gr_mod()} |
are all interfaces to these functions. |
are all interfaces to these functions. Functions whose names |
|
contain weyl are those for computation in Weyl algebra. |
@item |
@item |
|
@code{dp_gr_f_main()} and @code{dp_weyl_gr_f_main()} |
|
are functions for Groebner basis computation |
|
over various finite fields. Coefficients of input polynomials |
|
must be converted to elements of a finite field |
|
currently specified by @code{setmod_ff()}. |
|
@item |
If @var{homo} is not equal to 0, homogenization is applied before entering |
If @var{homo} is not equal to 0, homogenization is applied before entering |
Buchberger algorithm |
Buchberger algorithm |
@item |
@item |
Line 1944 Actual computation is controlled by various parameters |
|
Line 2330 Actual computation is controlled by various parameters |
|
@fref{dp_ord}, |
@fref{dp_ord}, |
@fref{dp_gr_flags dp_gr_print}, |
@fref{dp_gr_flags dp_gr_print}, |
@fref{gr hgr gr_mod}, |
@fref{gr hgr gr_mod}, |
|
@fref{setmod_ff}, |
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
\EG @fref{Controlling Groebner basis computations} |
\EG @fref{Controlling Groebner basis computations} |
@end table |
@end table |
|
|
\JP @node dp_f4_main dp_f4_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node dp_f4_main dp_f4_mod_main,,, Functions for Groebner basis computation |
\EG @node dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main,,, Functions for Groebner basis computation |
@subsection @code{dp_f4_main}, @code{dp_f4_mod_main} |
@subsection @code{dp_f4_main}, @code{dp_f4_mod_main}, @code{dp_weyl_f4_main}, @code{dp_weyl_f4_mod_main} |
@findex dp_f4_main |
@findex dp_f4_main |
@findex dp_f4_mod_main |
@findex dp_f4_mod_main |
|
@findex dp_weyl_f4_main |
|
@findex dp_weyl_f4_mod_main |
|
|
@table @t |
@table @t |
@item dp_f4_main(@var{plist},@var{vlist},@var{order}) |
@item dp_f4_main(@var{plist},@var{vlist},@var{order}) |
@itemx dp_f4_mod_main(@var{plist},@var{vlist},@var{order}) |
@itemx dp_f4_mod_main(@var{plist},@var{vlist},@var{order}) |
|
@itemx dp_weyl_f4_main(@var{plist},@var{vlist},@var{order}) |
|
@itemx dp_weyl_f4_mod_main(@var{plist},@var{vlist},@var{order}) |
\JP :: F4 $B%"%k%4%j%:%`$K$h$k%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) |
\JP :: F4 $B%"%k%4%j%:%`$K$h$k%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) |
\EG :: Groebner basis computation by F4 algorithm (built-in functions) |
\EG :: Groebner basis computation by F4 algorithm (built-in functions) |
@end table |
@end table |
Line 1965 Actual computation is controlled by various parameters |
|
Line 2356 Actual computation is controlled by various parameters |
|
@item return |
@item return |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item plist, vlist |
@item plist vlist |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
Line 1982 F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$ |
|
Line 2373 F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$ |
|
$B;;K!$G$"$j(B, $BK\<BAu$O(B, $BCf9q>jM>DjM}$K$h$k@~7AJ}Dx<05a2r$rMQ$$$?(B |
$B;;K!$G$"$j(B, $BK\<BAu$O(B, $BCf9q>jM>DjM}$K$h$k@~7AJ}Dx<05a2r$rMQ$$$?(B |
$B;n83E*$J<BAu$G$"$k(B. |
$B;n83E*$J<BAu$G$"$k(B. |
@item |
@item |
$B0z?t$*$h$SF0:n$O$=$l$>$l(B @code{dp_gr_main()}, @code{dp_gr_mod_main()} |
$B@F<!2=$N0z?t$,$J$$$3$H$r=|$1$P(B, $B0z?t$*$h$SF0:n$O$=$l$>$l(B |
|
@code{dp_gr_main()}, @code{dp_gr_mod_main()}, |
|
@code{dp_weyl_gr_main()}, @code{dp_weyl_gr_mod_main()} |
$B$HF1MM$G$"$k(B. |
$B$HF1MM$G$"$k(B. |
\E |
\E |
\BEG |
\BEG |
Line 1994 invented by J.C. Faugere. The current implementation o |
|
Line 2387 invented by J.C. Faugere. The current implementation o |
|
uses Chinese Remainder theorem and not highly optimized. |
uses Chinese Remainder theorem and not highly optimized. |
@item |
@item |
Arguments and actions are the same as those of |
Arguments and actions are the same as those of |
@code{dp_gr_main()}, @code{dp_gr_mod_main()}. |
@code{dp_gr_main()}, @code{dp_gr_mod_main()}, |
|
@code{dp_weyl_gr_main()}, @code{dp_weyl_gr_mod_main()}, |
|
except for lack of the argument for controlling homogenization. |
\E |
\E |
@end itemize |
@end itemize |
|
|
Line 2008 Arguments and actions are the same as those of |
|
Line 2403 Arguments and actions are the same as those of |
|
\EG @fref{Controlling Groebner basis computations} |
\EG @fref{Controlling Groebner basis computations} |
@end table |
@end table |
|
|
|
\JP @node nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace,,, Functions for Groebner basis computation |
|
@subsection @code{nd_gr}, @code{nd_gr_trace}, @code{nd_f4}, @code{nd_f4_trace}, @code{nd_weyl_gr}, @code{nd_weyl_gr_trace} |
|
@findex nd_gr |
|
@findex nd_gr_trace |
|
@findex nd_f4 |
|
@findex nd_f4_trace |
|
@findex nd_weyl_gr |
|
@findex nd_weyl_gr_trace |
|
|
|
@table @t |
|
@item nd_gr(@var{plist},@var{vlist},@var{p},@var{order}[|@var{option=value,...}]) |
|
@itemx nd_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}[|@var{option=value,...}]) |
|
@itemx nd_f4(@var{plist},@var{vlist},@var{modular},@var{order}[|@var{option=value,...}]) |
|
@itemx nd_f4_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}[|@var{option=value,...}]) |
|
@itemx nd_weyl_gr(@var{plist},@var{vlist},@var{p},@var{order}[|@var{option=value,...}]) |
|
@itemx nd_weyl_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}[|@var{option=value,...}]) |
|
\JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) |
|
\EG :: Groebner basis computation (built-in functions) |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $B%j%9%H(B |
|
\EG list |
|
@item plist vlist |
|
\JP $B%j%9%H(B |
|
\EG list |
|
@item order |
|
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
|
@item homo |
|
\JP $B%U%i%0(B |
|
\EG flag |
|
@item modular |
|
\JP $B%U%i%0$^$?$OAG?t(B |
|
\EG flag or prime |
|
@end table |
|
|
|
\BJP |
|
@itemize @bullet |
|
@item |
|
$B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;AH$_9~$_4X?t$N?7<BAu$G$"$k(B. |
|
@item @code{nd_gr} $B$O(B, @code{p} $B$,(B 0 $B$N$H$-M-M}?tBN>e$N(B Buchberger |
|
$B%"%k%4%j%:%`$r<B9T$9$k(B. @code{p} $B$,(B 2 $B0J>e$N<+A3?t$N$H$-(B, GF(p) $B>e$N(B |
|
Buchberger $B%"%k%4%j%:%`$r<B9T$9$k(B. |
|
@item @code{nd_gr_trace} $B$*$h$S(B @code{nd_f4_trace} |
|
$B$OM-M}?tBN>e$G(B trace $B%"%k%4%j%:%`$r<B9T$9$k(B. |
|
@var{p} $B$,(B 0 $B$^$?$O(B 1 $B$N$H$-(B, $B<+F0E*$KA*$P$l$?AG?t$rMQ$$$F(B, $B@.8y$9$k(B |
|
$B$^$G(B trace $B%"%k%4%j%:%`$r<B9T$9$k(B. |
|
@var{p} $B$,(B 2 $B0J>e$N$H$-(B, trace $B$O(BGF(p) $B>e$G7W;;$5$l$k(B. trace $B%"%k%4%j%:%`(B |
|
$B$,<:GT$7$?>l9g(B 0 $B$,JV$5$l$k(B. @var{p} $B$,Ii$N>l9g(B, $B%0%l%V%J4pDl%A%'%C%/$O(B |
|
$B9T$o$J$$(B. $B$3$N>l9g(B, @var{p} $B$,(B -1 $B$J$i$P<+F0E*$KA*$P$l$?AG?t$,(B, |
|
$B$=$l0J30$O;XDj$5$l$?AG?t$rMQ$$$F%0%l%V%J4pDl8uJd$N7W;;$,9T$o$l$k(B. |
|
@code{nd_f4_trace} $B$O(B, $B3FA4<!?t$K$D$$$F(B, $B$"$kM-8BBN>e$G(B F4 $B%"%k%4%j%:%`(B |
|
$B$G9T$C$?7k2L$r$b$H$K(B, $B$=$NM-8BBN>e$G(B 0 $B$G$J$$4pDl$rM?$($k(B S-$BB?9`<0$N$_$r(B |
|
$BMQ$$$F9TNs@8@.$r9T$$(B, $B$=$NA4<!?t$K$*$1$k4pDl$r@8@.$9$kJ}K!$G$"$k(B. $BF@$i$l$k(B |
|
$BB?9`<0=89g$O$d$O$j%0%l%V%J4pDl8uJd$G$"$j(B, @code{nd_gr_trace} $B$HF1MM$N(B |
|
$B%A%'%C%/$,9T$o$l$k(B. |
|
@item |
|
@code{nd_f4} $B$O(B @code{modular} $B$,(B 0 $B$N$H$-M-M}?tBN>e$N(B, @code{modular} $B$,(B |
|
$B%^%7%s%5%$%:AG?t$N$H$-M-8BBN>e$N(B F4 $B%"%k%4%j%:%`$r<B9T$9$k(B. |
|
@item |
|
@var{plist} $B$,B?9`<0%j%9%H$N>l9g(B, @var{plist}$B$G@8@.$5$l$k%$%G%"%k$N%0%l%V%J!<4pDl$,(B |
|
$B7W;;$5$l$k(B. @var{plist} $B$,B?9`<0%j%9%H$N%j%9%H$N>l9g(B, $B3FMWAG$OB?9`<04D>e$N<+M32C72$N85$H8+$J$5$l(B, |
|
$B$3$l$i$,@8@.$9$kItJ,2C72$N%0%l%V%J!<4pDl$,7W;;$5$l$k(B. $B8e<T$N>l9g(B, $B9`=g=x$O2C72$KBP$9$k9`=g=x$r(B |
|
$B;XDj$9$kI,MW$,$"$k(B. $B$3$l$O(B @var{[s,ord]} $B$N7A$G;XDj$9$k(B. @var{s} $B$,(B 0 $B$J$i$P(B TOP (Term Over Position), |
|
1 $B$J$i$P(B POT (Position Over Term) $B$r0UL#$7(B, @var{ord} $B$OB?9`<04D$NC19`<0$KBP$9$k9`=g=x$G$"$k(B. |
|
@item |
|
@code{nd_weyl_gr}, @code{nd_weyl_gr_trace} $B$O(B Weyl $BBe?tMQ$G$"$k(B. |
|
@item |
|
@code{f4} $B7O4X?t0J30$O$9$Y$FM-M}4X?t78?t$N7W;;$,2DG=$G$"$k(B. |
|
@item |
|
$B0lHL$K(B @code{dp_gr_main}, @code{dp_gr_mod_main} $B$h$j9bB.$G$"$k$,(B, |
|
$BFC$KM-8BBN>e$N>l9g82Cx$G$"$k(B. |
|
@item |
|
