| version 1.21, 2018/09/06 05:42:43 |
version 1.22, 2019/03/29 04:54:25 |
|
|
| @comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.20 2017/08/31 04:54:36 takayama Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.21 2018/09/06 05:42:43 takayama Exp $ |
| \BJP |
\BJP |
| @node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
| @chapter $B%0%l%V%J4pDl$N7W;;(B |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
| Line 1503 Computation of the global b function is implemented as |
|
| Line 1503 Computation of the global b function is implemented as |
|
| * dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main:: |
* dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main:: |
| * dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main:: |
* dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main:: |
| * nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace:: |
* nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace:: |
| |
* nd_gr_postproc nd_weyl_gr_postproc:: |
| * dp_gr_flags dp_gr_print:: |
* dp_gr_flags dp_gr_print:: |
| * dp_ord:: |
* dp_ord:: |
| * dp_set_weight dp_set_top_weight dp_weyl_set_weight:: |
* dp_set_weight dp_set_top_weight dp_weyl_set_weight:: |
| Line 2493 ndv_alloc=1477188 |
|
| Line 2494 ndv_alloc=1477188 |
|
| \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
| \EG @fref{Controlling Groebner basis computations} |
\EG @fref{Controlling Groebner basis computations} |
| @end table |
@end table |
| |
|
| |
\JP @node nd_gr_postproc nd_weyl_gr_postproc,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
| |
\EG @node nd_gr_postproc nd_weyl_gr_postproc,,, Functions for Groebner basis computation |
| |
@subsection @code{nd_gr_postproc}, @code{nd_weyl_gr_postproc} |
| |
@findex nd_gr_postproc |
| |
@findex nd_weyl_gr_postproc |
| |
|
| |
@table @t |
| |
@item nd_gr_postproc(@var{plist},@var{vlist},@var{p},@var{order},@var{check}) |
| |
@itemx nd_weyl_gr_postproc(@var{plist},@var{vlist},@var{p},@var{order},@var{check}) |
| |
\JP :: $B%0%l%V%J4pDl8uJd$N%A%'%C%/$*$h$SAj8_4JLs(B |
| |
\EG :: Check of Groebner basis candidate and inter-reduction |
| |
@end table |
| |
|
| |
@table @var |
| |
@item return |
| |
\JP $B%j%9%H(B $B$^$?$O(B 0 |
| |
\EG list or 0 |
| |
@item plist vlist |
| |
\JP $B%j%9%H(B |
| |
\EG list |
| |
@item p |
| |
\JP $BAG?t$^$?$O(B 0 |
| |
\EG prime or 0 |
| |
@item order |
| |
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
| |
\EG number, list or matrix |
| |
@item check |
| |
\JP 0 $B$^$?$O(B 1 |
| |
\EG 0 or 1 |
| |
@end table |
| |
|
| |
@itemize @bullet |
| |
\BJP |
| |
@item |
| |
$B%0%l%V%J4pDl(B($B8uJd(B)$B$NAj8_4JLs$r9T$&(B. |
| |
@item |
| |
@code{nd_weyl_gr_postproc} $B$O(B Weyl $BBe?tMQ$G$"$k(B. |
| |
@item |
| |
@var{check=1} $B$N>l9g(B, @var{plist} $B$,(B, @var{vlist}, @var{p}, @var{order} $B$G;XDj$5$l$kB?9`<04D(B, $B9`=g=x$G%0%l%V%J!<4pDl$K$J$C$F$$$k$+(B |
| |
$B$N%A%'%C%/$b9T$&(B. |
| |
@item |
| |
$B@F<!2=$7$F7W;;$7$?%0%l%V%J!<4pDl$rHs@F<!2=$7$?$b$N$rAj8_4JLs$r9T$&(B, CRT $B$G7W;;$7$?%0%l%V%J!<4pDl8uJd$N%A%'%C%/$r9T$&$J$I$N>l9g$KMQ$$$k(B. |
| |
\E |
| |
\BEG |
| |
@item |
| |
Perform the inter-reduction for a Groebner basis (candidate). |
| |
@item |
| |
@code{nd_weyl_gr_postproc} is for Weyl algebra. |
| |
@item |
| |
If @var{check=1} then the check whether @var{plist} is a Groebner basis with respect to a term order in a polynomial ring |
| |
or Weyl algebra specified by @var{vlist}, @var{p} and @var{order}. |
| |
@item |
| |
This function is used for inter-reduction of a non-reduced Groebner basis that is obtained by dehomogenizing a Groebner basis |
| |
computed via homogenization, or Groebner basis check of a Groebner basis candidate computed by CRT. |
| |
\E |
| |
@end itemize |
| |
|
| |
@example |
| |
afo |
| |
@end example |
| |
|
| \JP @node dp_gr_flags dp_gr_print,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_gr_flags dp_gr_print,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
| \EG @node dp_gr_flags dp_gr_print,,, Functions for Groebner basis computation |
\EG @node dp_gr_flags dp_gr_print,,, Functions for Groebner basis computation |