version 1.1.1.1, 1999/12/08 05:47:44 |
version 1.9, 2003/04/24 08:13:24 |
|
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.8 2003/04/21 08:30:01 noro Exp $ |
|
\BJP |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
|
\E |
|
\BEG |
|
@node Groebner basis computation,,, Top |
|
@chapter Groebner basis computation |
|
\E |
|
|
@menu |
@menu |
|
\BJP |
* $BJ,;6I=8=B?9`<0(B:: |
* $BJ,;6I=8=B?9`<0(B:: |
* $B%U%!%$%k$NFI$_9~$_(B:: |
* $B%U%!%$%k$NFI$_9~$_(B:: |
* $B4pK\E*$JH!?t(B:: |
* $B4pK\E*$JH!?t(B:: |
|
|
* $B9`=g=x$N@_Dj(B:: |
* $B9`=g=x$N@_Dj(B:: |
* $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B:: |
* $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B:: |
* $B4pDlJQ49(B:: |
* $B4pDlJQ49(B:: |
|
* Weyl $BBe?t(B:: |
* $B%0%l%V%J4pDl$K4X$9$kH!?t(B:: |
* $B%0%l%V%J4pDl$K4X$9$kH!?t(B:: |
|
\E |
|
\BEG |
|
* Distributed polynomial:: |
|
* Reading files:: |
|
* Fundamental functions:: |
|
* Controlling Groebner basis computations:: |
|
* Setting term orderings:: |
|
* Groebner basis computation with rational function coefficients:: |
|
* Change of ordering:: |
|
* Weyl algebra:: |
|
* Functions for Groebner basis computation:: |
|
\E |
@end menu |
@end menu |
|
|
|
\BJP |
@node $BJ,;6I=8=B?9`<0(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $BJ,;6I=8=B?9`<0(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $BJ,;6I=8=B?9`<0(B |
@section $BJ,;6I=8=B?9`<0(B |
|
\E |
|
\BEG |
|
@node Distributed polynomial,,, Groebner basis computation |
|
@section Distributed polynomial |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$BJ,;6I=8=B?9`<0$H$O(B, $BB?9`<0$NFbIt7A<0$N0l$D$G$"$k(B. $BDL>o$NB?9`<0(B |
$BJ,;6I=8=B?9`<0$H$O(B, $BB?9`<0$NFbIt7A<0$N0l$D$G$"$k(B. $BDL>o$NB?9`<0(B |
(@code{type} $B$,(B 2) $B$O(B, $B:F5"I=8=$H8F$P$l$k7A<0$GI=8=$5$l$F$$$k(B. $B$9$J$o(B |
(@code{type} $B$,(B 2) $B$O(B, $B:F5"I=8=$H8F$P$l$k7A<0$GI=8=$5$l$F$$$k(B. $B$9$J$o(B |
$B$A(B, $BFCDj$NJQ?t$r<gJQ?t$H$9$k(B 1 $BJQ?tB?9`<0$G(B, $B$=$NB>$NJQ?t$O(B, $B$=$N(B 1 $BJQ(B |
$B$A(B, $BFCDj$NJQ?t$r<gJQ?t$H$9$k(B 1 $BJQ?tB?9`<0$G(B, $B$=$NB>$NJQ?t$O(B, $B$=$N(B 1 $BJQ(B |
$B?tB?9`<0$N78?t$K(B, $B<gJQ?t$r4^$^$J$$B?9`<0$H$7$F8=$l$k(B. $B$3$N78?t$,(B, $B$^$?(B, |
$B?tB?9`<0$N78?t$K(B, $B<gJQ?t$r4^$^$J$$B?9`<0$H$7$F8=$l$k(B. $B$3$N78?t$,(B, $B$^$?(B, |
$B$"$kJQ?t$r<gJQ?t$H$9$kB?9`<0$H$J$C$F$$$k$3$H$+$i:F5"I=8=$H8F$P$l$k(B. |
$B$"$kJQ?t$r<gJQ?t$H$9$kB?9`<0$H$J$C$F$$$k$3$H$+$i:F5"I=8=$H8F$P$l$k(B. |
|
\E |
|
\BEG |
|
A distributed polynomial is a polynomial with a special internal |
|
representation different from the ordinary one. |