$B0J2<$N%*%W%7%g%s$,;XDj$G$-$k(B. |
|
@table @code |
|
@item homo |
|
1 $B$N$H$-(B, $B@F<!2=$r7PM3$7$F7W;;$9$k(B. (@code{nd_gr}, @code{nd_f4} $B$N$_(B) |
|
@item dp |
|
1 $B$N$H$-(B, $BJ,;6I=8=B?9`<0(B ($B2C72$N>l9g$K$O2C72B?9`<0(B) $B$r7k2L$H$7$FJV$9(B. |
|
@item nora |
|
1 $B$N$H$-(B, $B7k2L$NAj8_4JLs$r9T$o$J$$(B. |
|
@end table |
|
@end itemize |
|
\E |
|
|
|
\BEG |
|
@itemize @bullet |
|
@item |
|
These functions are new implementations for computing Groebner bases. |
|
@item @code{nd_gr} executes Buchberger algorithm over the rationals |
|
if @code{p} is 0, and that over GF(p) if @code{p} is a prime. |
|
@item @code{nd_gr_trace} executes the trace algorithm over the rationals. |
|
If @code{p} is 0 or 1, the trace algorithm is executed until it succeeds |
|
by using automatically chosen primes. |
|
If @code{p} a positive prime, |
|
the trace is comuted over GF(p). |
|
If the trace algorithm fails 0 is returned. |
|
If @code{p} is negative, |
|
the Groebner basis check and ideal-membership check are omitted. |
|
In this case, an automatically chosen prime if @code{p} is 1, |
|
otherwise the specified prime is used to compute a Groebner basis |
|
candidate. |
|
Execution of @code{nd_f4_trace} is done as follows: |
|
For each total degree, an F4-reduction of S-polynomials over a finite field |
|
is done, and S-polynomials which give non-zero basis elements are gathered. |
|
Then F4-reduction over Q is done for the gathered S-polynomials. |
|
The obtained polynomial set is a Groebner basis candidate and the same |
|
check procedure as in the case of @code{nd_gr_trace} is done. |
|
@item |
|
@code{nd_f4} executes F4 algorithm over Q if @code{modular} is equal to 0, |
|
or over a finite field GF(@code{modular}) |
|
if @code{modular} is a prime number of machine size (<2^29). |
|
If @var{plist} is a list of polynomials, then a Groebner basis of the ideal generated by @var{plist} |
|
is computed. If @var{plist} is a list of lists of polynomials, then each list of polynomials are regarded |
|
as an element of a free module over a polynomial ring and a Groebner basis of the sub-module generated by @var{plist} |
|
in the free module. In the latter case a term order in the free module should be specified. |
|
This is specified by @var{[s,ord]}. If @var{s} is 0 then it means TOP (Term Over Position). |
|
If @var{s} is 1 then it means POT 1 (Position Over Term). @var{ord} is a term order in the base polynomial ring. |
|
@item |
|
@code{nd_weyl_gr}, @code{nd_weyl_gr_trace} are for Weyl algebra computation. |
|
@item |
|
Functions except for F4 related ones can handle rational coeffient cases. |
|
@item |
|
In general these functions are more efficient than |
|
@code{dp_gr_main}, @code{dp_gr_mod_main}, especially over finite fields. |
|
@item |
|
The fallowing options can be specified. |
|
@table @code |
|
@item homo |
|
If set to 1, the computation is done via homogenization. (only for @code{nd_gr} and @code{nd_f4}) |
|
@item dp |
|
If set to 1, the functions return a list of distributed polynomials (a list of |
|
module polynomials when the input is a sub-module). |
|
@item nora |
|
If set to 1, the inter-reduction is not performed. |
|
@end table |
|
@end itemize |
|
\E |
|
|
|
@example |
|
[38] load("cyclic")$ |
|
[49] C=cyclic(7)$ |
|
[50] V=vars(C)$ |
|
[51] cputime(1)$ |
|
[52] dp_gr_mod_main(C,V,0,31991,0)$ |
|
26.06sec + gc : 0.313sec(26.4sec) |
|
[53] nd_gr(C,V,31991,0)$ |
|
ndv_alloc=1477188 |
|
5.737sec + gc : 0.1837sec(5.921sec) |
|
[54] dp_f4_mod_main(C,V,31991,0)$ |
|
3.51sec + gc : 0.7109sec(4.221sec) |
|
[55] nd_f4(C,V,31991,0)$ |
|
1.906sec + gc : 0.126sec(2.032sec) |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{dp_ord}, |
|
@fref{dp_gr_flags dp_gr_print}, |
|
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
|
\EG @fref{Controlling Groebner basis computations} |
|
@end table |
|
|
|
\JP @node nd_gr_postproc nd_weyl_gr_postproc,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node nd_gr_postproc nd_weyl_gr_postproc,,, Functions for Groebner basis computation |
|
@subsection @code{nd_gr_postproc}, @code{nd_weyl_gr_postproc} |
|
@findex nd_gr_postproc |
|
@findex nd_weyl_gr_postproc |
|
|
|
@table @t |
|
@item nd_gr_postproc(@var{plist},@var{vlist},@var{p},@var{order},@var{check}) |
|
@itemx nd_weyl_gr_postproc(@var{plist},@var{vlist},@var{p},@var{order},@var{check}) |
|
\JP :: $B%0%l%V%J4pDl8uJd$N%A%'%C%/$*$h$SAj8_4JLs(B |
|
\EG :: Check of Groebner basis candidate and inter-reduction |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $B%j%9%H(B $B$^$?$O(B 0 |
|
\EG list or 0 |
|
@item plist vlist |
|
\JP $B%j%9%H(B |
|
\EG list |
|
@item p |
|
\JP $BAG?t$^$?$O(B 0 |
|
\EG prime or 0 |
|
@item order |
|
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
|
@item check |
|
\JP 0 $B$^$?$O(B 1 |
|
\EG 0 or 1 |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
$B%0%l%V%J4pDl(B($B8uJd(B)$B$NAj8_4JLs$r9T$&(B. |
|
@item |
|
@code{nd_weyl_gr_postproc} $B$O(B Weyl $BBe?tMQ$G$"$k(B. |
|
@item |
|
@var{check=1} $B$N>l9g(B, @var{plist} $B$,(B, @var{vlist}, @var{p}, @var{order} $B$G;XDj$5$l$kB?9`<04D(B, $B9`=g=x$G%0%l%V%J!<4pDl$K$J$C$F$$$k$+(B |
|
$B$N%A%'%C%/$b9T$&(B. |
|
@item |
|
$B@F<!2=$7$F7W;;$7$?%0%l%V%J!<4pDl$rHs@F<!2=$7$?$b$N$rAj8_4JLs$r9T$&(B, CRT $B$G7W;;$7$?%0%l%V%J!<4pDl8uJd$N%A%'%C%/$r9T$&$J$I$N>l9g$KMQ$$$k(B. |
|
\E |
|
\BEG |
|
@item |
|
Perform the inter-reduction for a Groebner basis (candidate). |
|
@item |
|
@code{nd_weyl_gr_postproc} is for Weyl algebra. |
|
@item |
|
If @var{check=1} then the check whether @var{plist} is a Groebner basis with respect to a term order in a polynomial ring |
|
or Weyl algebra specified by @var{vlist}, @var{p} and @var{order}. |
|
@item |
|
This function is used for inter-reduction of a non-reduced Groebner basis that is obtained by dehomogenizing a Groebner basis |
|
computed via homogenization, or Groebner basis check of a Groebner basis candidate computed by CRT. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
afo |
|
@end example |
|
|
\JP @node dp_gr_flags dp_gr_print,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_gr_flags dp_gr_print,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node dp_gr_flags dp_gr_print,,, Functions for Groebner basis computation |
\EG @node dp_gr_flags dp_gr_print,,, Functions for Groebner basis computation |
@subsection @code{dp_gr_flags}, @code{dp_gr_print} |
@subsection @code{dp_gr_flags}, @code{dp_gr_print} |
Line 2016 Arguments and actions are the same as those of |
|
Line 2639 Arguments and actions are the same as those of |
|
|
|
@table @t |
@table @t |
@item dp_gr_flags([@var{list}]) |
@item dp_gr_flags([@var{list}]) |
@itemx dp_gr_print([@var{0|1}]) |
@itemx dp_gr_print([@var{i}]) |
\JP :: $B7W;;$*$h$SI=<(MQ%Q%i%a%?$N@_Dj(B, $B;2>H(B |
\JP :: $B7W;;$*$h$SI=<(MQ%Q%i%a%?$N@_Dj(B, $B;2>H(B |
\BEG :: Set and show various parameters for cotrolling computations |
\BEG :: Set and show various parameters for cotrolling computations |
and showing informations. |
and showing informations. |
Line 2030 and showing informations. |
|
Line 2653 and showing informations. |
|
@item list |
@item list |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
|
@item i |
|
\JP $B@0?t(B |
|
\EG integer |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
\BJP |
\BJP |
@item |
@item |
@code{dp_gr_main()}, @code{dp_gr_mod_main()} $B<B9T;~$K$*$1$k$5$^$6$^(B |
@code{dp_gr_main()}, @code{dp_gr_mod_main()}, @code{dp_gr_f_main()} $B<B9T;~$K$*$1$k$5$^$6$^(B |
$B$J%Q%i%a%?$r@_Dj(B, $B;2>H$9$k(B. |
$B$J%Q%i%a%?$r@_Dj(B, $B;2>H$9$k(B. |
@item |
@item |
$B0z?t$,$J$$>l9g(B, $B8=:_$N@_Dj$,JV$5$l$k(B. |
$B0z?t$,$J$$>l9g(B, $B8=:_$N@_Dj$,JV$5$l$k(B. |
Line 2043 and showing informations. |
|
Line 2669 and showing informations. |
|
$B0z?t$O(B, @code{["Print",1,"NoSugar",1,...]} $B$J$k7A$N%j%9%H$G(B, $B:8$+$i=g$K(B |
$B0z?t$O(B, @code{["Print",1,"NoSugar",1,...]} $B$J$k7A$N%j%9%H$G(B, $B:8$+$i=g$K(B |
$B@_Dj$5$l$k(B. $B%Q%i%a%?L>$OJ8;zNs$GM?$($kI,MW$,$"$k(B. |
$B@_Dj$5$l$k(B. $B%Q%i%a%?L>$OJ8;zNs$GM?$($kI,MW$,$"$k(B. |
@item |
@item |
@code{dp_gr_print()} $B$O(B, $BFC$K%Q%i%a%?(B @code{Print} $B$NCM$rD>@\@_Dj(B, $B;2>H(B |
@code{dp_gr_print()} $B$O(B, $BFC$K%Q%i%a%?(B @code{Print}, @code{PrintShort} $B$NCM$rD>@\@_Dj(B, $B;2>H(B |
