[BACK]Return to groebner.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts

Diff for /OpenXM/src/asir-doc/parts/groebner.texi between version 1.11 and 1.15

version 1.11, 2003/04/28 06:43:10 version 1.15, 2004/09/14 02:28:20
Line 1 
Line 1 
 @comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.10 2003/04/28 03:09:23 noro Exp $  @comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.14 2004/09/14 01:32:34 noro Exp $
 \BJP  \BJP
 @node グレブナ基底の計算,,, Top  @node グレブナ基底の計算,,, Top
 @chapter グレブナ基底の計算  @chapter グレブナ基底の計算
Line 15 
Line 15 
 * 基本的な函数::  * 基本的な函数::
 * 計算および表��┐寮��::  * 計算および表��┐寮��::
 * 項順序の設定::  * 項順序の設定::
   * Weight::
 * 有理��阿魴舷瑤箸垢襯哀譽屮粉霙豬彁�::  * 有理��阿魴舷瑤箸垢襯哀譽屮粉霙豬彁�::
 * 基底変換::  * 基底変換::
 * Weyl 代数::  * Weyl 代数::
Line 26 
Line 27 
 * Fundamental functions::  * Fundamental functions::
 * Controlling Groebner basis computations::  * Controlling Groebner basis computations::
 * Setting term orderings::  * Setting term orderings::
   * Weight::
 * Groebner basis computation with rational function coefficients::  * Groebner basis computation with rational function coefficients::
 * Change of ordering::  * Change of ordering::
 * Weyl algebra::  * Weyl algebra::
Line 1055  beforehand, and some heuristic trial may be inevitable
Line 1057  beforehand, and some heuristic trial may be inevitable
 \E  \E
   
 \BJP  \BJP
   @node Weight ,,, グレブナ基底の計算
   @section Weight
   \E
   \BEG
   @node Weight,,, Groebner basis computation
   @section Weight
   \E
   \BJP
   前節で��匆陲靴森狃臀��, 各変数に weight (重み) を設定することで
   より一般的なものとなる.
   \E
   \BEG
   Term orderings introduced in the previous section can be generalized
   by setting a weight for each variable.
   \E
   @example
   [0] dp_td(<<1,1,1>>);
   3
   [1] dp_set_weight([1,2,3])$
   [2] dp_td(<<1,1,1>>);
   6
   @end example
   \BJP
   単項��阿料侃踉察数を計算する際, デフォルトでは
   各変数の指数の和を全��/瑤箸垢�. これは各変数の weight を 1 と
   考えていることに相当する. この例では, 第一, 第二, 第三変数の
   weight をそれう苳擦� 1,2,3 と指定している. このため, @code{<<1,1,1>>}
   の全��/� (以王踉擦任呂海譴鮹厩爨踉三の weight と呼ぶ) が @code{1*1+1*2+1*3=6} となる.
   weight を設定することで, 同じ項順序型のもとで異なる項順序が定義できる.
   例えば, weight をう瘢雹まく設定することで, 多項��阿� weighted homogeneous
   にすることができる��豺腓����る.
   \E
   \BEG
   By default, the total degree of a monomial is equal to
   the sum of all exponents. This means that the weight for each variable
   is set to 1.
   In this example, the weights for the first, the second and the third
   variable are set to 1, 2 and 3 respectively.
   Therefore the total degree of @code{<<1,1,1>>} under this weight,
   which is called the weight of the monomial, is @code{1*1+1*2+1*3=6}.
   By setting weights, different term orderings can be set under a type of
   term ordeing. In some case a polynomial can
   be made weighted homogeneous by setting an appropriate weight.
   \E
   
   \BJP
   各変数に対する weight をまとめたものを weight vector と呼ぶ.
   すべての成分が正でう髟阡擦�, グレブナ基底計算において, 全��/瑤�
   代わりに用いられるものを特に sugar weight と呼ぶことにする.
   sugar strategy において, 全��/瑤梁紊錣蠅忙箸錣譴襪�蕕任���る.
   一方で, 各成分が必ずしも正とは限らない weight vector は,
   sugar weight として設定することはできないが, 項順序の一般化には
   有用でう髟阡擦�. これらは, 行列による項順序の設定にすでに現れて
   いる. すなわち, 項順序を定義する行列の各行が, 一つの weight vector
   と見なされる. また, ブロック順序は, 各ブロックの
   変数に対応する成分のみ 1 で側苳擦� 0 の weight vector による比較を
   最初に行ってから, 各ブロック毎の tie breaking を行う瘢雹ことに相当する.
   \E
   