|
|
|
An ordinary polynomial (having @code{type} 2) is internally represented |
|
in a format, called recursive representation. |
|
In fact, it is represented as an uni-variate polynomial with respect to |
|
a fixed variable, called main variable of that polynomial, |
|
where the other variables appear in the coefficients which may again |
|
polynomials in such variables other than the previous main variable. |
|
A polynomial in the coefficients is again represented as |
|
an uni-variate polynomial in a certain fixed variable, |
|
the main variable. Thus, by this recursive structure of polynomial |
|
representation, it is called the `recursive representation.' |
|
\E |
|
|
|
|
@iftex |
@iftex |
@tex |
@tex |
$(x+y+z)^2 = 1 \cdot x^2 + (2 \cdot y + (2 \cdot z)) \cdot x + ((2 \cdot z) \cdot y + (1 \cdot z^2 ))$ |
\JP $(x+y+z)^2 = 1 \cdot x^2 + (2 \cdot y + (2 \cdot z)) \cdot x + ((2 \cdot z) \cdot y + (1 \cdot z^2 ))$ |
|
\EG $(x+y+z)^2 = 1 \cdot x^2 + (2 \cdot y + (2 \cdot z)) \cdot x + ((2 \cdot z) \cdot y + (1 \cdot z^2 ))$ |
@end tex |
@end tex |
@end iftex |
@end iftex |
@ifinfo |
@ifinfo |
Line 35 $(x+y+z)^2 = 1 \cdot x^2 + (2 \cdot y + (2 \cdot z)) \ |
|
Line 79 $(x+y+z)^2 = 1 \cdot x^2 + (2 \cdot y + (2 \cdot z)) \ |
|
@end ifinfo |
@end ifinfo |
|
|
@noindent |
@noindent |
|
\BJP |
$B$3$l$KBP$7(B, $BB?9`<0$r(B, $BJQ?t$NQQ@Q$H78?t$N@Q$NOB$H$7$FI=8=$7$?$b$N$rJ,;6(B |
$B$3$l$KBP$7(B, $BB?9`<0$r(B, $BJQ?t$NQQ@Q$H78?t$N@Q$NOB$H$7$FI=8=$7$?$b$N$rJ,;6(B |
$BI=8=$H8F$V(B. |
$BI=8=$H8F$V(B. |
|
\E |
|
\BEG |
|
On the other hand, |
|
we call a representation the distributed representation of a polynomial, |
|
if a polynomial is represented, according to its original meaning, |
|
as a sum of monomials, |
|
where a monomial is the product of power product of variables |
|
and a coefficient. We call a polynomial, represented in such an |
|
internal format, a distributed polynomial. (This naming may sounds |
|
something strange.) |
|
\E |
|
|
@iftex |
@iftex |
@tex |
@tex |
$(x+y+z)^2 = 1 \cdot x^2 + 2 \cdot xy + 2 \cdot xz + 1 \cdot y^2 + 2 \cdot yz +1 \cdot z^2$ |
\JP $(x+y+z)^2 = 1 \cdot x^2 + 2 \cdot xy + 2 \cdot xz + 1 \cdot y^2 + 2 \cdot yz +1 \cdot z^2$ |
|
\EG $(x+y+z)^2 = 1 \cdot x^2 + 2 \cdot xy + 2 \cdot xz + 1 \cdot y^2 + 2 \cdot yz +1 \cdot z^2$ |
@end tex |
@end tex |
@end iftex |
@end iftex |
@ifinfo |
@ifinfo |
Line 50 $(x+y+z)^2 = 1 \cdot x^2 + 2 \cdot xy + 2 \cdot xz + 1 |
|
Line 107 $(x+y+z)^2 = 1 \cdot x^2 + 2 \cdot xy + 2 \cdot xz + 1 |
|
@end ifinfo |
