version 1.9, 2003/04/24 08:13:24 |
version 1.10, 2003/04/28 03:09:23 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.8 2003/04/21 08:30:01 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.9 2003/04/24 08:13:24 noro Exp $ |
\BJP |
\BJP |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
Line 1354 Computation of the global b function is implemented as |
|
Line 1354 Computation of the global b function is implemented as |
|
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* primadec primedec:: |
* primadec primedec:: |
* primedec_mod:: |
* primedec_mod:: |
* bfunction bfct generic_bfct:: |
* bfunction bfct generic_bfct ann ann0:: |
@end menu |
@end menu |
|
|
\JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
Line 3918 execute @code{dp_gr_print(2)} in advance. |
|
Line 3918 execute @code{dp_gr_print(2)} in advance. |
|
@fref{dp_gr_flags dp_gr_print}. |
@fref{dp_gr_flags dp_gr_print}. |
@end table |
@end table |
|
|
\JP @node bfunction bfct generic_bfct,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node bfunction bfct generic_bfct ann ann0,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node bfunction bfct generic_bfct,,, Functions for Groebner basis computation |
\EG @node bfunction bfct generic_bfct ann ann0,,, Functions for Groebner basis computation |
@subsection @code{bfunction}, @code{bfct}, @code{generic_bfct} |
@subsection @code{bfunction}, @code{bfct}, @code{generic_bfct}, @code{ann}, @code{ann0} |
@findex bfunction |
@findex bfunction |
@findex bfct |
@findex bfct |
@findex generic_bfct |
@findex generic_bfct |
|
@findex ann |
|
@findex ann0 |
|
|
@table @t |
@table @t |
@item bfunction(@var{f}) |
@item bfunction(@var{f}) |
@item bfct(@var{f}) |
@itemx bfct(@var{f}) |
@item generic_bfct(@var{plist},@var{vlist},@var{dvlist},@var{weight}) |
@itemx generic_bfct(@var{plist},@var{vlist},@var{dvlist},@var{weight}) |
\JP :: b $B4X?t$N7W;;(B |
\JP :: @var{b} $B4X?t$N7W;;(B |
\EG :: Computes the global b function of a polynomial or an ideal |
\EG :: Computes the global @var{b} function of a polynomial or an ideal |
|
@item ann(@var{f}) |
|
@itemx ann0(@var{f}) |
|
\JP :: $BB?9`<0$N%Y%-$N(B annihilator $B$N7W;;(B |
|
\EG :: Computes the annihilator of a power of polynomial |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
@itemx f |
\JP $BB?9`<0$^$?$O%j%9%H(B |
|
\EG polynomial or list |
|
@item f |
\JP $BB?9`<0(B |
\JP $BB?9`<0(B |
\EG polynomial |
\EG polynomial |
@item plist |
@item plist |
Line 3948 execute @code{dp_gr_print(2)} in advance. |
|
Line 3957 execute @code{dp_gr_print(2)} in advance. |
|
@itemize @bullet |
@itemize @bullet |
\BJP |
\BJP |
@item @samp{bfct} $B$GDj5A$5$l$F$$$k(B. |
@item @samp{bfct} $B$GDj5A$5$l$F$$$k(B. |
@item @code{bfunction(@var{f})}, @code{bfct(@var{f})} $B$OB?9`<0(B @var{f} $B$N(B global b $B4X?t(B @code{b(s)} $B$r(B |
@item @code{bfunction(@var{f})}, @code{bfct(@var{f})} $B$OB?9`<0(B @var{f} $B$N(B global @var{b} $B4X?t(B @code{b(s)} $B$r(B |
$B7W;;$9$k(B. @code{b(s)} $B$O(B, Weyl $BBe?t(B @code{D} $B>e$N0lJQ?tB?9`<04D(B @code{D[s]} |
$B7W;;$9$k(B. @code{b(s)} $B$O(B, Weyl $BBe?t(B @code{D} $B>e$N0lJQ?tB?9`<04D(B @code{D[s]} |
$B$N85(B @code{P(x,s)} $B$,B8:_$7$F(B, @code{P(x,s)f^(s+1)=b(s)f^s} $B$rK~$?$9$h$&$J(B |
$B$N85(B @code{P(x,s)} $B$,B8:_$7$F(B, @code{P(x,s)f^(s+1)=b(s)f^s} $B$rK~$?$9$h$&$J(B |
$BB?9`<0(B @code{b(s)} $B$NCf$G(B, $B<!?t$,:G$bDc$$$b$N$G$"$k(B. |
$BB?9`<0(B @code{b(s)} $B$NCf$G(B, $B<!?t$,:G$bDc$$$b$N$G$"$k(B. |
@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} |
@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} |
$B$O(B, @var{plist} $B$G@8@.$5$l$k(B @code{D} $B$N:8%$%G%"%k(B @code{I} $B$N(B, |
$B$O(B, @var{plist} $B$G@8@.$5$l$k(B @code{D} $B$N:8%$%G%"%k(B @code{I} $B$N(B, |
$B%&%'%$%H(B @var{weight} $B$K4X$9$k(B global b $B4X?t$r7W;;$9$k(B. |
