version 1.12, 2003/12/27 11:52:07 |
version 1.15, 2004/09/14 02:28:20 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.11 2003/04/28 06:43:10 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.14 2004/09/14 01:32:34 noro Exp $ |
\BJP |
\BJP |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
|
|
* $B4pK\E*$JH!?t(B:: |
* $B4pK\E*$JH!?t(B:: |
* $B7W;;$*$h$SI=<($N@)8f(B:: |
* $B7W;;$*$h$SI=<($N@)8f(B:: |
* $B9`=g=x$N@_Dj(B:: |
* $B9`=g=x$N@_Dj(B:: |
|
* Weight:: |
* $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B:: |
* $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B:: |
* $B4pDlJQ49(B:: |
* $B4pDlJQ49(B:: |
* Weyl $BBe?t(B:: |
* Weyl $BBe?t(B:: |
|
|
* Fundamental functions:: |
* Fundamental functions:: |
* Controlling Groebner basis computations:: |
* Controlling Groebner basis computations:: |
* Setting term orderings:: |
* Setting term orderings:: |
|
* Weight:: |
* Groebner basis computation with rational function coefficients:: |
* Groebner basis computation with rational function coefficients:: |
* Change of ordering:: |
* Change of ordering:: |
* Weyl algebra:: |
* Weyl algebra:: |
Line 1055 beforehand, and some heuristic trial may be inevitable |
|
Line 1057 beforehand, and some heuristic trial may be inevitable |
|
\E |
\E |
|
|
\BJP |
\BJP |
|
@node Weight ,,, $B%0%l%V%J4pDl$N7W;;(B |
|
@section Weight |
|
\E |
|
\BEG |
|
@node Weight,,, Groebner basis computation |
|
@section Weight |
|
\E |
|
\BJP |
|
$BA0@a$G>R2p$7$?9`=g=x$O(B, $B3FJQ?t$K(B weight ($B=E$_(B) $B$r@_Dj$9$k$3$H$G(B |
|
$B$h$j0lHLE*$J$b$N$H$J$k(B. |
|
\E |
|
\BEG |
|
Term orderings introduced in the previous section can be generalized |
|
by setting a weight for each variable. |
|
\E |
|
@example |
|
[0] dp_td(<<1,1,1>>); |
|
3 |
|
[1] dp_set_weight([1,2,3])$ |
|
[2] dp_td(<<1,1,1>>); |
|
6 |
|
@end example |
|
\BJP |
|
$BC19`<0$NA4<!?t$r7W;;$9$k:](B, $B%G%U%)%k%H$G$O(B |
|
$B3FJQ?t$N;X?t$NOB$rA4<!?t$H$9$k(B. $B$3$l$O3FJQ?t$N(B weight $B$r(B 1 $B$H(B |
|
$B9M$($F$$$k$3$H$KAjEv$9$k(B. $B$3$NNc$G$O(B, $BBh0l(B, $BBhFs(B, $BBh;0JQ?t$N(B |
|
weight $B$r$=$l$>$l(B 1,2,3 $B$H;XDj$7$F$$$k(B. $B$3$N$?$a(B, @code{<<1,1,1>>} |
|
$B$NA4<!?t(B ($B0J2<$G$O$3$l$rC19`<0$N(B weight $B$H8F$V(B) $B$,(B @code{1*1+1*2+1*3=6} $B$H$J$k(B. |
|
weight $B$r@_Dj$9$k$3$H$G(B, $BF1$89`=g=x7?$N$b$H$G0[$J$k9`=g=x$,Dj5A$G$-$k(B. |
|
$BNc$($P(B, weight $B$r$&$^$/@_Dj$9$k$3$H$G(B, $BB?9`<0$r(B weighted homogeneous |
|
$B$K$9$k$3$H$,$G$-$k>l9g$,$"$k(B. |
|
\E |
|
\BEG |
|
By default, the total degree of a monomial is equal to |
|
the sum of all exponents. This means that the weight for each variable |
|
is set to 1. |
|
In this example, the weights for the first, the second and the third |