   \BEG
   A list of weights for all variables is called a weight vector.
   A weight vector is called a sugar weight vector if
   its elements are all positive and it is used for computing
   a weighted total degree of a monomial, because such a weight
   is used instead of total degree in sugar strategy.
   On the other hand, a weight vector whose elements are not necessarily
   positive cannot be set as a sugar weight, but it is useful for
   generalizing term order. In fact, such a weight vector already
   appeared in a matrix order. That is, each row of a matrix defining
   a term order is regarded as a weight vector. A block order
   is also considered as a refinement of comparison by weight vectors.
   It compares two terms by using a weight vector whose elements
   corresponding to variables in a block is 1 and 0 otherwise,
   then it applies a tie breaker.
   \E
   
   \BJP
   weight vector の設定は @code{dp_set_weight()} で行う瘢雹ことができる
   が, 項順序を指定する際の側苳擦離僖薀瓮� (項順序型, 変数順序) と
   まとめて設定できることが胞苳擦泙靴�. このため, ��,里茲�逅擦雰舛任�
   項順序が指定できる.
   \E
   \BEG
   A weight vector can be set by using @code{dp_set_weight()}.
   However it is more preferable if a weight vector can be set
   together with other parapmeters such as a type of term ordering
   and a variable order. This is realized as follows.
   \E
   
   @example
   [64] B=[x+y+z-6,x*y+y*z+z*x-11,x*y*z-6]$
   [65] dp_gr_main(B|v=[x,y,z],sugarweight=[3,2,1],order=0);
   [z^3-6*z^2+11*z-6,x+y+z-6,-y^2+(-z+6)*y-z^2+6*z-11]
   [66] dp_gr_main(B|v=[y,z,x],order=[[1,1,0],[0,1,0],[0,0,1]]);
   [x^3-6*x^2+11*x-6,x+y+z-6,-x^2+(-y+6)*x-y^2+6*y-11]
   [67] dp_gr_main(B|v=[y,z,x],order=[[x,1,y,2,z,3]]);
   [x+y+z-6,x^3-6*x^2+11*x-6,-x^2+(-y+6)*x-y^2+6*y-11]
   @end example
   
   \BJP
   いずれの例においても, 項順序は option として指定されている.
   最初の例では @code{v} により変数順序を, @code{sugarweight} により
   sugar weight vector を, @code{order}により項順序型を指定している.
   二つ目の例における @code{order} の指定は matrix order と同様でう髟阡擦�.
   すなわち, 指定された weight vector を左から順に使って weight の比較
   を行う瘢雹. 三つ目の例も同様でう髟阡擦襪�, ここでは weight vector の要素を
   変数毎に指定している. 指定がないものは 0 となる. 三つ目の例では,
   @code{order} による指定では項順序が決定しない. この��豺腓砲�,
   tie breaker として全��/�妣踉鮫書��綾臀��踉捌動的に設定される.
   この指定方法は, @code{dp_gr_main}, @code{dp_gr_mod_main} など
   の組み込み関数でのみ可能でう髟阡擦�, @code{gr} などのユ・踉札仰蟲全愎�
   では未対応でう髟阡擦�.
   \E
   \BEG
   In each example, a term ordering is specified as options.
   In the first example, a variable order, a sugar weight vector
   and a type of term ordering are specified by options @code{v},
   @code{sugarweight} and @code{order} respectively.
   In the second example, an option @code{order} is used
   to set a matrix ordering. That is, the specified weight vectors
   are used from left to right for comparing terms.
   The third example shows a variant of specifying a weight vector,
   where each component of a weight vector is specified variable by variable,
   and unspecified components are set to zero. In this example,
   a term order is not determined only by the specified weight vector.
   In such a case a tie breaker by the graded reverse lexicographic ordering
   is set automatically.
   This type of a term ordering specification can be applied only to builtin
   functions such as @code{dp_gr_main()}, @code{dp_gr_mod_main()}, not to
   user defined functions such as @code{gr()}.
   \E
   