$B$G$-$k(B. $B$3$l$O(B, @code{dp_gr_main()} $B$J$I$r%5%V%k!<%A%s$H$7$FMQ$$$k%f!<%6(B |
$B$G$-$k(B. $B@_Dj$5$l$kCM$O<!$NDL$j$G$"$k!#(B |
$BH!?t$K$*$$$F(B, @code{Print} $B$NCM$r8+$F(B, $B$=$N%5%V%k!<%A%s$,Cf4V>pJs$NI=<((B |
@table @var |
|
@item i=0 |
|
@code{Print=0}, @code{PrintShort=0} |
|
@item i=1 |
|
@code{Print=1}, @code{PrintShort=0} |
|
@item i=2 |
|
@code{Print=0}, @code{PrintShort=1} |
|
@end table |
|
$B$3$l$O(B, @code{dp_gr_main()} $B$J$I$r%5%V%k!<%A%s$H$7$FMQ$$$k%f!<%6(B |
|
$BH!?t$K$*$$$F(B, $B$=$N%5%V%k!<%A%s$,Cf4V>pJs$NI=<((B |
$B$r9T$&:]$K(B, $B?WB.$K%U%i%0$r8+$k$3$H$,$G$-$k$h$&$KMQ0U$5$l$F$$$k(B. |
$B$r9T$&:]$K(B, $B?WB.$K%U%i%0$r8+$k$3$H$,$G$-$k$h$&$KMQ0U$5$l$F$$$k(B. |
\E |
\E |
\BEG |
\BEG |
Line 2060 Arguments must be specified as a list such as |
|
Line 2695 Arguments must be specified as a list such as |
|
strings. |
strings. |
@item |
@item |
@code{dp_gr_print()} is used to set and show the value of a parameter |
@code{dp_gr_print()} is used to set and show the value of a parameter |
@code{Print}. This functions is prepared to get quickly the value of |
@code{Print} and @code{PrintShort}. |
@code{Print} when a user defined function calling @code{dp_gr_main()} etc. |
@table @var |
|
@item i=0 |
|
@code{Print=0}, @code{PrintShort=0} |
|
@item i=1 |
|
@code{Print=1}, @code{PrintShort=0} |
|
@item i=2 |
|
@code{Print=0}, @code{PrintShort=1} |
|
@end table |
|
This functions is prepared to get quickly the value |
|
when a user defined function calling @code{dp_gr_main()} etc. |
uses the value as a flag for showing intermediate informations. |
uses the value as a flag for showing intermediate informations. |
\E |
\E |
@end itemize |
@end itemize |
Line 2117 uses the value as a flag for showing intermediate info |
|
Line 2761 uses the value as a flag for showing intermediate info |
|
@item |
@item |
$B%H%C%W%l%Y%kH!?t0J30$NH!?t$rD>@\8F$S=P$9>l9g$K$O(B, $B$3$NH!?t$K$h$j(B |
$B%H%C%W%l%Y%kH!?t0J30$NH!?t$rD>@\8F$S=P$9>l9g$K$O(B, $B$3$NH!?t$K$h$j(B |
$BJQ?t=g=x7?$r@5$7$/@_Dj$7$J$1$l$P$J$i$J$$(B. |
$BJQ?t=g=x7?$r@5$7$/@_Dj$7$J$1$l$P$J$i$J$$(B. |
|
|
|
@item |
|
$B0z?t$,%j%9%H$N>l9g(B, $B<+M32C72$K$*$1$k9`=g=x7?$r@_Dj$9$k(B. $B0z?t$,(B@code{[0,Ord]} $B$N>l9g(B, |
|
$BB?9`<04D>e$G(B @code{Ord} $B$G;XDj$5$l$k9`=g=x$K4p$E$/(B TOP $B=g=x(B, $B0z?t$,(B @code{[1,Ord]} $B$N>l9g(B |
|
OPT $B=g=x$r@_Dj$9$k(B. |
|
|
\E |
\E |
\BEG |
\BEG |
@item |
@item |
Line 2144 that such polynomials were generated under the same or |
|
Line 2794 that such polynomials were generated under the same or |
|
@item |
@item |
Type of term ordering must be correctly set by this function |
Type of term ordering must be correctly set by this function |
when functions other than top level functions are called directly. |
when functions other than top level functions are called directly. |
|
|
|
@item |
|
If the argument is a list, then an ordering type in a free module is set. |
|
If the argument is @code{[0,Ord]} then a TOP ordering based on the ordering type specified |
|
by @code{Ord} is set. |
|
If the argument is @code{[1,Ord]} then a POT ordering is set. |
\E |
\E |
@end itemize |
@end itemize |
|
|
Line 2163 when functions other than top level functions are call |
|
Line 2819 when functions other than top level functions are call |
|
\EG @fref{Setting term orderings} |
\EG @fref{Setting term orderings} |
@end table |
@end table |
|
|
|
\JP @node dp_set_weight dp_set_top_weight dp_weyl_set_weight,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_set_weight dp_set_top_weight dp_weyl_set_weight,,, Functions for Groebner basis computation |
|
@subsection @code{dp_set_weight}, @code{dp_set_top_weight}, @code{dp_weyl_set_weight} |
|
@findex dp_set_weight |
|
@findex dp_set_top_weight |
|
@findex dp_weyl_set_weight |
|
|
|
@table @t |
|
@item dp_set_weight([@var{weight}]) |
|
\JP :: sugar weight $B$N@_Dj(B, $B;2>H(B |
|
\EG :: Set and show the sugar weight. |
|
@item dp_set_top_weight([@var{weight}]) |
|
\JP :: top weight $B$N@_Dj(B, $B;2>H(B |
|
\EG :: Set and show the top weight. |
|
@item dp_weyl_set_weight([@var{weight}]) |
|
\JP :: weyl weight $B$N@_Dj(B, $B;2>H(B |
|
\EG :: Set and show the weyl weight. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $B%Y%/%H%k(B |
|
\EG a vector |
|
@item weight |
|
\JP $B@0?t$N%j%9%H$^$?$O%Y%/%H%k(B |
|
\EG a list or vector of integers |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
@code{dp_set_weight} $B$O(B sugar weight $B$r(B @var{weight} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B, |
|
$B8=:_@_Dj$5$l$F$$$k(B sugar weight $B$rJV$9(B. sugar weight $B$O@5@0?t$r@.J,$H$9$k%Y%/%H%k$G(B, |
|
$B3FJQ?t$N=E$_$rI=$9(B. $B<!?t$D$-=g=x$K$*$$$F(B, $BC19`<0$N<!?t$r7W;;$9$k:]$KMQ$$$i$l$k(B. |
|
$B@F<!2=JQ?tMQ$K(B, $BKvHx$K(B 1 $B$rIU$12C$($F$*$/$H0BA4$G$"$k(B. |
|
@item |
|
@code{dp_set_top_weight} $B$O(B top weight $B$r(B @var{weight} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B, |
|
$B8=:_@_Dj$5$l$F$$$k(B top weight $B$rJV$9(B. top weight $B$,@_Dj$5$l$F$$$k$H$-(B, |
|
$B$^$:(B top weight $B$K$h$kC19`<0Hf3S$r@h$K9T$&(B. tie breaker $B$H$7$F8=:_@_Dj$5$l$F$$$k(B |
|
$B9`=g=x$,MQ$$$i$l$k$,(B, $B$3$NHf3S$K$O(B top weight $B$OMQ$$$i$l$J$$(B. |
|
|
|
@item |
|
@code{dp_weyl_set_weight} $B$O(B weyl weight $B$r(B @var{weight} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B, |
|
$B8=:_@_Dj$5$l$F$$$k(B weyl weight $B$rJV$9(B. weyl weight w $B$r@_Dj$9$k$H(B, |
|
$B9`=g=x7?(B 11 $B$G$N7W;;$K$*$$$F(B, (-w,w) $B$r(B top weight, tie breaker $B$r(B graded reverse lex |
|
$B$H$7$?9`=g=x$,@_Dj$5$l$k(B. |
|
\E |
|
\BEG |
|
@item |
|
@code{dp_set_weight} sets the sugar weight=@var{weight}. It returns the current sugar weight. |
|
A sugar weight is a vector with positive integer components and it represents the weights of variables. |
|
It is used for computing the weight of a monomial in a graded ordering. |
|
It is recommended to append a component 1 at the end of the weight vector for a homogenizing variable. |
|
@item |
|
@code{dp_set_top_weight} sets the top weight=@var{weight}. It returns the current top weight. |
|
It a top weight is set, the weights of monomials under the top weight are firstly compared. |
|
If the the weights are equal then the current term ordering is applied as a tie breaker, but |
|
the top weight is not used in the tie breaker. |
|
|
|
@item |
|
@code{dp_weyl_set_weight} sets the weyl weigh=@var{weight}. It returns the current weyl weight. |
|
If a weyl weight w is set, in the comparsion by the term order type 11, a term order with |
|
the top weight=(-w,w) and the tie breaker=graded reverse lex is applied. |
|
\E |
|
@end itemize |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{Weight} |
|
@end table |
|
|
|
|
\JP @node dp_ptod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_ptod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node dp_ptod,,, Functions for Groebner basis computation |
\EG @node dp_ptod,,, Functions for Groebner basis computation |
@subsection @code{dp_ptod} |
@subsection @code{dp_ptod} |
Line 2211 the coefficient field. |
|
Line 2940 the coefficient field. |
|
(1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>> |
(1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>> |
+(1)*<<0,0,2>> |
+(1)*<<0,0,2>> |
[52] dp_ptod((x+y+z)^2,[x,y]); |
[52] dp_ptod((x+y+z)^2,[x,y]); |
(1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>+(z^2)*<<0,0>> |
(1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>> |
|
+(z^2)*<<0,0>> |
@end example |
@end example |
|
|
@table @t |
@table @t |
Line 2221 the coefficient field. |
|
Line 2951 the coefficient field. |
|
@fref{dp_ord}. |
@fref{dp_ord}. |
@end table |
@end table |
|
|
|
\JP @node dpm_dptodpm,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dpm_dptodpm,,, Functions for Groebner basis computation |
|
@subsection @code{dpm_dptodpm} |
|
@findex dpm_dptodpm |
|
|
|
@table @t |
|
@item dpm_dptodpm(@var{dpoly},@var{pos}) |
|
\JP :: $BJ,;6I=8=B?9`<0$r2C72B?9`<0$KJQ49$9$k(B. |
|
\EG :: Converts a distributed polynomial into a module polynomial. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $B2C72B?9`<0(B |
|
\EG module polynomial |
|
@item dpoly |
|
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