|
variable are set to 1, 2 and 3 respectively. |
|
Therefore the total degree of @code{<<1,1,1>>} under this weight, |
|
which is called the weight of the monomial, is @code{1*1+1*2+1*3=6}. |
|
By setting weights, different term orderings can be set under a type of |
|
term ordeing. In some case a polynomial can |
|
be made weighted homogeneous by setting an appropriate weight. |
|
\E |
|
|
|
\BJP |
|
$B3FJQ?t$KBP$9$k(B weight $B$r$^$H$a$?$b$N$r(B weight vector $B$H8F$V(B. |
|
$B$9$Y$F$N@.J,$,@5$G$"$j(B, $B%0%l%V%J4pDl7W;;$K$*$$$F(B, $BA4<!?t$N(B |
|
$BBe$o$j$KMQ$$$i$l$k$b$N$rFC$K(B sugar weight $B$H8F$V$3$H$K$9$k(B. |
|
sugar strategy $B$K$*$$$F(B, $BA4<!?t$NBe$o$j$K;H$o$l$k$+$i$G$"$k(B. |
|
$B0lJ}$G(B, $B3F@.J,$,I,$:$7$b@5$H$O8B$i$J$$(B weight vector $B$O(B, |
|
sugar weight $B$H$7$F@_Dj$9$k$3$H$O$G$-$J$$$,(B, $B9`=g=x$N0lHL2=$K$O(B |
|
$BM-MQ$G$"$k(B. $B$3$l$i$O(B, $B9TNs$K$h$k9`=g=x$N@_Dj$K$9$G$K8=$l$F(B |
|
$B$$$k(B. $B$9$J$o$A(B, $B9`=g=x$rDj5A$9$k9TNs$N3F9T$,(B, $B0l$D$N(B weight vector |
|
$B$H8+$J$5$l$k(B. $B$^$?(B, $B%V%m%C%/=g=x$O(B, $B3F%V%m%C%/$N(B |
|
$BJQ?t$KBP1~$9$k@.J,$N$_(B 1 $B$GB>$O(B 0 $B$N(B weight vector $B$K$h$kHf3S$r(B |
|
$B:G=i$K9T$C$F$+$i(B, $B3F%V%m%C%/Kh$N(B tie breaking $B$r9T$&$3$H$KAjEv$9$k(B. |
|
\E |
|
|
|
\BEG |
|
A list of weights for all variables is called a weight vector. |
|
A weight vector is called a sugar weight vector if |
|
its elements are all positive and it is used for computing |
|
a weighted total degree of a monomial, because such a weight |
|
is used instead of total degree in sugar strategy. |
|
On the other hand, a weight vector whose elements are not necessarily |
|
positive cannot be set as a sugar weight, but it is useful for |
|
generalizing term order. In fact, such a weight vector already |
|
appeared in a matrix order. That is, each row of a matrix defining |
|
a term order is regarded as a weight vector. A block order |
|
is also considered as a refinement of comparison by weight vectors. |
|
It compares two terms by using a weight vector whose elements |
|
corresponding to variables in a block is 1 and 0 otherwise, |
|
then it applies a tie breaker. |
|
\E |
|
|
|
\BJP |
|
weight vector $B$N@_Dj$O(B @code{dp_set_weight()} $B$G9T$&$3$H$,$G$-$k(B |
|
$B$,(B, $B9`=g=x$r;XDj$9$k:]$NB>$N%Q%i%a%?(B ($B9`=g=x7?(B, $BJQ?t=g=x(B) $B$H(B |
|
$B$^$H$a$F@_Dj$G$-$k$3$H$,K>$^$7$$(B. $B$3$N$?$a(B, $B<!$N$h$&$J7A$G$b(B |
|
$B9`=g=x$,;XDj$G$-$k(B. |
|
\E |
|
\BEG |
|
A weight vector can be set by using @code{dp_set_weight()}. |
|
However it is more preferable if a weight vector can be set |
|
together with other parapmeters such as a type of term ordering |
|
and a variable order. This is realized as follows. |