   \BJP
 @node 有理��阿魴舷瑤箸垢襯哀譽屮粉霙豬彁�,,, グレブナ基底の計算  @node 有理��阿魴舷瑤箸垢襯哀譽屮粉霙豬彁�,,, グレブナ基底の計算
 @section 有理��阿魴舷瑤箸垢襯哀譽屮粉霙豬彁�  @section 有理��阿魴舷瑤箸垢襯哀譽屮粉霙豬彁�
 \E  \E
Line 1329  Computation of the global b function is implemented as
Line 1464  Computation of the global b function is implemented as
 * tolexm minipolym::  * tolexm minipolym::
 * dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main::  * dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main::
 * dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main::  * dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main::
   * nd_gr nd_gr_trace nd_f4 nd_weyl_gr nd_weyl_gr_trace::
 * dp_gr_flags dp_gr_print::  * dp_gr_flags dp_gr_print::
 * dp_ord::  * dp_ord::
 * dp_ptod::  * dp_ptod::
Line 1412  strategy による計算, @code{hgr()} は trace
Line 1548  strategy による計算, @code{hgr()} は trace
 @item  @item
 @code{dgr()} で表��┐気譴觧�屬�, この函数が��孫圓気譴討い襯廛蹈札垢任�  @code{dgr()} で表��┐気譴觧�屬�, この函数が��孫圓気譴討い襯廛蹈札垢任�
 CPU 時間でう髟阡擦�, この函数の��豺腓呂曚箸鵑苗命�里燭瓩了�屬任���る.  CPU 時間でう髟阡擦�, この函数の��豺腓呂曚箸鵑苗命�里燭瓩了�屬任���る.
   @item
   多項��哀螢好� @var{plist} の要素が分散表現多項��阿陸苳詞合は
   結果も分散表現多項��阿離螢好箸任���る.
   この��豺�, 引数の分散多項��阿詫燭┐蕕譴申臀�暴��い @code{dp_sort} で
   ソ・踉札箸気譴討�薹彁擦気譴�.
   多項��哀螢好箸陵彖任��局集渋森爨踉三の��豺腓�
   変数の数分の不定元のリストを @var{vlist} 引数として与えないといけない
   (ダミ・踉�).
 \E  \E
 \BEG  \BEG
 @item  @item
Line 1440  Therefore this function is useful to reduce the actual
Line 1584  Therefore this function is useful to reduce the actual
 The CPU time shown after an exection of @code{dgr()} indicates  The CPU time shown after an exection of @code{dgr()} indicates
 that of the master process, and most of the time corresponds to the time  that of the master process, and most of the time corresponds to the time
 for communication.  for communication.
   @item
   When the elements of @var{plist} are distributed polynomials,
   the result is also a list of distributed polynomials.
   In this case, firstly  the elements of @var{plist} is sorted by @code{dp_sort}
   and the Grobner basis computation is started.
   Variables must be given in @var{vlist} even in this case
   (these variables are dummy).
 \E  \E
 @end itemize  @end itemize
   
Line 2149  except for lack of the argument for controlling homoge
Line 2300  except for lack of the argument for controlling homoge
 @fref{dp_ord},  @fref{dp_ord},
 @fref{dp_gr_flags dp_gr_print},  @fref{dp_gr_flags dp_gr_print},
 @fref{gr hgr gr_mod},  @fref{gr hgr gr_mod},
   \JP @fref{計算および表��┐寮��}.
   \EG @fref{Controlling Groebner basis computations}
   @end table
   
   \JP @node nd_gr nd_gr_trace nd_f4 nd_weyl_gr nd_weyl_gr_trace,,, グレブナ基底に関する函数
   \EG @node nd_gr nd_gr_trace nd_f4 nd_weyl_gr nd_weyl_gr_trace,,, Functions for Groebner basis computation
   @subsection @code{nd_gr}, @code{nd_gr_trace}, @code{nd_f4}, @code{nd_weyl_gr}, @code{nd_weyl_gr_trace}
   @findex nd_gr
   @findex nd_gr_trace
   @findex nd_f4
   @findex nd_weyl_gr
   @findex nd_weyl_gr_trace
   
   @table @t
   @item nd_gr(@var{plist},@var{vlist},@var{p},@var{order})
   @itemx nd_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order})
   @itemx nd_f4(@var{plist},@var{vlist},@var{modular},@var{order})
   @item nd_weyl_gr(@var{plist},@var{vlist},@var{p},@var{order})
   @itemx nd_weyl_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order})
   \JP :: グレブナ基底の計算 (組み込み函数)
   \EG :: Groebner basis computation (built-in functions)
   @end table
   
   @table @var
   @item return
   \JP リスト
   \EG list
   @item plist  vlist
   \JP リスト
   \EG list
   @item order
   \JP 数, リストまたは行列
   \EG number, list or matrix
   @item homo
   \JP フラグ
   \EG flag
   @item modular
   \JP フラグまたは素数
   \EG flag or prime
   @end table
   