|
@item pos |
|
\JP $B@5@0?t(B |
|
\EG positive integer |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
$BJ,;6I=8=B?9`<0$r2C72B?9`<0$KJQ49$9$k(B. |
|
@item |
|
$B=PNO$O2C72B?9`<0(B @code{dpoly e_pos} $B$G$"$k(B. |
|
\E |
|
\BEG |
|
@item |
|
This function converts a distributed polynomial into a module polynomial. |
|
@item |
|
The output is @code{dpoly e_pos}. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[50] dp_ord([0,0])$ |
|
[51] D=dp_ptod((x+y+z)^2,[x,y,z]); |
|
(1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>> |
|
+(1)*<<0,0,2>> |
|
[52] dp_dptodpm(D,2); |
|
(1)*<<2,0,0:2>>+(2)*<<1,1,0:2>>+(1)*<<0,2,0:2>>+(2)*<<1,0,1:2>> |
|
+(2)*<<0,1,1:2>>+(1)*<<0,0,2:2>> |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{dp_ptod}, |
|
@fref{dp_ord}. |
|
@end table |
|
|
|
\JP @node dpm_ltod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dpm_ltod,,, Functions for Groebner basis computation |
|
@subsection @code{dpm_ltod} |
|
@findex dpm_ltod |
|
|
|
@table @t |
|
@item dpm_dptodpm(@var{plist},@var{vlist}) |
|
\JP :: $BB?9`<0%j%9%H$r2C72B?9`<0$KJQ49$9$k(B. |
|
\EG :: Converts a list of polynomials into a module polynomial. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $B2C72B?9`<0(B |
|
\EG module polynomial |
|
@item plist |
|
\JP $BB?9`<0%j%9%H(B |
|
\EG list of polynomials |
|
@item vlist |
|
\JP $BJQ?t%j%9%H(B |
|
\EG list of variables |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
$BB?9`<0%j%9%H$r2C72B?9`<0$KJQ49$9$k(B. |
|
@item |
|
@code{[p1,...,pm]} $B$O(B @code{p1 e1+...+pm em} $B$KJQ49$5$l$k(B. |
|
\E |
|
\BEG |
|
@item |
|
This function converts a list of polynomials into a module polynomial. |
|
@item |
|
@code{[p1,...,pm]} is converted into @code{p1 e1+...+pm em}. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[2126] dp_ord([0,0])$ |
|
[2127] dpm_ltod([x^2+y^2,x,y-z],[x,y,z]); |
|
(1)*<<2,0,0:1>>+(1)*<<0,2,0:1>>+(1)*<<1,0,0:2>>+(1)*<<0,1,0:3>> |
|
+(-1)*<<0,0,1:3>> |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{dpm_dtol}, |
|
@fref{dp_ord}. |
|
@end table |
|
|
|
\JP @node dpm_dtol,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dpm_dtol,,, Functions for Groebner basis computation |
|
@subsection @code{dpm_dtol} |
|
@findex dpm_dtol |
|
|
|
@table @t |
|
@item dpm_dptodpm(@var{poly},@var{vlist}) |
|
\JP :: $B2C72B?9`<0$rB?9`<0%j%9%H$KJQ49$9$k(B. |
|
\EG :: Converts a module polynomial into a list of polynomials. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $BB?9`<0%j%9%H(B |
|
\EG list of polynomials |
|
@item poly |
|
\JP $B2C72B?9`<0(B |
|
\EG module polynomial |
|
@item vlist |
|
\JP $BJQ?t%j%9%H(B |
|
\EG list of variables |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
$B2C72B?9`<0$rB?9`<0%j%9%H$KJQ49$9$k(B. |
|
@item |
|
@code{p1 e1+...+pm em} $B$O(B @code{[p1,...,pm]} $B$KJQ49$5$l$k(B. |
|
@item |
|
$B=PNO%j%9%H$ND9$5$O(B, @code{poly} $B$K4^$^$l$kI8=`4pDl$N:GBg%$%s%G%C%/%9$H$J$k(B. |
|
\E |
|
\BEG |
|
@item |
|
This function converts a module polynomial into a list of polynomials. |
|
@item |
|
@code{p1 e1+...+pm em} is converted into @code{[p1,...,pm]}. |
|
@item |
|
The length of the output list is equal to the largest index among those of the standard bases |
|
containd in @code{poly}. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[2126] dp_ord([0,0])$ |
|
[2127] D=(1)*<<2,0,0:1>>+(1)*<<0,2,0:1>>+(1)*<<1,0,0:2>>+(1)*<<0,1,0:3>> |
|
+(-1)*<<0,0,1:3>>$ |
|
[2128] dpm_dtol(D,[x,y,z]); |
|
[x^2+y^2,x,y-z] |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{dpm_ltod}, |
|
@fref{dp_ord}. |
|
@end table |
|
|
\JP @node dp_dtop,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_dtop,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node dp_dtop,,, Functions for Groebner basis computation |
\EG @node dp_dtop,,, Functions for Groebner basis computation |
@subsection @code{dp_dtop} |
@subsection @code{dp_dtop} |
Line 2263 variables of @var{dpoly}. |
|
Line 3158 variables of @var{dpoly}. |
|
|
|
@example |
@example |
[53] T=dp_ptod((x+y+z)^2,[x,y]); |
[53] T=dp_ptod((x+y+z)^2,[x,y]); |
(1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>+(z^2)*<<0,0>> |
(1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>> |
|
+(z^2)*<<0,0>> |
[54] P=dp_dtop(T,[a,b]); |
[54] P=dp_dtop(T,[a,b]); |
z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
@end example |
@end example |
Line 2343 converting the coefficients into elements of a finite |
|
Line 3239 converting the coefficients into elements of a finite |
|
@table @t |
@table @t |
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod}, |
@fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod}, |
@fref{subst psubst}, |
@fref{subst psubst}, |
@fref{setmod}. |
@fref{setmod}. |
@end table |
@end table |
Line 2434 These are used internally in @code{hgr()} etc. |
|
Line 3330 These are used internally in @code{hgr()} etc. |
|
into an integral distributed polynomial such that GCD of all its coefficients |
into an integral distributed polynomial such that GCD of all its coefficients |
is 1. |
is 1. |
\E |
\E |
@itemx dp_prim(@var{dpoly}) |
@item dp_prim(@var{dpoly}) |
\JP :: $BM-M}<0G\$7$F78?t$r@0?t78?tB?9`<078?t$+$D78?t$NB?9`<0(B GCD $B$r(B 1 $B$K$9$k(B. |
\JP :: $BM-M}<0G\$7$F78?t$r@0?t78?tB?9`<078?t$+$D78?t$NB?9`<0(B GCD $B$r(B 1 $B$K$9$k(B. |
\BEG |
\BEG |
:: Converts a distributed polynomial @var{poly} with rational function |
:: Converts a distributed polynomial @var{poly} with rational function |
Line 2487 polynomial contents included in the coefficients are n |
|
Line 3383 polynomial contents included in the coefficients are n |
|
@fref{ptozp}. |
@fref{ptozp}. |
@end table |
@end table |
|
|
\JP @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod,,, Functions for Groebner basis computation |
\EG @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod,,, Functions for Groebner basis computation |
@subsection @code{dp_nf}, @code{dp_nf_mod}, @code{dp_true_nf}, @code{dp_true_nf_mod} |
@subsection @code{dp_nf}, @code{dp_nf_mod}, @code{dp_true_nf}, @code{dp_true_nf_mod} |
@findex dp_nf |
@findex dp_nf |
@findex dp_true_nf |
@findex dp_true_nf |
@findex dp_nf_mod |
@findex dp_nf_mod |
@findex dp_true_nf_mod |
@findex dp_true_nf_mod |
|
@findex dp_weyl_nf |
|
@findex dp_weyl_nf_mod |
|
|
@table @t |
@table @t |
@item dp_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce}) |
@item dp_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce}) |
|
@item dp_weyl_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce}) |
@item dp_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod}) |
@item dp_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod}) |
|
@item dp_weyl_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod}) |
\JP :: $BJ,;6I=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B) |
\JP :: $BJ,;6I=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B) |
|
|
\BEG |
\BEG |
Line 2539 is returned in such a list as @code{[numerator, denomi |
|
Line 3439 is returned in such a list as @code{[numerator, denomi |
|
@item |
@item |
$BJ,;6I=8=B?9`<0(B @var{dpoly} $B$N@55,7A$r5a$a$k(B. |
$BJ,;6I=8=B?9`<0(B @var{dpoly} $B$N@55,7A$r5a$a$k(B. |
@item |
@item |
|
$BL>A0$K(B weyl $B$r4^$`4X?t$O%o%$%kBe?t$K$*$1$k@55,7A7W;;$r9T$&(B. $B0J2<$N@bL@$O(B weyl $B$r4^$`$b$N$KBP$7$F$bF1MM$K@.N)$9$k(B. |
|
@item |
@code{dp_nf_mod()}, @code{dp_true_nf_mod()} $B$NF~NO$O(B, @code{dp_mod()} $B$J$I(B |
@code{dp_nf_mod()}, @code{dp_true_nf_mod()} $B$NF~NO$O(B, @code{dp_mod()} $B$J$I(B |
$B$K$h$j(B, $BM-8BBN>e$NJ,;6I=8=B?9`<0$K$J$C$F$$$J$1$l$P$J$i$J$$(B. |
$B$K$h$j(B, $BM-8BBN>e$NJ,;6I=8=B?9`<0$K$J$C$F$$$J$1$l$P$J$i$J$$(B. |
@item |
@item |
Line 2571 is returned in such a list as @code{[numerator, denomi |
|
Line 3473 is returned in such a list as @code{[numerator, denomi |
|
@item |
@item |
Computes the normal form of a distributed polynomial. |
Computes the normal form of a distributed polynomial. |
@item |
@item |
|
Functions whose name contain @code{weyl} compute normal forms in Weyl algebra. The description below also applies to |
|
the functions for Weyl algebra. |
|
@item |
@code{dp_nf_mod()} and @code{dp_true_nf_mod()} require |
@code{dp_nf_mod()} and @code{dp_true_nf_mod()} require |
distributed polynomials with coefficients in a finite field as arguments. |