@end ifinfo |
|
|
@noindent |
@noindent |
|
\BJP |
$B%0%l%V%J4pDl7W;;$K$*$$$F$O(B, $BC19`<0$KCmL\$7$FA`:n$r9T$&$?$aB?9`<0$,J,;6I=8=(B |
$B%0%l%V%J4pDl7W;;$K$*$$$F$O(B, $BC19`<0$KCmL\$7$FA`:n$r9T$&$?$aB?9`<0$,J,;6I=8=(B |
$B$5$l$F$$$kJ}$,$h$j8zN($N$h$$1i;;$,2DG=$K$J$k(B. $B$3$N$?$a(B, $BJ,;6I=8=B?9`<0$,(B, |
$B$5$l$F$$$kJ}$,$h$j8zN($N$h$$1i;;$,2DG=$K$J$k(B. $B$3$N$?$a(B, $BJ,;6I=8=B?9`<0$,(B, |
$B<1JL;R(B 9 $B$N7?$H$7$F(B @b{Asir} $B$N%H%C%W%l%Y%k$+$iMxMQ2DG=$H$J$C$F$$$k(B. |
$B<1JL;R(B 9 $B$N7?$H$7$F(B @b{Asir} $B$N%H%C%W%l%Y%k$+$iMxMQ2DG=$H$J$C$F$$$k(B. |
$B$3$3$G(B, $B8e$N@bL@$N$?$a$K(B, $B$$$/$D$+$N8@MU$rDj5A$7$F$*$/(B. |
$B$3$3$G(B, $B8e$N@bL@$N$?$a$K(B, $B$$$/$D$+$N8@MU$rDj5A$7$F$*$/(B. |
|
\E |
|
\BEG |
|
For computation of Groebner basis, efficient operation is expected if |
|
polynomials are represented in a distributed representation, |
|
because major operations for Groebner basis are performed with respect |
|
to monomials. |
|
From this view point, we provide the object type distributed polynomial |
|
with its object identification number 9, and objects having such a type |
|
are available by @b{Asir} language. |
|
|
|
Here, we provide several definitions for the later description. |
|
\E |
|
|
@table @b |
@table @b |
|
\BJP |
@item $B9`(B (term) |
@item $B9`(B (term) |
$BJQ?t$NQQ@Q(B. $B$9$J$o$A(B, $B78?t(B 1 $B$NC19`<0$N$3$H(B. @b{Asir} $B$K$*$$$F$O(B, |
$BJQ?t$NQQ@Q(B. $B$9$J$o$A(B, $B78?t(B 1 $B$NC19`<0$N$3$H(B. @b{Asir} $B$K$*$$$F$O(B, |
|
\E |
|
\BEG |
|
@item term |
|
The power product of variables, i.e., a monomial with coefficient 1. |
|
In an @b{Asir} session, it is displayed in the form like |
|
\E |
|
|
@example |
@example |
<<0,1,2,3,4>> |
<<0,1,2,3,4>> |
@end example |
@end example |
|
|
|
\BJP |
$B$H$$$&7A$GI=<($5$l(B, $B$^$?(B, $B$3$N7A$GF~NO2DG=$G$"$k(B. $B$3$NNc$O(B, 5 $BJQ?t$N9`(B |
$B$H$$$&7A$GI=<($5$l(B, $B$^$?(B, $B$3$N7A$GF~NO2DG=$G$"$k(B. $B$3$NNc$O(B, 5 $BJQ?t$N9`(B |
$B$r<($9(B. $B3FJQ?t$r(B @code{a}, @code{b}, @code{c}, @code{d}, @code{e} $B$H$9$k$H(B |
$B$r<($9(B. $B3FJQ?t$r(B @code{a}, @code{b}, @code{c}, @code{d}, @code{e} $B$H$9$k$H(B |
$B$3$N9`$O(B @code{b*c^2*d^3*e^4} $B$rI=$9(B. |
$B$3$N9`$O(B @code{b*c^2*d^3*e^4} $B$rI=$9(B. |
|
\E |
|
\BEG |
|
and also can be input in such a form. |
|
This example shows a term in 5 variables. If we assume the 5 variables |
|
as @code{a}, @code{b}, @code{c}, @code{d}, and @code{e}, |
|
the term represents @code{b*c^2*d^3*e^4} in the ordinary expression. |
|
\E |
|
|
|
\BJP |
@item $B9`=g=x(B (term order) |
