| version 1.13, 2004/09/13 09:23:30 |
version 1.16, 2004/10/20 00:30:55 |
|
|
| @comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.12 2003/12/27 11:52:07 takayama Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.15 2004/09/14 02:28:20 noro Exp $ |
| \BJP |
\BJP |
| @node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
| @chapter $B%0%l%V%J4pDl$N7W;;(B |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
| Line 1069 beforehand, and some heuristic trial may be inevitable |
|
| Line 1069 beforehand, and some heuristic trial may be inevitable |
|
| $B$h$j0lHLE*$J$b$N$H$J$k(B. |
$B$h$j0lHLE*$J$b$N$H$J$k(B. |
| \E |
\E |
| \BEG |
\BEG |
| Term orders introduced in the previous section can be generalized |
Term orderings introduced in the previous section can be generalized |
| by setting a weight for each variable. |
by setting a weight for each variable. |
| \E |
\E |
| @example |
@example |
| Line 1097 In this example, the weights for the first, the second |
|
| Line 1097 In this example, the weights for the first, the second |
|
| variable are set to 1, 2 and 3 respectively. |
variable are set to 1, 2 and 3 respectively. |
| Therefore the total degree of @code{<<1,1,1>>} under this weight, |
Therefore the total degree of @code{<<1,1,1>>} under this weight, |
| which is called the weight of the monomial, is @code{1*1+1*2+1*3=6}. |
which is called the weight of the monomial, is @code{1*1+1*2+1*3=6}. |
| By setting weights, different term orders can be set under a term |
By setting weights, different term orderings can be set under a type of |
| order type. For example, a polynomial can be made weighted homogeneous |
term ordeing. In some case a polynomial can |
| by setting an appropriate weight. |
be made weighted homogeneous by setting an appropriate weight. |
| \E |
\E |
| |
|
| \BJP |
\BJP |
| Line 1131 is also considered as a refinement of comparison by we |
|
| Line 1131 is also considered as a refinement of comparison by we |
|
| It compares two terms by using a weight vector whose elements |
It compares two terms by using a weight vector whose elements |
| corresponding to variables in a block is 1 and 0 otherwise, |
corresponding to variables in a block is 1 and 0 otherwise, |
| then it applies a tie breaker. |
then it applies a tie breaker. |
| |
\E |
| |
|
| |
\BJP |
| |
weight vector $B$N@_Dj$O(B @code{dp_set_weight()} $B$G9T$&$3$H$,$G$-$k(B |
| |
$B$,(B, $B9`=g=x$r;XDj$9$k:]$NB>$N%Q%i%a%?(B ($B9`=g=x7?(B, $BJQ?t=g=x(B) $B$H(B |
| |
$B$^$H$a$F@_Dj$G$-$k$3$H$,K>$^$7$$(B. $B$3$N$?$a(B, $B<!$N$h$&$J7A$G$b(B |
| |
$B9`=g=x$,;XDj$G$-$k(B. |
| \E |
\E |
| |
\BEG |
| |
A weight vector can be set by using @code{dp_set_weight()}. |
| |
However it is more preferable if a weight vector can be set |
| |
together with other parapmeters such as a type of term ordering |
| |
and a variable order. This is realized as follows. |
| |
\E |
| |
|
| |
@example |
| |
[64] B=[x+y+z-6,x*y+y*z+z*x-11,x*y*z-6]$ |
| |
[65] dp_gr_main(B|v=[x,y,z],sugarweight=[3,2,1],order=0); |
| |
[z^3-6*z^2+11*z-6,x+y+z-6,-y^2+(-z+6)*y-z^2+6*z-11] |
| |
[66] dp_gr_main(B|v=[y,z,x],order=[[1,1,0],[0,1,0],[0,0,1]]); |