distributed polynomials with coefficients in a finite field as arguments. |
@item |
@item |
Line 2616 For single computation @code{p_nf} and @code{p_true_nf |
|
Line 3521 For single computation @code{p_nf} and @code{p_true_nf |
|
[74] DP2=newvect(length(G),map(dp_ptod,G,V))$ |
[74] DP2=newvect(length(G),map(dp_ptod,G,V))$ |
[75] T=dp_ptod((u0-u1+u2-u3+u4)^2,V)$ |
[75] T=dp_ptod((u0-u1+u2-u3+u4)^2,V)$ |
[76] dp_dtop(dp_nf([0,1,2,3,4],T,DP1,1),V); |
[76] dp_dtop(dp_nf([0,1,2,3,4],T,DP1,1),V); |
u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2^2+(6*u1-2)*u2+9*u1^2-6*u1+1 |
u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2^2 |
|
+(6*u1-2)*u2+9*u1^2-6*u1+1 |
[77] dp_dtop(dp_nf([4,3,2,1,0],T,DP1,1),V); |
[77] dp_dtop(dp_nf([4,3,2,1,0],T,DP1,1),V); |
-5*u4^2+(-4*u3-4*u2-4*u1)*u4-u3^2-3*u3-u2^2+(2*u1-1)*u2-2*u1^2-3*u1+1 |
-5*u4^2+(-4*u3-4*u2-4*u1)*u4-u3^2-3*u3-u2^2+(2*u1-1)*u2-2*u1^2-3*u1+1 |
[78] dp_dtop(dp_nf([0,1,2,3,4],T,DP2,1),V); |
[78] dp_dtop(dp_nf([0,1,2,3,4],T,DP2,1),V); |
-1138087976845165778088612297273078520347097001020471455633353049221045677593 |
-11380879768451657780886122972730785203470970010204714556333530492210 |
0005716505560062087150928400876150217079820311439477560587583488*u4^15+... |
456775930005716505560062087150928400876150217079820311439477560587583 |
|
488*u4^15+... |
[79] dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V); |
[79] dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V); |
-1138087976845165778088612297273078520347097001020471455633353049221045677593 |
-11380879768451657780886122972730785203470970010204714556333530492210 |
0005716505560062087150928400876150217079820311439477560587583488*u4^15+... |
456775930005716505560062087150928400876150217079820311439477560587583 |
|
488*u4^15+... |
[80] @@78==@@79; |
[80] @@78==@@79; |
1 |
1 |
@end example |
@end example |
Line 2638 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
Line 3546 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
@fref{p_nf p_nf_mod p_true_nf p_true_nf_mod}. |
@fref{p_nf p_nf_mod p_true_nf p_true_nf_mod}. |
@end table |
@end table |
|
|
|
\JP @node dpm_nf dpm_nf_and_quotient,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dpm_nf dpm_nf_and_quotient,,, Functions for Groebner basis computation |
|
@subsection @code{dpm_nf}, @code{dpm_nf_and_quotient} |
|
@findex dpm_nf |
|
@findex dpm_nf_and_quotient |
|
|
|
@table @t |
|
@item dpm_nf([@var{indexlist},]@var{dpoly},@var{dpolyarray},@var{fullreduce}) |
|
\JP :: $B2C72B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B) |
|
|
|
\BEG |
|
:: Computes the normal form of a module polynomial. |
|
(The result may be multiplied by a constant in the ground field.) |
|
\E |
|
@item dpm_nf_and_quotient([@var{indexlist},]@var{dpoly},@var{dpolyarray}) |
|
\JP :: $B2C72B?9`<0$N@55,7A$H>&$r5a$a$k(B. |
|
\BEG |
|
:: Computes the normal form of a module polynomial and the quotient. |
|
\E |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP @code{dpm_nf()} : $B2C72B?9`<0(B, @code{dpm_nf_and_quotient()} : $B%j%9%H(B |
|
\EG @code{dpm_nf()} : module polynomial, @code{dpm_nf_and_quotient()} : list |
|
@item indexlist |
|
\JP $B%j%9%H(B |
|
\EG list |
|
@item dpoly |
|
\JP $B2C72B?9`<0(B |
|
\EG module polynomial |
|
@item dpolyarray |
|
\JP $BG[Ns(B |
|
\EG array of module polynomial |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
$B2C72B?9`<0(B @var{dpoly} $B$N@55,7A$r5a$a$k(B. |
|
@item |
|
$B7k2L$KM-M}?t(B, $BM-M}<0$,4^$^$l$k$N$rHr$1$k$?$a(B, @code{dpm_nf()} $B$O(B |
|
$B??$NCM$NDj?tG\$NCM$rJV$9(B. |
|
@item |
|
@var{dpolyarray} $B$O2C72B?9`<0$rMWAG$H$9$k%Y%/%H%k(B, |
|
@var{indexlist} $B$O@55,2=7W;;$KMQ$$$k(B @var{dpolyarray} $B$NMWAG$N%$%s%G%C%/%9(B |
|
@item |
|
@var{indexlist} $B$,M?$($i$l$F$$$k>l9g(B, @var{dpolyarray} $B$NCf$G(B, @var{indexlist} $B$G;XDj$5$l$?$b$N$N$_$,(B, $BA0$NJ}$+$iM%@hE*$K;H$o$l$k(B. |
|
@var{indexlist} $B$,M?$($i$l$F$$$J$$>l9g$K$O(B, @var{dpolyarray} $B$NCf$NA4$F$NB?9`<0$,A0$NJ}$+$iM%@hE*$K;H$o$l$k(B. |
|
@item |
|
@code{dpm_nf_and_quotient()} $B$O(B, |
|
@code{[@var{nm},@var{dn},@var{quo}]} $B$J$k7A$N%j%9%H$rJV$9(B. |
|
$B$?$@$7(B, @var{nm} $B$O78?t$KJ,?t$r4^$^$J$$2C72B?9`<0(B, @var{dn} $B$O(B |
|
$B?t$^$?$OB?9`<0$G(B @var{nm}/@var{dn} $B$,??$NCM$H$J$k(B. |
|
@var{quo} $B$O=|;;$N>&$rI=$9G[Ns$G(B, @var{dn}@var{dpoly}=@var{nm}+@var{quo[0]dpolyarray[0]+...} $B$,@.$jN)$D(B. |
|
$B$N%j%9%H(B. |
|
@item |
|
@var{fullreduce} $B$,(B 0 $B$G$J$$$H$-A4$F$N9`$KBP$7$F4JLs$r9T$&(B. @var{fullreduce} |
|
$B$,(B 0 $B$N$H$-F,9`$N$_$KBP$7$F4JLs$r9T$&(B. |
|
\E |
|
\BEG |
|
@item |
|
Computes the normal form of a module polynomial. |
|
@item |
|
The result of @code{dpm_nf()} may be multiplied by a constant in the |
|
ground field in order to make the result integral. |
|
@item |
|
@var{dpolyarray} is a vector whose components are module polynomials |
|
and @var{indexlist} is a list of indices which is used for the normal form |
|
computation. |
|
@item |
|
If @var{indexlist} is given, only the polynomials in @var{dpolyarray} specified in @var{indexlist} |
|
is used in the division. An index placed at the preceding position has priority to be selected. |
|
If @var{indexlist} is not given, all the polynomials in @var{dpolyarray} are used. |
|
@item |
|
@code{dpm_nf_and_quotient()} returns |
|
such a list as @code{[@var{nm},@var{dn},@var{quo}]}. |
|
Here @var{nm} is a module polynomial whose coefficients are integral |
|
in the ground field, @var{dn} is an integral element in the ground |
|
field and @var{nm}/@var{dn} is the true normal form. |
|
@var{quo} is an array containing the quotients of the division satisfying |
|
@var{dn}@var{dpoly}=@var{nm}+@var{quo[0]dpolyarray[0]+...}. |
|
@item |
|
When argument @var{fullreduce} has non-zero value, |
|
all terms are reduced. When it has value 0, |
|
only the head term is reduced. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[2126] dp_ord([1,0])$ |
|
[2127] S=ltov([(1)*<<0,0,2,0:1>>+(1)*<<0,0,1,1:1>>+(1)*<<0,0,0,2:1>> |
|
+(-1)*<<3,0,0,0:2>>+(-1)*<<0,0,2,1:2>>+(-1)*<<0,0,1,2:2>> |
|
+(1)*<<3,0,1,0:3>>+(1)*<<3,0,0,1:3>>+(1)*<<0,0,2,2:3>>, |
|
(-1)*<<0,1,0,0:1>>+(-1)*<<0,0,1,0:1>>+(-1)*<<0,0,0,1:1>> |
|
+(-1)*<<3,0,0,0:3>>+(1)*<<0,1,1,1:3>>,(1)*<<0,1,0,0:2>> |
|
+(1)*<<0,0,1,0:2>>+(1)*<<0,0,0,1:2>>+(-1)*<<0,1,1,0:3>> |
|
+(-1)*<<0,1,0,1:3>>+(-1)*<<0,0,1,1:3>>])$ |
|
[2128] U=dpm_sp(S[0],S[1]); |
|
(1)*<<0,0,3,0:1>>+(-1)*<<0,1,1,1:1>>+(1)*<<0,0,2,1:1>> |
|
+(-1)*<<0,1,0,2:1>>+(1)*<<3,1,0,0:2>>+(1)*<<0,1,2,1:2>> |
|
+(1)*<<0,1,1,2:2>>+(-1)*<<3,1,1,0:3>>+(1)*<<3,0,2,0:3>> |
|
+(-1)*<<3,1,0,1:3>>+(-1)*<<0,1,3,1:3>>+(-1)*<<0,1,2,2:3>> |
|
[2129] dpm_nf(U,S,1); |
|
0 |
|
[2130] L=dpm_nf_and_quotient(U,S)$ |
|
[2131] Q=L[2]$ |
|
[2132] D=L[1]$ |
|
[2133] D*U-(Q[1]*S[1]+Q[2]*S[2]); |
|
0 |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{dpm_sp}, |
|
@fref{dp_ord}. |
|
@end table |
|
|
|
|
\JP @node dp_hm dp_ht dp_hc dp_rest,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_hm dp_ht dp_hc dp_rest,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node dp_hm dp_ht dp_hc dp_rest,,, Functions for Groebner basis computation |
\EG @node dp_hm dp_ht dp_hc dp_rest,,, Functions for Groebner basis computation |
@subsection @code{dp_hm}, @code{dp_ht}, @code{dp_hc}, @code{dp_rest} |
@subsection @code{dp_hm}, @code{dp_ht}, @code{dp_hc}, @code{dp_rest} |
Line 2712 The next equations hold for a distributed polynomial @ |
|
Line 3740 The next equations hold for a distributed polynomial @ |
|
+(-490)*<<0,0,0>> |
+(-490)*<<0,0,0>> |
@end example |
@end example |
|
|
|
\JP @node dpm_hm dpm_ht dpm_hc dpm_hp dpm_rest,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dpm_hm dpm_ht dpm_hc dpm_hp dpm_rest,,, Functions for Groebner basis computation |
|
@subsection @code{dpm_hm}, @code{dpm_ht}, @code{dpm_hc}, @code{dpm_hp}, @code{dpm_rest} |
|
@findex dpm_hm |
|
@findex dpm_ht |
|
@findex dpm_hc |
|
@findex dpm_hp |
|
@findex dpm_rest |
|
|
|
@table @t |
|
@item dpm_hm(@var{dpoly}) |
|
\JP :: $B2C72B?9`<0$NF,C19`<0$r<h$j=P$9(B. |
|
\EG :: Gets the head monomial of a module polynomial. |
|
@item dpm_ht(@var{dpoly}) |
|
\JP :: $B2C72B?9`<0$NF,9`$r<h$j=P$9(B. |
|
\EG :: Gets the head term of a module polynomial. |
|