|
\E |
|
|
|
@example |
|
[64] B=[x+y+z-6,x*y+y*z+z*x-11,x*y*z-6]$ |
|
[65] dp_gr_main(B|v=[x,y,z],sugarweight=[3,2,1],order=0); |
|
[z^3-6*z^2+11*z-6,x+y+z-6,-y^2+(-z+6)*y-z^2+6*z-11] |
|
[66] dp_gr_main(B|v=[y,z,x],order=[[1,1,0],[0,1,0],[0,0,1]]); |
|
[x^3-6*x^2+11*x-6,x+y+z-6,-x^2+(-y+6)*x-y^2+6*y-11] |
|
[67] dp_gr_main(B|v=[y,z,x],order=[[x,1,y,2,z,3]]); |
|
[x+y+z-6,x^3-6*x^2+11*x-6,-x^2+(-y+6)*x-y^2+6*y-11] |
|
@end example |
|
|
|
\BJP |
|
$B$$$:$l$NNc$K$*$$$F$b(B, $B9`=g=x$O(B option $B$H$7$F;XDj$5$l$F$$$k(B. |
|
$B:G=i$NNc$G$O(B @code{v} $B$K$h$jJQ?t=g=x$r(B, @code{sugarweight} $B$K$h$j(B |
|
sugar weight vector $B$r(B, @code{order}$B$K$h$j9`=g=x7?$r;XDj$7$F$$$k(B. |
|
$BFs$DL\$NNc$K$*$1$k(B @code{order} $B$N;XDj$O(B matrix order $B$HF1MM$G$"$k(B. |
|
$B$9$J$o$A(B, $B;XDj$5$l$?(B weight vector $B$r:8$+$i=g$K;H$C$F(B weight $B$NHf3S(B |
|
$B$r9T$&(B. $B;0$DL\$NNc$bF1MM$G$"$k$,(B, $B$3$3$G$O(B weight vector $B$NMWAG$r(B |
|
$BJQ?tKh$K;XDj$7$F$$$k(B. $B;XDj$,$J$$$b$N$O(B 0 $B$H$J$k(B. $B;0$DL\$NNc$G$O(B, |
|
@code{order} $B$K$h$k;XDj$G$O9`=g=x$,7hDj$7$J$$(B. $B$3$N>l9g$K$O(B, |
|
tie breaker $B$H$7$FA4<!?t5U<-=q<0=g=x$,<+F0E*$K@_Dj$5$l$k(B. |
|
$B$3$N;XDjJ}K!$O(B, @code{dp_gr_main}, @code{dp_gr_mod_main} $B$J$I(B |
|
$B$NAH$_9~$_4X?t$G$N$_2DG=$G$"$j(B, @code{gr} $B$J$I$N%f!<%6Dj5A4X?t(B |
|
$B$G$OL$BP1~$G$"$k(B. |
|
\E |
|
\BEG |
|
In each example, a term ordering is specified as options. |
|
In the first example, a variable order, a sugar weight vector |
|
and a type of term ordering are specified by options @code{v}, |
|
@code{sugarweight} and @code{order} respectively. |
|
In the second example, an option @code{order} is used |
|
to set a matrix ordering. That is, the specified weight vectors |
|
are used from left to right for comparing terms. |
|
The third example shows a variant of specifying a weight vector, |
|
where each component of a weight vector is specified variable by variable, |
|
and unspecified components are set to zero. In this example, |
|
a term order is not determined only by the specified weight vector. |
|
In such a case a tie breaker by the graded reverse lexicographic ordering |
|
is set automatically. |
|
This type of a term ordering specification can be applied only to builtin |
|
functions such as @code{dp_gr_main()}, @code{dp_gr_mod_main()}, not to |
|
user defined functions such as @code{gr()}. |
|
\E |
|
|
|
\BJP |
@node $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B |
@section $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B |
\E |
\E |
Line 1329 Computation of the global b function is implemented as |
|
Line 1464 Computation of the global b function is implemented as |
|