| |
[x^3-6*x^2+11*x-6,x+y+z-6,-x^2+(-y+6)*x-y^2+6*y-11] |
| |
[67] dp_gr_main(B|v=[y,z,x],order=[[x,1,y,2,z,3]]); |
| |
[x+y+z-6,x^3-6*x^2+11*x-6,-x^2+(-y+6)*x-y^2+6*y-11] |
| |
@end example |
| |
|
| \BJP |
\BJP |
| |
$B$$$:$l$NNc$K$*$$$F$b(B, $B9`=g=x$O(B option $B$H$7$F;XDj$5$l$F$$$k(B. |
| |
$B:G=i$NNc$G$O(B @code{v} $B$K$h$jJQ?t=g=x$r(B, @code{sugarweight} $B$K$h$j(B |
| |
sugar weight vector $B$r(B, @code{order}$B$K$h$j9`=g=x7?$r;XDj$7$F$$$k(B. |
| |
$BFs$DL\$NNc$K$*$1$k(B @code{order} $B$N;XDj$O(B matrix order $B$HF1MM$G$"$k(B. |
| |
$B$9$J$o$A(B, $B;XDj$5$l$?(B weight vector $B$r:8$+$i=g$K;H$C$F(B weight $B$NHf3S(B |
| |
$B$r9T$&(B. $B;0$DL\$NNc$bF1MM$G$"$k$,(B, $B$3$3$G$O(B weight vector $B$NMWAG$r(B |
| |
$BJQ?tKh$K;XDj$7$F$$$k(B. $B;XDj$,$J$$$b$N$O(B 0 $B$H$J$k(B. $B;0$DL\$NNc$G$O(B, |
| |
@code{order} $B$K$h$k;XDj$G$O9`=g=x$,7hDj$7$J$$(B. $B$3$N>l9g$K$O(B, |
| |
tie breaker $B$H$7$FA4<!?t5U<-=q<0=g=x$,<+F0E*$K@_Dj$5$l$k(B. |
| |
$B$3$N;XDjJ}K!$O(B, @code{dp_gr_main}, @code{dp_gr_mod_main} $B$J$I(B |
| |
$B$NAH$_9~$_4X?t$G$N$_2DG=$G$"$j(B, @code{gr} $B$J$I$N%f!<%6Dj5A4X?t(B |
| |
$B$G$OL$BP1~$G$"$k(B. |
| |
\E |
| |
\BEG |
| |
In each example, a term ordering is specified as options. |
| |
In the first example, a variable order, a sugar weight vector |
| |
and a type of term ordering are specified by options @code{v}, |
| |
@code{sugarweight} and @code{order} respectively. |
| |
In the second example, an option @code{order} is used |
| |
to set a matrix ordering. That is, the specified weight vectors |
| |
are used from left to right for comparing terms. |
| |
The third example shows a variant of specifying a weight vector, |
| |
where each component of a weight vector is specified variable by variable, |
| |
and unspecified components are set to zero. In this example, |
| |
a term order is not determined only by the specified weight vector. |
| |
In such a case a tie breaker by the graded reverse lexicographic ordering |
| |
is set automatically. |
| |
This type of a term ordering specification can be applied only to builtin |
| |
functions such as @code{dp_gr_main()}, @code{dp_gr_mod_main()}, not to |
| |
user defined functions such as @code{gr()}. |
| |
\E |
| |
|
| |
\BJP |
| @node $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B,,, $B%0%l%V%J4pDl$N7W;;(B |
| @section $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B |
@section $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B |
| \E |
\E |
| Line 1409 Computation of the global b function is implemented as |
|
| Line 1464 Computation of the global b function is implemented as |
|
| * tolexm minipolym:: |
* tolexm minipolym:: |
| * dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main:: |
* dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main:: |
| * dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main:: |
* dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main:: |
| |
* nd_gr nd_gr_trace nd_f4 nd_weyl_gr nd_weyl_gr_trace:: |
| * dp_gr_flags dp_gr_print:: |
* dp_gr_flags dp_gr_print:: |
| * dp_ord:: |
* dp_ord:: |
| * dp_ptod:: |
* dp_ptod:: |