@item dpm_hc(@var{dpoly}) |
|
\JP :: $B2C72B?9`<0$NF,78?t$r<h$j=P$9(B. |
|
\EG :: Gets the head coefficient of a module polynomial. |
|
@item dpm_hp(@var{dpoly}) |
|
\JP :: $B2C72B?9`<0$NF,0LCV$r<h$j=P$9(B. |
|
\EG :: Gets the head position of a module polynomial. |
|
@item dpm_rest(@var{dpoly}) |
|
\JP :: $B2C72B?9`<0$NF,C19`<0$r<h$j=|$$$?;D$j$rJV$9(B. |
|
\EG :: Gets the remainder of a module polynomial where the head monomial is removed. |
|
@end table |
|
|
|
@table @var |
|
\BJP |
|
@item return |
|
@code{dp_hm()}, @code{dp_ht()}, @code{dp_rest()} : $B2C72B?9`<0(B, |
|
@code{dp_hc()} : $B?t$^$?$OB?9`<0(B |
|
@item dpoly |
|
$B2C72B?9`<0(B |
|
\E |
|
\BEG |
|
@item return |
|
@code{dpm_hm()}, @code{dpm_ht()}, @code{dpm_rest()} : module polynomial |
|
@code{dpm_hc()} : monomial |
|
@item dpoly |
|
distributed polynomial |
|
\E |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
$B$3$l$i$O(B, $B2C72B?9`<0$N3FItJ,$r<h$j=P$9$?$a$NH!?t$G$"$k(B. |
|
@item |
|
@code{dpm_hc()} $B$O(B, @code{dpm_hm()} $B$N(B, $BI8=`4pDl$K4X$9$k78?t$G$"$kC19`<0$rJV$9(B. |
|
$B%9%+%i!<78?t$r<h$j=P$9$K$O(B, $B$5$i$K(B @code{dp_hc()} $B$r<B9T$9$k(B. |
|
@item |
|
@code{dpm_hp()} $B$O(B, $BF,2C72C19`<0$K4^$^$l$kI8=`4pDl$N%$%s%G%C%/%9$rJV$9(B. |
|
\E |
|
\BEG |
|
@item |
|
These are used to get various parts of a module polynomial. |
|
@item |
|
@code{dpm_hc()} returns the monomial that is the coefficient of @code{dpm_hm()} with respect to the |
|
standard base. |
|
For getting its scalar coefficient apply @code{dp_hc()}. |
|
@item |
|
@code{dpm_hp()} returns the index of the standard base conteind in the head module monomial. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[2126] dp_ord([1,0]); |
|
[1,0] |
|
[2127] F=2*<<1,2,0:2>>-3*<<1,0,2:3>>+<<2,1,0:2>>; |
|
(1)*<<2,1,0:2>>+(2)*<<1,2,0:2>>+(-3)*<<1,0,2:3>> |
|
[2128] M=dpm_hm(F); |
|
(1)*<<2,1,0:2>> |
|
[2129] C=dpm_hc(F); |
|
(1)*<<2,1,0>> |
|
[2130] R=dpm_rest(F); |
|
(2)*<<1,2,0:2>>+(-3)*<<1,0,2:3>> |
|
[2131] dpm_hp(F); |
|
2 |
|
@end example |
|
|
|
|
\JP @node dp_td dp_sugar,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_td dp_sugar,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node dp_td dp_sugar,,, Functions for Groebner basis computation |
\EG @node dp_td dp_sugar,,, Functions for Groebner basis computation |
@subsection @code{dp_td}, @code{dp_sugar} |
@subsection @code{dp_td}, @code{dp_sugar} |
Line 2790 selection strategy of critical pairs in Groebner basis |
|
Line 3900 selection strategy of critical pairs in Groebner basis |
|
@item return |
@item return |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@item dpoly1, dpoly2 |
@item dpoly1 dpoly2 |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@end table |
@end table |
Line 2833 two polynomials, where coefficient is always set to 1. |
|
Line 3943 two polynomials, where coefficient is always set to 1. |
|
@item return |
@item return |
\JP $B@0?t(B |
\JP $B@0?t(B |
\EG integer |
\EG integer |
@item dpoly1, dpoly2 |
@item dpoly1 dpoly2 |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@end table |
@end table |
Line 2873 Used for finding candidate terms at reduction of polyn |
|
Line 3983 Used for finding candidate terms at reduction of polyn |
|
@fref{dp_red dp_red_mod}. |
@fref{dp_red dp_red_mod}. |
@end table |
@end table |
|
|
|
\JP @node dpm_redble,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dpm_redble,,, Functions for Groebner basis computation |
|
@subsection @code{dpm_redble} |
|
@findex dpm_redble |
|
|
|
@table @t |
|
@item dpm_redble(@var{dpoly1},@var{dpoly2}) |
|
\JP :: $BF,9`$I$&$7$,@0=|2DG=$+$I$&$+D4$Y$k(B. |
|
\EG :: Checks whether one head term is divisible by the other head term. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $B@0?t(B |
|
\EG integer |
|
@item dpoly1 dpoly2 |
|
\JP $B2C72B?9`<0(B |
|
\EG module polynomial |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
@var{dpoly1} $B$NF,9`$,(B @var{dpoly2} $B$NF,9`$G3d$j@Z$l$l$P(B 1, $B3d$j@Z$l$J$1$l$P(B |
|
0 $B$rJV$9(B. |
|
@item |
|
$BB?9`<0$N4JLs$r9T$&:](B, $B$I$N9`$r4JLs$G$-$k$+$rC5$9$N$KMQ$$$k(B. |
|
\E |
|
\BEG |
|
@item |
|
Returns 1 if the head term of @var{dpoly2} divides the head term of |
|
@var{dpoly1}; otherwise 0. |
|
@item |
|
Used for finding candidate terms at reduction of polynomials. |
|
\E |
|
@end itemize |
|
|
\JP @node dp_subd,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_subd,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node dp_subd,,, Functions for Groebner basis computation |
\EG @node dp_subd,,, Functions for Groebner basis computation |
@subsection @code{dp_subd} |
@subsection @code{dp_subd} |
Line 2888 Used for finding candidate terms at reduction of polyn |
|
Line 4035 Used for finding candidate terms at reduction of polyn |
|
@item return |
@item return |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@item dpoly1, dpoly2 |
@item dpoly1 dpoly2 |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@end table |
@end table |
Line 3112 values of @code{dp_mag()} for intermediate basis eleme |
|
Line 4259 values of @code{dp_mag()} for intermediate basis eleme |
|
@item return |
@item return |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item dpoly1, dpoly2, dpoly3 |
@item dpoly1 dpoly2 dpoly3 |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@item vlist |
@item vlist |
Line 3136 values of @code{dp_mag()} for intermediate basis eleme |
|
Line 4283 values of @code{dp_mag()} for intermediate basis eleme |
|
$B$J$i$J$$(B. |
$B$J$i$J$$(B. |
@item |
@item |
$B0z?t$,@0?t78?t$N;~(B, $B4JLs$O(B, $BJ,?t$,8=$l$J$$$h$&(B, $B@0?t(B @var{a}, @var{b}, |
$B0z?t$,@0?t78?t$N;~(B, $B4JLs$O(B, $BJ,?t$,8=$l$J$$$h$&(B, $B@0?t(B @var{a}, @var{b}, |
$B9`(B @var{t} $B$K$h$j(B @var{a(dpoly1 + dpoly2)-bt dpoly3} $B$H$7$F7W;;$5$l$k(B. |
$B9`(B @var{t} $B$K$h$j(B @var{a}(@var{dpoly1} + @var{dpoly2})-@var{bt} @var{dpoly3} $B$H$7$F7W;;$5$l$k(B. |
@item |
@item |
$B7k2L$O(B, @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]} $B$J$k%j%9%H$G$"$k(B. |
$B7k2L$O(B, @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]} $B$J$k%j%9%H$G$"$k(B. |
\E |
\E |
Line 3155 the divisibility of the head term of @var{dpoly2} by t |
|
Line 4302 the divisibility of the head term of @var{dpoly2} by t |
|
When integral coefficients, computation is so carefully performed that |
When integral coefficients, computation is so carefully performed that |
no rational operations appear in the reduction procedure. |
no rational operations appear in the reduction procedure. |
It is computed for integers @var{a} and @var{b}, and a term @var{t} as: |
It is computed for integers @var{a} and @var{b}, and a term @var{t} as: |
@var{a(dpoly1 + dpoly2)-bt dpoly3}. |
@var{a}(@var{dpoly1} + @var{dpoly2})-@var{bt} @var{dpoly3}. |
@item |
@item |
The result is a list @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]}. |
The result is a list @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]}. |
\E |
\E |
Line 3169 The result is a list @code{[@var{a dpoly1},@var{a dpol |
|
Line 4316 The result is a list @code{[@var{a dpoly1},@var{a dpol |
|
[159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>; |
[159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>; |
(12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>> |
(12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>> |
[160] dp_red(D,R,C); |
[160] dp_red(D,R,C); |
[(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>,(-1)*<<0,1,1,1,0>> |
[(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>, |
+(-1)*<<1,1,0,0,1>>] |
(-1)*<<0,1,1,1,0>>+(-1)*<<1,1,0,0,1>>] |
@end example |
@end example |
|
|
@table @t |
@table @t |
Line 3196 The result is a list @code{[@var{a dpoly1},@var{a dpol |
|
Line 4343 The result is a list @code{[@var{a dpoly1},@var{a dpol |
|
@item return |
@item return |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@item dpoly1, dpoly2 |
@item dpoly1 dpoly2 |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@item mod |
@item mod |
Line 3240 make the result integral. |
|
Line 4387 make the result integral. |
|
\EG @item References |
\EG @item References |
@fref{dp_mod dp_rat}. |
@fref{dp_mod dp_rat}. |
@end table |
@end table |
|
|
|