@item $B9`=g=x(B (term order) |
$BJ,;6I=8=B?9`<0$K$*$1$k9`$O(B, $B<!$N@-<A$rK~$?$9A4=g=x$K$h$j@0Ns$5$l$k(B. |
$BJ,;6I=8=B?9`<0$K$*$1$k9`$O(B, $B<!$N@-<A$rK~$?$9A4=g=x$K$h$j@0Ns$5$l$k(B. |
|
\E |
|
\BEG |
|
@item term order |
|
Terms are ordered according to a total order with the following properties. |
|
\E |
|
|
@enumerate |
@enumerate |
@item |
@item |
$BG$0U$N9`(B @code{t} $B$KBP$7(B @code{t} > 1 |
\JP $BG$0U$N9`(B @code{t} $B$KBP$7(B @code{t} > 1 |
|
\EG For all @code{t} @code{t} > 1. |
|
|
@item |
@item |
@code{t}, @code{s}, @code{u} $B$r9`$H$9$k;~(B, @code{t} > @code{s} $B$J$i$P(B |
\JP @code{t}, @code{s}, @code{u} $B$r9`$H$9$k;~(B, @code{t} > @code{s} $B$J$i$P(B @code{tu} > @code{su} |
@code{tu} > @code{su} |
\EG For all @code{t}, @code{s}, @code{u} @code{t} > @code{s} implies @code{tu} > @code{su}. |
@end enumerate |
@end enumerate |
|
|
|
\BJP |
$B$3$N@-<A$rK~$?$9A4=g=x$r9`=g=x$H8F$V(B. $B$3$N=g=x$OJQ?t=g=x(B ($BJQ?t$N%j%9%H(B) |
$B$3$N@-<A$rK~$?$9A4=g=x$r9`=g=x$H8F$V(B. $B$3$N=g=x$OJQ?t=g=x(B ($BJQ?t$N%j%9%H(B) |
$B$H9`=g=x7?(B ($B?t(B, $B%j%9%H$^$?$O9TNs(B) $B$K$h$j;XDj$5$l$k(B. |
$B$H9`=g=x7?(B ($B?t(B, $B%j%9%H$^$?$O9TNs(B) $B$K$h$j;XDj$5$l$k(B. |
|
\E |
|
\BEG |
|
Such a total order is called a term ordering. A term ordering is specified |
|
by a variable ordering (a list of variables) and a type of term ordering |
|
(an integer, a list or a matrix). |
|
\E |
|
|
|
\BJP |
@item $BC19`<0(B (monomial) |
@item $BC19`<0(B (monomial) |
$B9`$H78?t$N@Q(B. |
$B9`$H78?t$N@Q(B. |
|
\E |
|
\BEG |
|
@item monomial |
|
The product of a term and a coefficient. |
|
In an @b{Asir} session, it is displayed in the form like |
|
\E |
|
|
@example |
@example |
2*<<0,1,2,3,4>> |
2*<<0,1,2,3,4>> |
@end example |
@end example |
|
|
$B$H$$$&7A$GI=<($5$l(B, $B$^$?(B, $B$3$N7A$GF~NO2DG=$G$"$k(B. |
\JP $B$H$$$&7A$GI=<($5$l(B, $B$^$?(B, $B$3$N7A$GF~NO2DG=$G$"$k(B. |
|
\EG and also can be input in such a form. |
|
|
|
\BJP |
@itemx $BF,C19`<0(B (head monomial) |
@itemx $BF,C19`<0(B (head monomial) |
@item $BF,9`(B (head term) |
@item $BF,9`(B (head term) |
@itemx $BF,78?t(B (head coefficient) |
@itemx $BF,78?t(B (head coefficient) |
$BJ,;6I=8=B?9`<0$K$*$1$k3FC19`<0$O(B, $B9`=g=x$K$h$j@0Ns$5$l$k(B. $B$3$N;~=g(B |
$BJ,;6I=8=B?9`<0$K$*$1$k3FC19`<0$O(B, $B9`=g=x$K$h$j@0Ns$5$l$k(B. $B$3$N;~=g(B |
$B=x:GBg$NC19`<0$rF,C19`<0(B, $B$=$l$K8=$l$k9`(B, $B78?t$r$=$l$>$lF,9`(B, $BF,78?t(B |
$B=x:GBg$NC19`<0$rF,C19`<0(B, $B$=$l$K8=$l$k9`(B, $B78?t$r$=$l$>$lF,9`(B, $BF,78?t(B |
$B$H8F$V(B. |
$B$H8F$V(B. |
|
\E |
|
\BEG |
|
@itemx head monomial |