| Line 1485 Computation of the global b function is implemented as |
|
| Line 1541 Computation of the global b function is implemented as |
|
| strategy $B$K$h$k7W;;(B, @code{hgr()} $B$O(B trace-lifting $B$*$h$S(B |
strategy $B$K$h$k7W;;(B, @code{hgr()} $B$O(B trace-lifting $B$*$h$S(B |
| $B@F<!2=$K$h$k(B $B6:@5$5$l$?(B sugar strategy $B$K$h$k7W;;$r9T$&(B. |
$B@F<!2=$K$h$k(B $B6:@5$5$l$?(B sugar strategy $B$K$h$k7W;;$r9T$&(B. |
| @item |
@item |
| @code{dgr()} $B$O(B, @code{gr()}, @code{dgr()} $B$r(B |
@code{dgr()} $B$O(B, @code{gr()}, @code{hgr()} $B$r(B |
| $B;R%W%m%;%9%j%9%H(B @var{procs} $B$N(B 2 $B$D$N%W%m%;%9$K$h$jF1;~$K7W;;$5$;(B, |
$B;R%W%m%;%9%j%9%H(B @var{procs} $B$N(B 2 $B$D$N%W%m%;%9$K$h$jF1;~$K7W;;$5$;(B, |
| $B@h$K7k2L$rJV$7$?J}$N7k2L$rJV$9(B. $B7k2L$OF10l$G$"$k$,(B, $B$I$A$i$NJ}K!$,(B |
$B@h$K7k2L$rJV$7$?J}$N7k2L$rJV$9(B. $B7k2L$OF10l$G$"$k$,(B, $B$I$A$i$NJ}K!$,(B |
| $B9bB.$+0lHL$K$OITL@$N$?$a(B, $B<B:]$N7P2a;~4V$rC;=L$9$k$N$KM-8z$G$"$k(B. |
$B9bB.$+0lHL$K$OITL@$N$?$a(B, $B<B:]$N7P2a;~4V$rC;=L$9$k$N$KM-8z$G$"$k(B. |
| Line 2244 except for lack of the argument for controlling homoge |
|
| Line 2300 except for lack of the argument for controlling homoge |
|
| @fref{dp_ord}, |
@fref{dp_ord}, |
| @fref{dp_gr_flags dp_gr_print}, |
@fref{dp_gr_flags dp_gr_print}, |
| @fref{gr hgr gr_mod}, |
@fref{gr hgr gr_mod}, |
| |
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
| |
\EG @fref{Controlling Groebner basis computations} |
| |
@end table |
| |
|
| |
\JP @node nd_gr nd_gr_trace nd_f4 nd_weyl_gr nd_weyl_gr_trace,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
| |
\EG @node nd_gr nd_gr_trace nd_f4 nd_weyl_gr nd_weyl_gr_trace,,, Functions for Groebner basis computation |
| |
@subsection @code{nd_gr}, @code{nd_gr_trace}, @code{nd_f4}, @code{nd_weyl_gr}, @code{nd_weyl_gr_trace} |
| |
@findex nd_gr |
| |
@findex nd_gr_trace |
| |
@findex nd_f4 |
| |
@findex nd_weyl_gr |
| |
@findex nd_weyl_gr_trace |
| |
|
| |
@table @t |
| |
@item nd_gr(@var{plist},@var{vlist},@var{p},@var{order}) |
| |
@itemx nd_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) |
| |
@itemx nd_f4(@var{plist},@var{vlist},@var{modular},@var{order}) |
| |
@item nd_weyl_gr(@var{plist},@var{vlist},@var{p},@var{order}) |
| |
@itemx nd_weyl_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) |
| |
\JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) |
| |
\EG :: Groebner basis computation (built-in functions) |
| |
@end table |
| |
|
| |
@table @var |
| |
@item return |
| |
\JP $B%j%9%H(B |
| |
\EG list |
| |
@item plist vlist |
| |
\JP $B%j%9%H(B |
| |
\EG list |
| |
@item order |
| |
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
| |
\EG number, list or matrix |
| |
@item homo |
| |
\JP $B%U%i%0(B |
| |
\EG flag |
| |
@item modular |
| |
\JP $B%U%i%0$^$?$OAG?t(B |
| |
\EG flag or prime |
| |
@end table |
| |
|
| |
\BJP |
| |
@itemize @bullet |
| |
@item |
| |
$B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;AH$_9~$_4X?t$N?7<BAu$G$"$k(B. |
| |
@item @code{nd_gr} $B$O(B, @code{p} $B$,(B 0 $B$N$H$-M-M}?tBN>e$N(B Buchberger |
| |
$B%"%k%4%j%:%`$r<B9T$9$k(B. @code{p} $B$,(B 2 $B0J>e$N<+A3?t$N$H$-(B, GF(p) $B>e$N(B |