* tolexm minipolym:: |
* tolexm minipolym:: |
* dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main:: |
* dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main:: |
* dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main:: |
* dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main:: |
|
* nd_gr nd_gr_trace nd_f4 nd_weyl_gr nd_weyl_gr_trace:: |
* dp_gr_flags dp_gr_print:: |
* dp_gr_flags dp_gr_print:: |
* dp_ord:: |
* dp_ord:: |
* dp_ptod:: |
* dp_ptod:: |
Line 2164 except for lack of the argument for controlling homoge |
|
Line 2300 except for lack of the argument for controlling homoge |
|
@fref{dp_ord}, |
@fref{dp_ord}, |
@fref{dp_gr_flags dp_gr_print}, |
@fref{dp_gr_flags dp_gr_print}, |
@fref{gr hgr gr_mod}, |
@fref{gr hgr gr_mod}, |
|
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
|
\EG @fref{Controlling Groebner basis computations} |
|
@end table |
|
|
|
\JP @node nd_gr nd_gr_trace nd_f4 nd_weyl_gr nd_weyl_gr_trace,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node nd_gr nd_gr_trace nd_f4 nd_weyl_gr nd_weyl_gr_trace,,, Functions for Groebner basis computation |
|
@subsection @code{nd_gr}, @code{nd_gr_trace}, @code{nd_f4}, @code{nd_weyl_gr}, @code{nd_weyl_gr_trace} |
|
@findex nd_gr |
|
@findex nd_gr_trace |
|
@findex nd_f4 |
|
@findex nd_weyl_gr |
|
@findex nd_weyl_gr_trace |
|
|
|
@table @t |
|
@item nd_gr(@var{plist},@var{vlist},@var{p},@var{order}) |
|
@itemx nd_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) |
|
@itemx nd_f4(@var{plist},@var{vlist},@var{modular},@var{order}) |
|
@item nd_weyl_gr(@var{plist},@var{vlist},@var{p},@var{order}) |
|
@itemx nd_weyl_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) |
|
\JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) |
|
\EG :: Groebner basis computation (built-in functions) |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $B%j%9%H(B |
|
\EG list |
|
@item plist vlist |
|
\JP $B%j%9%H(B |
|
\EG list |
|
@item order |
|
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
|
@item homo |
|
\JP $B%U%i%0(B |
|
\EG flag |
|
@item modular |
|
\JP $B%U%i%0$^$?$OAG?t(B |
|
\EG flag or prime |
|
@end table |
|
|
|
\BJP |
|
@itemize @bullet |
|
@item |
|
$B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;AH$_9~$_4X?t$N?7<BAu$G$"$k(B. |
|
@item @code{nd_gr} $B$O(B, @code{p} $B$,(B 0 $B$N$H$-M-M}?tBN>e$N(B Buchberger |
|
$B%"%k%4%j%:%`$r<B9T$9$k(B. @code{p} $B$,(B 2 $B0J>e$N<+A3?t$N$H$-(B, GF(p) $B>e$N(B |
|
Buchberger $B%"%k%4%j%:%`$r<B9T$9$k(B. |
|
@item @code{nd_gr_trace} $B$OM-M}?tBN>e$G(B trace $B%"%k%4%j%:%`$r<B9T$9$k(B. |
|
@code{p} $B$,(B 0 $B$^$?$O(B 1 $B$N$H$-(B, $B<+F0E*$KA*$P$l$?AG?t$rMQ$$$F(B, $B@.8y$9$k(B |
|