|
@item head term |
|
@itemx head coefficient |
|
|
|
Monomials in a distributed polynomial is sorted by a total order. |
|
In such representation, we call the monomial that is maximum |
|
with respect to the order the head monomial, and its term and coefficient |
|
the head term and the head coefficient respectively. |
|
\E |
@end table |
@end table |
|
|
|
\BJP |
@node $B%U%!%$%k$NFI$_9~$_(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $B%U%!%$%k$NFI$_9~$_(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $B%U%!%$%k$NFI$_9~$_(B |
@section $B%U%!%$%k$NFI$_9~$_(B |
|
\E |
|
\BEG |
|
@node Reading files,,, Groebner basis computation |
|
@section Reading files |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$B%0%l%V%J4pDl$r7W;;$9$k$?$a$N4pK\E*$JH!?t$O(B @code{dp_gr_main()} $B$*$h$S(B |
$B%0%l%V%J4pDl$r7W;;$9$k$?$a$N4pK\E*$JH!?t$O(B @code{dp_gr_main()} $B$*$h$S(B |
@code{dp_gr_mod_main()} $B$J$k(B 2 $B$D$NAH$_9~$_H!?t$G$"$k$,(B, $BDL>o$O(B, $B%Q%i%a%?(B |
@code{dp_gr_mod_main()}, @code{dp_gr_f_main()} |
|
$B$J$k(B 3 $B$D$NAH$_9~$_H!?t$G$"$k$,(B, $BDL>o$O(B, $B%Q%i%a%?(B |
$B@_Dj$J$I$r9T$C$?$N$A$3$l$i$r8F$S=P$9%f!<%6H!?t$rMQ$$$k$N$,JXMx$G$"$k(B. |
$B@_Dj$J$I$r9T$C$?$N$A$3$l$i$r8F$S=P$9%f!<%6H!?t$rMQ$$$k$N$,JXMx$G$"$k(B. |
$B$3$l$i$N%f!<%6H!?t$O(B, $B%U%!%$%k(B @samp{gr} $B$r(B @code{load()} $B$K$h$jFI(B |
$B$3$l$i$N%f!<%6H!?t$O(B, $B%U%!%$%k(B @samp{gr} $B$r(B @code{load()} $B$K$h$jFI(B |
$B$_9~$`$3$H$K$h$j;HMQ2DG=$H$J$k(B. @samp{gr} $B$O(B, @b{Asir} $B$NI8=`(B |
$B$_9~$`$3$H$K$h$j;HMQ2DG=$H$J$k(B. @samp{gr} $B$O(B, @b{Asir} $B$NI8=`(B |
$B%i%$%V%i%j%G%#%l%/%H%j$KCV$+$l$F$$$k(B. $B$h$C$F(B, $B4D6-JQ?t(B @code{ASIR_LIBDIR} |
$B%i%$%V%i%j%G%#%l%/%H%j$KCV$+$l$F$$$k(B. |
$B$rFC$K0[$J$k%Q%9$K@_Dj$7$J$$8B$j(B, $B%U%!%$%kL>$N$_$GFI$_9~$`$3$H$,$G$-$k(B. |
\E |
|
\BEG |
|
Facilities for computing Groebner bases are |
|
@code{dp_gr_main()}, @code{dp_gr_mod_main()}and @code{dp_gr_f_main()}. |
|
To call these functions, |
|
it is necessary to set several parameters correctly and it is convenient |
|
to use a set of interface functions provided in the library file |
|
@samp{gr}. |
|
The facilities will be ready to use after you load the package by |
|
@code{load()}. The package @samp{gr} is placed in the standard library |
|
directory of @b{Asir}. |
|
\E |
|
|
@example |
@example |
[0] load("gr")$ |
[0] load("gr")$ |
@end example |
@end example |
|
|
|
\BJP |
@node $B4pK\E*$JH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $B4pK\E*$JH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $B4pK\E*$JH!?t(B |