| |
Buchberger $B%"%k%4%j%:%`$r<B9T$9$k(B. |
| |
@item @code{nd_gr_trace} $B$OM-M}?tBN>e$G(B trace $B%"%k%4%j%:%`$r<B9T$9$k(B. |
| |
@code{p} $B$,(B 0 $B$^$?$O(B 1 $B$N$H$-(B, $B<+F0E*$KA*$P$l$?AG?t$rMQ$$$F(B, $B@.8y$9$k(B |
| |
$B$^$G(B trace $B%"%k%4%j%:%`$r<B9T$9$k(B. |
| |
@code{p} $B$,(B 2 $B0J>e$N$H$-(B, trace $B$O(BGF(p) $B>e$G7W;;$5$l$k(B. trace $B%"%k%4%j%:%`(B |
| |
$B$,<:GT$7$?>l9g(B 0 $B$,JV$5$l$k(B. @code{p} $B$,Ii$N>l9g(B, $B%0%l%V%J4pDl%A%'%C%/$O(B |
| |
$B9T$o$J$$(B. $B$3$N>l9g(B, @code{p} $B$,(B -1 $B$J$i$P<+F0E*$KA*$P$l$?AG?t$,(B, |
| |
$B$=$l0J30$O;XDj$5$l$?AG?t$rMQ$$$F%0%l%V%J4pDl8uJd$N7W;;$,9T$o$l$k(B. |
| |
@item |
| |
@code{nd_f4} $B$O(B, $BM-8BBN>e$N(B F4 $B%"%k%4%j%:%`$r<B9T$9$k(B. |
| |
@item |
| |
@code{nd_weyl_gr}, @code{nd_weyl_gr_trace} $B$O(B Weyl $BBe?tMQ$G$"$k(B. |
| |
@item |
| |
$B$$$:$l$N4X?t$b(B, $BM-M}4X?tBN>e$N7W;;$OL$BP1~$G$"$k(B. |
| |
@item |
| |
$B0lHL$K(B @code{dp_gr_main}, @code{dp_gr_mod_main} $B$h$j9bB.$G$"$k$,(B, |
| |
$BFC$KM-8BBN>e$N>l9g82Cx$G$"$k(B. |
| |
@end itemize |
| |
\E |
| |
|
| |
\BEG |
| |
@itemize @bullet |
| |
@item |
| |
These functions are new implementations for computing Groebner bases. |
| |
@item @code{nd_gr} executes Buchberger algorithm over the rationals |
| |
if @code{p} is 0, and that over GF(p) if @code{p} is a prime. |
| |
@item @code{nd_gr_trace} executes the trace algorithm over the rationals. |
| |
If @code{p} is 0 or 1, the trace algorithm is executed until it succeeds |
| |
by using automatically chosen primes. |
| |
If @code{p} a positive prime, |
| |
the trace is comuted over GF(p). |
| |
If the trace algorithm fails 0 is returned. |
| |
If @code{p} is negative, |
| |
the Groebner basis check and ideal-membership check are omitted. |
| |
In this case, an automatically chosen prime if @code{p} is 1, |
| |
otherwise the specified prime is used to compute a Groebner basis |
| |
candidate. |
| |
@item |
| |
@code{nd_f4} executes F4 algorithm over a finite field. |
| |
@item |
| |
@code{nd_weyl_gr}, @code{nd_weyl_gr_trace} are for Weyl algebra computation. |
| |
@item |
| |
Each function cannot handle rational function coefficient cases. |
| |
@item |
| |
In general these functions are more efficient than |
| |
@code{dp_gr_main}, @code{dp_gr_mod_main}, especially over finite fields. |
| |
@end itemize |
| |
\E |
| |
|
| |
@example |
| |
[38] load("cyclic")$ |
| |
[49] C=cyclic(7)$ |
| |
[50] V=vars(C)$ |
| |
[51] cputime(1)$ |
| |
[52] dp_gr_mod_main(C,V,0,31991,0)$ |
| |
26.06sec + gc : 0.313sec(26.4sec) |
| |
[53] nd_gr(C,V,31991,0)$ |
| |
ndv_alloc=1477188 |
| |
5.737sec + gc : 0.1837sec(5.921sec) |
| |
[54] dp_f4_mod_main(C,V,31991,0)$ |
| |
3.51sec + gc : 0.7109sec(4.221sec) |
| |
[55] nd_f4(C,V,31991,0)$ |
| |
1.906sec + gc : 0.126sec(2.032sec) |
| |
@end example |
| |
|
| |
@table @t |
| |
\JP @item $B;2>H(B |
| |
\EG @item References |
| |
@fref{dp_ord}, |
| |
@fref{dp_gr_flags dp_gr_print}, |
| \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
| \EG @fref{Controlling Groebner basis computations} |
\EG @fref{Controlling Groebner basis computations} |
| @end table |
@end table |