\JP @node dpm_sp,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dmp_sp,,, Functions for Groebner basis computation |
|
@subsection @code{dpm_sp} |
|
@findex dpm_sp |
|
|
|
@table @t |
|
@item dpm_sp(@var{dpoly1},@var{dpoly2}[|coef=1]) |
|
\JP :: S-$BB?9`<0$N7W;;(B |
|
\EG :: Computation of an S-polynomial |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $B2C72B?9`<0$^$?$O%j%9%H(B |
|
\EG module polynomial or list |
|
@item dpoly1 dpoly2 |
|
\JP $B2C72B?9`<0(B |
|
\EG module polynomial |
|
\JP $BJ,;6I=8=B?9`<0(B |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
@var{dpoly1}, @var{dpoly2} $B$N(B S-$BB?9`<0$r7W;;$9$k(B. |
|
@item |
|
$B%*%W%7%g%s(B @var{coef=1} $B$,;XDj$5$l$F$$$k>l9g(B, @code{[S,t1,t2]} $B$J$k%j%9%H$rJV$9(B. |
|
$B$3$3$G(B, @code{t1}, @code{t2} $B$O(BS-$BB?9`<0$r:n$k:]$N78?tC19`<0$G(B @code{S=t1 dpoly1-t2 dpoly2} |
|
$B$rK~$?$9(B. |
|
\E |
|
\BEG |
|
@item |
|
This function computes the S-polynomial of @var{dpoly1} and @var{dpoly2}. |
|
@item |
|
If an option @var{coef=1} is specified, it returns a list @code{[S,t1,t2]}, |
|
where @code{S} is the S-polynmial and @code{t1}, @code{t2} are monomials satisfying @code{S=t1 dpoly1-t2 dpoly2}. |
|
\E |
|
@end itemize |
|
|
\JP @node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, Functions for Groebner basis computation |
\EG @node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, Functions for Groebner basis computation |
@subsection @code{p_nf}, @code{p_nf_mod}, @code{p_true_nf}, @code{p_true_nf_mod} |
@subsection @code{p_nf}, @code{p_nf_mod}, @code{p_true_nf}, @code{p_true_nf_mod} |
Line 3272 as a form of @code{[numerator, denominator]}) |
|
Line 4459 as a form of @code{[numerator, denominator]}) |
|
@item poly |
@item poly |
\JP $BB?9`<0(B |
\JP $BB?9`<0(B |
\EG polynomial |
\EG polynomial |
@item plist,vlist |
@item plist vlist |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
Line 3349 refer to @code{dp_true_nf()} and @code{dp_true_nf_mod( |
|
Line 4536 refer to @code{dp_true_nf()} and @code{dp_true_nf_mod( |
|
@fref{dp_ptod}, |
@fref{dp_ptod}, |
@fref{dp_dtop}, |
@fref{dp_dtop}, |
@fref{dp_ord}, |
@fref{dp_ord}, |
@fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod}. |
@fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod}. |
@end table |
@end table |
|
|
\JP @node p_terms,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node p_terms,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
|
@example |
@example |
[233] G=gr(katsura(5),[u5,u4,u3,u2,u1,u0],2)$ |
[233] G=gr(katsura(5),[u5,u4,u3,u2,u1,u0],2)$ |
[234] p_terms(G[0],[u5,u4,u3,u2,u1,u0],2); |
[234] p_terms(G[0],[u5,u4,u3,u2,u1,u0],2); |
[u5,u0^31,u0^30,u0^29,u0^28,u0^27,u0^26,u0^25,u0^24,u0^23,u0^22,u0^21,u0^20, |
[u5,u0^31,u0^30,u0^29,u0^28,u0^27,u0^26,u0^25,u0^24,u0^23,u0^22, |
u0^19,u0^18,u0^17,u0^16,u0^15,u0^14,u0^13,u0^12,u0^11,u0^10,u0^9,u0^8,u0^7, |
u0^21,u0^20,u0^19,u0^18,u0^17,u0^16,u0^15,u0^14,u0^13,u0^12,u0^11, |
u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
u0^10,u0^9,u0^8,u0^7,u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
@end example |
@end example |
|
|
\JP @node gb_comp,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node gb_comp,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
Line 3427 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
Line 4614 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
@table @var |
@table @var |
\JP @item return 0 $B$^$?$O(B 1 |
\JP @item return 0 $B$^$?$O(B 1 |
\EG @item return 0 or 1 |
\EG @item return 0 or 1 |
@item plist1, plist2 |
@item plist1 plist2 |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
Line 3518 Polynomial set @code{cyclic} is sometimes called by ot |
|
Line 4705 Polynomial set @code{cyclic} is sometimes called by ot |
|
[79] load("cyclic")$ |
[79] load("cyclic")$ |
[89] katsura(5); |
[89] katsura(5); |
[u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1, |
[u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1, |
2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3-u2+u1^2, |
2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3 |
2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1, |
-u2+u1^2,2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1, |
u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2] |
u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2] |
[90] hkatsura(5); |
[90] hkatsura(5); |
[-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5, |
[-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5, |
Line 3545 u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2] |
|
Line 4732 u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2] |
|
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@fref{dp_dtop}. |
@fref{dp_dtop}. |
|
@end table |
|
|
|
\JP @node primadec primedec,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node primadec primedec,,, Functions for Groebner basis computation |
|
@subsection @code{primadec}, @code{primedec} |
|
@findex primadec |
|
@findex primedec |
|
|
|
@table @t |
|
@item primadec(@var{plist},@var{vlist}) |
|
@item primedec(@var{plist},@var{vlist}) |
|
\JP :: $B%$%G%"%k$NJ,2r(B |
|
\EG :: Computes decompositions of ideals. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
@itemx plist |
|
\JP $BB?9`<0%j%9%H(B |
|
\EG list of polynomials |
|
@item vlist |
|
\JP $BJQ?t%j%9%H(B |
|
\EG list of variables |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
@code{primadec()}, @code{primedec} $B$O(B @samp{primdec} $B$GDj5A$5$l$F$$$k(B. |
|
@item |
|
@code{primadec()}, @code{primedec()} $B$O$=$l$>$lM-M}?tBN>e$G$N%$%G%"%k$N(B |
|
$B=`AGJ,2r(B, $B:,4p$NAG%$%G%"%kJ,2r$r9T$&(B. |
|
@item |
|
$B0z?t$OB?9`<0%j%9%H$*$h$SJQ?t%j%9%H$G$"$k(B. $BB?9`<0$OM-M}?t78?t$N$_$,5v$5$l$k(B. |
|
@item |
|
@code{primadec} $B$O(B @code{[$B=`AG@.J,(B, $BIUB0AG%$%G%"%k(B]} $B$N%j%9%H$rJV$9(B. |
|
@item |
|
@code{primadec} $B$O(B $BAG0x;R$N%j%9%H$rJV$9(B. |
|
@item |
|
$B7k2L$K$*$$$F(B, $BB?9`<0%j%9%H$H$7$FI=<($5$l$F$$$k3F%$%G%"%k$OA4$F(B |
|
$B%0%l%V%J4pDl$G$"$k(B. $BBP1~$9$k9`=g=x$O(B, $B$=$l$>$l(B |
|
$BJQ?t(B @code{PRIMAORD}, @code{PRIMEORD} $B$K3JG<$5$l$F$$$k(B. |
|
@item |
|
@code{primadec} $B$O(B @code{[Shimoyama,Yokoyama]} $B$N=`AGJ,2r%"%k%4%j%:%`(B |
|
$B$r<BAu$7$F$$$k(B. |
|
@item |
|
$B$b$7AG0x;R$N$_$r5a$a$?$$$J$i(B, @code{primedec} $B$r;H$&J}$,$h$$(B. |
|
$B$3$l$O(B, $BF~NO%$%G%"%k$,:,4p%$%G%"%k$G$J$$>l9g$K(B, @code{primadec} |
|
$B$N7W;;$KM>J,$J%3%9%H$,I,MW$H$J$k>l9g$,$"$k$+$i$G$"$k(B. |
|
\E |
|
\BEG |
|
@item |
|
Function @code{primadec()} and @code{primedec} are defined in @samp{primdec}. |
|
@item |
|
@code{primadec()}, @code{primedec()} are the function for primary |
|
ideal decomposition and prime decomposition of the radical over the |
|
rationals respectively. |
|
@item |
|
The arguments are a list of polynomials and a list of variables. |
|
These functions accept ideals with rational function coefficients only. |
|
@item |
|
@code{primadec} returns the list of pair lists consisting a primary component |
|
and its associated prime. |
|
@item |
|
@code{primedec} returns the list of prime components. |
|
@item |
|
Each component is a Groebner basis and the corresponding term order |
|
is indicated by the global variables @code{PRIMAORD}, @code{PRIMEORD} |
|
respectively. |
|
@item |
|
@code{primadec} implements the primary decompostion algorithm |
|
in @code{[Shimoyama,Yokoyama]}. |
|
@item |
|
If one only wants to know the prime components of an ideal, then |
|
use @code{primedec} because @code{primadec} may need additional costs |
|
if an input ideal is not radical. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[84] load("primdec")$ |
|
[102] primedec([p*q*x-q^2*y^2+q^2*y,-p^2*x^2+p^2*x+p*q*y, |
|
(q^3*y^4-2*q^3*y^3+q^3*y^2)*x-q^3*y^4+q^3*y^3, |
|
-q^3*y^4+2*q^3*y^3+(-q^3+p*q^2)*y^2],[p,q,x,y]); |
|
[[y,x],[y,p],[x,q],[q,p],[x-1,q],[y-1,p],[(y-1)*x-y,q*y^2-2*q*y-p+q]] |
|
[103] primadec([x,z*y,w*y^2,w^2*y-z^3,y^3],[x,y,z,w]); |
|
[[[x,z*y,y^2,w^2*y-z^3],[z,y,x]],[[w,x,z*y,z^3,y^3],[w,z,y,x]]] |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{fctr sqfr}, |
|
\JP @fref{$B9`=g=x$N@_Dj(B}. |
|
\EG @fref{Setting term orderings}. |
|
@end table |
|
|
|
\JP @node primedec_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node primedec_mod,,, Functions for Groebner basis computation |