$B$^$G(B trace $B%"%k%4%j%:%`$r<B9T$9$k(B. |
|
@code{p} $B$,(B 2 $B0J>e$N$H$-(B, trace $B$O(BGF(p) $B>e$G7W;;$5$l$k(B. trace $B%"%k%4%j%:%`(B |
|
$B$,<:GT$7$?>l9g(B 0 $B$,JV$5$l$k(B. @code{p} $B$,Ii$N>l9g(B, $B%0%l%V%J4pDl%A%'%C%/$O(B |
|
$B9T$o$J$$(B. $B$3$N>l9g(B, @code{p} $B$,(B -1 $B$J$i$P<+F0E*$KA*$P$l$?AG?t$,(B, |
|
$B$=$l0J30$O;XDj$5$l$?AG?t$rMQ$$$F%0%l%V%J4pDl8uJd$N7W;;$,9T$o$l$k(B. |
|
@item |
|
@code{nd_f4} $B$O(B, $BM-8BBN>e$N(B F4 $B%"%k%4%j%:%`$r<B9T$9$k(B. |
|
@item |
|
@code{nd_weyl_gr}, @code{nd_weyl_gr_trace} $B$O(B Weyl $BBe?tMQ$G$"$k(B. |
|
@item |
|
$B$$$:$l$N4X?t$b(B, $BM-M}4X?tBN>e$N7W;;$OL$BP1~$G$"$k(B. |
|
@item |
|
$B0lHL$K(B @code{dp_gr_main}, @code{dp_gr_mod_main} $B$h$j9bB.$G$"$k$,(B, |
|
$BFC$KM-8BBN>e$N>l9g82Cx$G$"$k(B. |
|
@end itemize |
|
\E |
|
|
|
\BEG |
|
@itemize @bullet |
|
@item |
|
These functions are new implementations for computing Groebner bases. |
|
@item @code{nd_gr} executes Buchberger algorithm over the rationals |
|
if @code{p} is 0, and that over GF(p) if @code{p} is a prime. |
|
@item @code{nd_gr_trace} executes the trace algorithm over the rationals. |
|
If @code{p} is 0 or 1, the trace algorithm is executed until it succeeds |
|
by using automatically chosen primes. |
|
If @code{p} a positive prime, |
|
the trace is comuted over GF(p). |
|
If the trace algorithm fails 0 is returned. |
|
If @code{p} is negative, |
|
the Groebner basis check and ideal-membership check are omitted. |
|
In this case, an automatically chosen prime if @code{p} is 1, |
|
otherwise the specified prime is used to compute a Groebner basis |
|
candidate. |
|
@item |
|
@code{nd_f4} executes F4 algorithm over a finite field. |
|
@item |
|
@code{nd_weyl_gr}, @code{nd_weyl_gr_trace} are for Weyl algebra computation. |
|
@item |
|
Each function cannot handle rational function coefficient cases. |
|
@item |
|
In general these functions are more efficient than |
|
@code{dp_gr_main}, @code{dp_gr_mod_main}, especially over finite fields. |
|
@end itemize |
|
\E |
|
|
|
@example |
|
[38] load("cyclic")$ |
|
[49] C=cyclic(7)$ |
|
[50] V=vars(C)$ |
|
[51] cputime(1)$ |
|
[52] dp_gr_mod_main(C,V,0,31991,0)$ |
|
26.06sec + gc : 0.313sec(26.4sec) |
|
[53] nd_gr(C,V,31991,0)$ |
|
ndv_alloc=1477188 |
|
5.737sec + gc : 0.1837sec(5.921sec) |
|
[54] dp_f4_mod_main(C,V,31991,0)$ |
|
3.51sec + gc : 0.7109sec(4.221sec) |
|
[55] nd_f4(C,V,31991,0)$ |
|
1.906sec + gc : 0.126sec(2.032sec) |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{dp_ord}, |
|
@fref{dp_gr_flags dp_gr_print}, |
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
\EG @fref{Controlling Groebner basis computations} |
\EG @fref{Controlling Groebner basis computations} |
@end table |
@end table |