   \BJP
   @itemize @bullet
   @item
   これらの函数は, グレブナ基底計算組み込み関数の新��汰�任���る.
   @item @code{nd_gr} は, @code{p} が 0 のとき有理数体��紊� Buchberger
   ウ髟阡札襯乾螢坤爐鬢踉斬行する. @code{p} が 2 以��紊陸踉捌然数のとき, GF(p) ��紊�
   Buchberger ウ髟阡札襯乾螢坤爐鬢踉斬行する.
   @item @code{nd_gr_trace} は有理数体��紊� trace ウ髟阡札襯乾螢坤爐鬢踉斬行する.
   @code{p} が 0 または 1 のとき, ���暗�冒�个譴秦膿瑤鰺僂い�, 成功する
   まで trace ウ髟阡札襯乾螢坤爐鬢踉斬行する.
   @code{p} が 2 以��紊里箸�, trace はGF(p) ��紊之彁擦気譴�. trace ウ髟阡札襯乾螢坤�
   が��最圓靴職苳詞合 0 が返される. @code{p} が負の��豺�, グレブナ基底チェックは
   行わない. この��豺�, @code{p} が -1 ならば���暗�冒�个譴秦膿瑤�,
   それ以外は指定された素数を用いてグレブナ基底候補の計算が行われる.
   @item
   @code{nd_f4} は, 有限体��紊� F4 ウ髟阡札襯乾螢坤爐鬢踉斬行する.
   @item
   @code{nd_weyl_gr}, @code{nd_weyl_gr_trace} は Weyl 代数用でう髟阡擦�.
   @item
   いずれの関数も, 有理関数体��紊侶彁擦鰐ぢ弍�任���る.
   @item
   一般に @code{dp_gr_main}, @code{dp_gr_mod_main} より高速でう髟阡擦襪�,
   特に有限体��紊陸苳詞合顕著でう髟阡擦�.
   @end itemize
   \E
   
   \BEG
   @itemize @bullet
   @item
   These functions are new implementations for computing Groebner bases.
   @item @code{nd_gr} executes Buchberger algorithm over the rationals
   if  @code{p} is 0, and that over GF(p) if @code{p} is a prime.
   @item @code{nd_gr_trace} executes the trace algorithm over the rationals.
   If @code{p} is 0 or 1, the trace algorithm is executed until it succeeds
   by using automatically chosen primes.
   If @code{p} a positive prime,
   the trace is comuted over GF(p).
   If the trace algorithm fails 0 is returned.
   If @code{p} is negative,
   the Groebner basis check and ideal-membership check are omitted.
   In this case, an automatically chosen prime if @code{p} is 1,
   otherwise the specified prime is used to compute a Groebner basis
   candidate.
   @item
   @code{nd_f4} executes F4 algorithm over a finite field.
   @item
   @code{nd_weyl_gr}, @code{nd_weyl_gr_trace} are for Weyl algebra computation.
   @item
   Each function cannot handle rational function coefficient cases.
   @item
   In general these functions are more efficient than
   @code{dp_gr_main}, @code{dp_gr_mod_main}, especially over finite fields.
   @end itemize
   \E
   
   @example
   [38] load("cyclic")$
   [49] C=cyclic(7)$
   [50] V=vars(C)$
   [51] cputime(1)$
   [52] dp_gr_mod_main(C,V,0,31991,0)$
   26.06sec + gc : 0.313sec(26.4sec)
   [53] nd_gr(C,V,31991,0)$
   ndv_alloc=1477188
   5.737sec + gc : 0.1837sec(5.921sec)
   [54] dp_f4_mod_main(C,V,31991,0)$
   3.51sec + gc : 0.7109sec(4.221sec)
   [55] nd_f4(C,V,31991,0)$
   1.906sec + gc : 0.126sec(2.032sec)
   @end example
   
   @table @t
   \JP @item 参���
   \EG @item References
   @fref{dp_ord},
   @fref{dp_gr_flags dp_gr_print},
 \JP @fref{計算および表��┐寮��}.  \JP @fref{計算および表��┐寮��}.
 \EG @fref{Controlling Groebner basis computations}  \EG @fref{Controlling Groebner basis computations}
 @end table  @end table

Legend:
Removed from v.1.11  
changed lines
  Added in v.1.15

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>