$B%&%'%$%H(B @var{weight} $B$K4X$9$k(B global @var{b} $B4X?t$r7W;;$9$k(B. |
@var{vlist} $B$O(B @code{x}-$BJQ?t(B, @var{vlist} $B$OBP1~$9$k(B @code{D}-$BJQ?t(B |
@var{vlist} $B$O(B @code{x}-$BJQ?t(B, @var{vlist} $B$OBP1~$9$k(B @code{D}-$BJQ?t(B |
$B$r=g$KJB$Y$k(B. |
$B$r=g$KJB$Y$k(B. |
@item @code{bfunction} $B$H(B @code{bfct} $B$G$OMQ$$$F$$$k%"%k%4%j%:%`$,(B |
@item @code{bfunction} $B$H(B @code{bfct} $B$G$OMQ$$$F$$$k%"%k%4%j%:%`$,(B |
$B0[$J$k(B. $B$I$A$i$,9bB.2=$OF~NO$K$h$k(B. |
$B0[$J$k(B. $B$I$A$i$,9bB.2=$OF~NO$K$h$k(B. |
|
@item @code{ann(@var{f})} $B$O(B, @code{@var{f}^s} $B$N(B annihilator ideal |
|
$B$N@8@.7O$rJV$9(B. @code{ann(@var{f})} $B$O(B, @code{[@var{a},@var{list}]} |
|
$B$J$k%j%9%H$rJV$9(B. $B$3$3$G(B, @var{a} $B$O(B @var{f} $B$N(B @var{b} $B4X?t$N:G>.@0?t:,(B, |
|
@var{list} $B$O(B @code{ann(@var{f})} $B$N7k2L$N(B @code{s}$ $B$K(B, @var{a} $B$r(B |
|
$BBeF~$7$?$b$N$G$"$k(B. |
@item $B>\:Y$K$D$$$F$O(B, [Saito,Sturmfels,Takayama] $B$r8+$h(B. |
@item $B>\:Y$K$D$$$F$O(B, [Saito,Sturmfels,Takayama] $B$r8+$h(B. |
\E |
\E |
\BEG |
\BEG |
@item These functions are defined in @samp{bfct}. |
@item These functions are defined in @samp{bfct}. |
@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} compute the global b-function @code{b(s)} of |
@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} compute the global @var{b}-function @code{b(s)} of |
a polynomial @var{f}. |
a polynomial @var{f}. |
@code{b(s)} is a polynomial of the minimal degree |
@code{b(s)} is a polynomial of the minimal degree |
such that there exists @code{P(x,s)} in D[s], which is a polynomial |
such that there exists @code{P(x,s)} in D[s], which is a polynomial |
ring over Weyl algebra @code{D}, and @code{P(x,s)f^(s+1)=b(s)f^s} holds. |
ring over Weyl algebra @code{D}, and @code{P(x,s)f^(s+1)=b(s)f^s} holds. |
@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} |
@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} |
computes the global b-function of a left ideal @code{I} in @code{D} |
computes the global @var{b}-function of a left ideal @code{I} in @code{D} |
generated by @var{plist}, with respect to @var{weight}. |
generated by @var{plist}, with respect to @var{weight}. |
@var{vlist} is the list of @code{x}-variables, |
@var{vlist} is the list of @code{x}-variables, |
@var{vlist} is the list of corresponding @code{D}-variables. |
@var{vlist} is the list of corresponding @code{D}-variables. |
@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} implement |
@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} implement |
different algorithms and the efficiency depends on inputs. |
different algorithms and the efficiency depends on inputs. |
|
@item @code{ann(@var{f})} returns the generator set of the annihilator |
|
ideal of @code{@var{f}^s}. |
|
@code{ann(@var{f})} returns a list @code{[@var{a},@var{list}]}, |
|
where @var{a} is the minimal integral root of the global @var{b}-function |
|
of @var{f}, and @var{list} is a list of polynomials obtained by |
|
substituting @code{s} in @code{ann(@var{f})} with @var{a}. |
@item See [Saito,Sturmfels,Takayama] for the details. |
@item See [Saito,Sturmfels,Takayama] for the details. |
\E |
\E |
@end itemize |
@end itemize |
Line 3990 x*y*dt+5*z^4*dt+dz,-x^4-z*y*x-y^4-z^5+t]$ |
|
Line 4010 x*y*dt+5*z^4*dt+dz,-x^4-z*y*x-y^4-z^5+t]$ |
|
[219] generic_bfct(F,[t,z,y,x],[dt,dz,dy,dx],[1,0,0,0]); |
[219] generic_bfct(F,[t,z,y,x],[dt,dz,dy,dx],[1,0,0,0]); |
20000*s^10-70000*s^9+101750*s^8-79375*s^7+35768*s^6-9277*s^5 |
20000*s^10-70000*s^9+101750*s^8-79375*s^7+35768*s^6-9277*s^5 |
+1278*s^4-72*s^3 |
+1278*s^4-72*s^3 |
|
[220] P=x^3-y^2$ |
|
[221] ann(P); |
|
[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y+6*s] |
|
[222] ann0(P); |
|
[-1,[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y-6]] |
@end example |
@end example |
|
|
@table @t |
@table @t |