|
@subsection @code{primedec_mod} |
|
@findex primedec_mod |
|
|
|
@table @t |
|
@item primedec_mod(@var{plist},@var{vlist},@var{ord},@var{mod},@var{strategy}) |
|
\JP :: $B%$%G%"%k$NJ,2r(B |
|
\EG :: Computes decompositions of ideals over small finite fields. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
@itemx plist |
|
\JP $BB?9`<0%j%9%H(B |
|
\EG list of polynomials |
|
@item vlist |
|
\JP $BJQ?t%j%9%H(B |
|
\EG list of variables |
|
@item ord |
|
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
|
@item mod |
|
\JP $B@5@0?t(B |
|
\EG positive integer |
|
@item strategy |
|
\JP $B@0?t(B |
|
\EG integer |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
@code{primedec_mod()} $B$O(B @samp{primdec_mod} |
|
$B$GDj5A$5$l$F$$$k(B. @code{[Yokoyama]} $B$NAG%$%G%"%kJ,2r%"%k%4%j%:%`(B |
|
$B$r<BAu$7$F$$$k(B. |
|
@item |
|
@code{primedec_mod()} $B$OM-8BBN>e$G$N%$%G%"%k$N(B |
|
$B:,4p$NAG%$%G%"%kJ,2r$r9T$$(B, $BAG%$%G%"%k$N%j%9%H$rJV$9(B. |
|
@item |
|
@code{primedec_mod()} $B$O(B, GF(@var{mod}) $B>e$G$NJ,2r$rM?$($k(B. |
|
$B7k2L$N3F@.J,$N@8@.85$O(B, $B@0?t78?tB?9`<0$G$"$k(B. |
|
@item |
|
$B7k2L$K$*$$$F(B, $BB?9`<0%j%9%H$H$7$FI=<($5$l$F$$$k3F%$%G%"%k$OA4$F(B |
|
[@var{vlist},@var{ord}] $B$G;XDj$5$l$k9`=g=x$K4X$9$k%0%l%V%J4pDl$G$"$k(B. |
|
@item |
|
@var{strategy} $B$,(B 0 $B$G$J$$$H$-(B, incremental $B$K(B component $B$N6&DL(B |
|
$BItJ,$r7W;;$9$k$3$H$K$h$k(B early termination $B$r9T$&(B. $B0lHL$K(B, |
|
$B%$%G%"%k$N<!85$,9b$$>l9g$KM-8z$@$,(B, 0 $B<!85$N>l9g$J$I(B, $B<!85$,>.$5$$(B |
|
$B>l9g$K$O(B overhead $B$,Bg$-$$>l9g$,$"$k(B. |
|
@item |
|
$B7W;;ESCf$GFbIt>pJs$r8+$?$$>l9g$K$O!"(B |
|
$BA0$b$C$F(B @code{dp_gr_print(2)} $B$r<B9T$7$F$*$1$P$h$$(B. |
|
\E |
|
\BEG |
|
@item |
|
Function @code{primedec_mod()} |
|
is defined in @samp{primdec_mod} and implements the prime decomposition |
|
algorithm in @code{[Yokoyama]}. |
|
@item |
|
@code{primedec_mod()} |
|
is the function for prime ideal decomposition |
|
of the radical of a polynomial ideal over small finite field, |
|
and they return a list of prime ideals, which are associated primes |
|
of the input ideal. |
|
@item |
|
@code{primedec_mod()} gives the decomposition over GF(@var{mod}). |
|
The generators of each resulting component consists of integral polynomials. |
|
@item |
|
Each resulting component is a Groebner basis with respect to |
|
a term order specified by [@var{vlist},@var{ord}]. |
|
@item |
|
If @var{strategy} is non zero, then the early termination strategy |
|
is tried by computing the intersection of obtained components |
|
incrementally. In general, this strategy is useful when the krull |
|
dimension of the ideal is high, but it may add some overhead |
|
if the dimension is small. |
|
@item |
|
If you want to see internal information during the computation, |
|
execute @code{dp_gr_print(2)} in advance. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[0] load("primdec_mod")$ |
|
[246] PP444=[x^8+x^2+t,y^8+y^2+t,z^8+z^2+t]$ |
|
[247] primedec_mod(PP444,[x,y,z,t],0,2,1); |
|
[[y+z,x+z,z^8+z^2+t],[x+y,y^2+y+z^2+z+1,z^8+z^2+t], |
|
[y+z+1,x+z+1,z^8+z^2+t],[x+z,y^2+y+z^2+z+1,z^8+z^2+t], |
|
[y+z,x^2+x+z^2+z+1,z^8+z^2+t],[y+z+1,x^2+x+z^2+z+1,z^8+z^2+t], |
|
[x+z+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z+1,x+z,z^8+z^2+t], |
|
[x+y+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z,x+z+1,z^8+z^2+t]] |
|
[248] |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{modfctr}, |
|
@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main}, |
|
\JP @fref{$B9`=g=x$N@_Dj(B}. |
|
\EG @fref{Setting term orderings}, |
|
@fref{dp_gr_flags dp_gr_print}. |
|
@end table |
|
|
|
\JP @node bfunction bfct generic_bfct ann ann0,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node bfunction bfct generic_bfct ann ann0,,, Functions for Groebner basis computation |
|
@subsection @code{bfunction}, @code{bfct}, @code{generic_bfct}, @code{ann}, @code{ann0} |
|
@findex bfunction |
|
@findex bfct |
|
@findex generic_bfct |
|
@findex ann |
|
@findex ann0 |
|
|
|
@table @t |
|
@item bfunction(@var{f}) |
|
@itemx bfct(@var{f}) |
|
@itemx generic_bfct(@var{plist},@var{vlist},@var{dvlist},@var{weight}) |
|
\JP :: @var{b} $B4X?t$N7W;;(B |
|
\EG :: Computes the global @var{b} function of a polynomial or an ideal |
|
@item ann(@var{f}) |
|
@itemx ann0(@var{f}) |
|
\JP :: $BB?9`<0$N%Y%-$N(B annihilator $B$N7W;;(B |
|
\EG :: Computes the annihilator of a power of polynomial |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $BB?9`<0$^$?$O%j%9%H(B |
|
\EG polynomial or list |
|
@item f |
|
\JP $BB?9`<0(B |
|
\EG polynomial |
|
@item plist |
|
\JP $BB?9`<0%j%9%H(B |
|
\EG list of polynomials |
|
@item vlist dvlist |
|
\JP $BJQ?t%j%9%H(B |
|
\EG list of variables |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item @samp{bfct} $B$GDj5A$5$l$F$$$k(B. |
|
@item @code{bfunction(@var{f})}, @code{bfct(@var{f})} $B$OB?9`<0(B @var{f} $B$N(B global @var{b} $B4X?t(B @code{b(s)} $B$r(B |
|
$B7W;;$9$k(B. @code{b(s)} $B$O(B, Weyl $BBe?t(B @code{D} $B>e$N0lJQ?tB?9`<04D(B @code{D[s]} |
|
$B$N85(B @code{P(x,s)} $B$,B8:_$7$F(B, @code{P(x,s)f^(s+1)=b(s)f^s} $B$rK~$?$9$h$&$J(B |
|
$BB?9`<0(B @code{b(s)} $B$NCf$G(B, $B<!?t$,:G$bDc$$$b$N$G$"$k(B. |
|
@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} |
|
$B$O(B, @var{plist} $B$G@8@.$5$l$k(B @code{D} $B$N:8%$%G%"%k(B @code{I} $B$N(B, |
|
$B%&%'%$%H(B @var{weight} $B$K4X$9$k(B global @var{b} $B4X?t$r7W;;$9$k(B. |
|
@var{vlist} $B$O(B @code{x}-$BJQ?t(B, @var{vlist} $B$OBP1~$9$k(B @code{D}-$BJQ?t(B |
|
$B$r=g$KJB$Y$k(B. |
|
@item @code{bfunction} $B$H(B @code{bfct} $B$G$OMQ$$$F$$$k%"%k%4%j%:%`$,(B |
|
$B0[$J$k(B. $B$I$A$i$,9bB.$+$OF~NO$K$h$k(B. |
|
@item @code{ann(@var{f})} $B$O(B, @code{@var{f}^s} $B$N(B annihilator ideal |
|
$B$N@8@.7O$rJV$9(B. @code{ann(@var{f})} $B$O(B, @code{[@var{a},@var{list}]} |
|
$B$J$k%j%9%H$rJV$9(B. $B$3$3$G(B, @var{a} $B$O(B @var{f} $B$N(B @var{b} $B4X?t$N:G>.@0?t:,(B, |
|
@var{list} $B$O(B @code{ann(@var{f})} $B$N7k2L$N(B @code{s}$ $B$K(B, @var{a} $B$r(B |
|
$BBeF~$7$?$b$N$G$"$k(B. |
|
@item $B>\:Y$K$D$$$F$O(B, [Saito,Sturmfels,Takayama] $B$r8+$h(B. |
|
\E |
|
\BEG |
|
@item These functions are defined in @samp{bfct}. |
|
@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} compute the global @var{b}-function @code{b(s)} of |
|
a polynomial @var{f}. |
|
@code{b(s)} is a polynomial of the minimal degree |
|
such that there exists @code{P(x,s)} in D[s], which is a polynomial |
|
ring over Weyl algebra @code{D}, and @code{P(x,s)f^(s+1)=b(s)f^s} holds. |
|
@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} |
|
computes the global @var{b}-function of a left ideal @code{I} in @code{D} |
|
generated by @var{plist}, with respect to @var{weight}. |
|
@var{vlist} is the list of @code{x}-variables, |
|
@var{vlist} is the list of corresponding @code{D}-variables. |
|
@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} implement |
|
different algorithms and the efficiency depends on inputs. |
|
@item @code{ann(@var{f})} returns the generator set of the annihilator |
|
ideal of @code{@var{f}^s}. |
|
@code{ann(@var{f})} returns a list @code{[@var{a},@var{list}]}, |
|
where @var{a} is the minimal integral root of the global @var{b}-function |
|
of @var{f}, and @var{list} is a list of polynomials obtained by |
|
substituting @code{s} in @code{ann(@var{f})} with @var{a}. |
|
@item See [Saito,Sturmfels,Takayama] for the details. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[0] load("bfct")$ |
|
[216] bfunction(x^3+y^3+z^3+x^2*y^2*z^2+x*y*z); |
|
-9*s^5-63*s^4-173*s^3-233*s^2-154*s-40 |
|
[217] fctr(@@); |
|
[[-1,1],[s+2,1],[3*s+4,1],[3*s+5,1],[s+1,2]] |
|
[218] F = [4*x^3*dt+y*z*dt+dx,x*z*dt+4*y^3*dt+dy, |
|
x*y*dt+5*z^4*dt+dz,-x^4-z*y*x-y^4-z^5+t]$ |
|
[219] generic_bfct(F,[t,z,y,x],[dt,dz,dy,dx],[1,0,0,0]); |
|
20000*s^10-70000*s^9+101750*s^8-79375*s^7+35768*s^6-9277*s^5 |
|
+1278*s^4-72*s^3 |
|
[220] P=x^3-y^2$ |
|
[221] ann(P); |
|
[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y+6*s] |
|
[222] ann0(P); |
|
[-1,[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y-6]] |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
\JP @fref{Weyl $BBe?t(B}. |
|
\EG @fref{Weyl algebra}. |
@end table |
@end table |
|
|