@section $B4pK\E*$JH!?t(B |
|
\E |
|
\BEG |
|
@node Fundamental functions,,, Groebner basis computation |
|
@section Fundamental functions |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
@samp{gr} $B$G$O?tB?$/$NH!?t$,Dj5A$5$l$F$$$k$,(B, $BD>@\(B |
@samp{gr} $B$G$O?tB?$/$NH!?t$,Dj5A$5$l$F$$$k$,(B, $BD>@\(B |
$B%0%l%V%J4pDl$r7W;;$9$k$?$a$N%H%C%W%l%Y%k$O<!$N(B 3 $B$D$G$"$k(B. |
$B%0%l%V%J4pDl$r7W;;$9$k$?$a$N%H%C%W%l%Y%k$O<!$N(B 3 $B$D$G$"$k(B. |
$B0J2<$G(B, @var{plist} $B$OB?9`<0$N%j%9%H(B, @var{vlist} $B$OJQ?t(B ($BITDj85(B) $B$N%j%9%H(B, |
$B0J2<$G(B, @var{plist} $B$OB?9`<0$N%j%9%H(B, @var{vlist} $B$OJQ?t(B ($BITDj85(B) $B$N%j%9%H(B, |
@var{order} $B$OJQ?t=g=x7?(B, @var{p} $B$O(B @code{2^27} $BL$K~$NAG?t$G$"$k(B. |
@var{order} $B$OJQ?t=g=x7?(B, @var{p} $B$O(B @code{2^27} $BL$K~$NAG?t$G$"$k(B. |
|
\E |
|
\BEG |
|
There are many functions and options defined in the package @samp{gr}. |
|
Usually not so many of them are used. Top level functions for Groebner |
|
basis computation are the following three functions. |
|
|
|
In the following description, @var{plist}, @var{vlist}, @var{order} |
|
and @var{p} stand for a list of polynomials, a list of variables |
|
(indeterminates), a type of term ordering and a prime less than |
|
@code{2^27} respectively. |
|
\E |
|
|
@table @code |
@table @code |
@item gr(@var{plist},@var{vlist},@var{order}) |
@item gr(@var{plist},@var{vlist},@var{order}) |
|
|
|
\BJP |
Gebauer-Moeller $B$K$h$k(B useless pair elimination criteria, sugar |
Gebauer-Moeller $B$K$h$k(B useless pair elimination criteria, sugar |
strategy $B$*$h$S(B Traverso $B$K$h$k(B trace-lifting $B$rMQ$$$?(B Buchberger $B%"%k(B |
strategy $B$*$h$S(B Traverso $B$K$h$k(B trace-lifting $B$rMQ$$$?(B Buchberger $B%"%k(B |
$B%4%j%:%`$K$h$kM-M}?t78?t%0%l%V%J4pDl7W;;H!?t(B. $B0lHL$K$O$3$NH!?t$rMQ$$$k(B. |
$B%4%j%:%`$K$h$kM-M}?t78?t%0%l%V%J4pDl7W;;H!?t(B. $B0lHL$K$O$3$NH!?t$rMQ$$$k(B. |
|
\E |
|
\BEG |
|
Function that computes Groebner bases over the rationals. The |
|
algorithm is Buchberger algorithm with useless pair elimination |
|
criteria by Gebauer-Moeller, sugar strategy and trace-lifting by |
|
Traverso. For ordinary computation, this function is used. |
|
\E |
|
|
@item hgr(@var{plist},@var{vlist},@var{order}) |
@item hgr(@var{plist},@var{vlist},@var{order}) |
|
|
|
\BJP |
$BF~NOB?9`<0$r@F<!2=$7$?8e(B @code{gr()} $B$N%0%l%V%J4pDl8uJd@8@.It$K$h$j8u(B |
$BF~NOB?9`<0$r@F<!2=$7$?8e(B @code{gr()} $B$N%0%l%V%J4pDl8uJd@8@.It$K$h$j8u(B |
$BJd@8@.$7(B, $BHs@F<!2=(B, interreduce $B$7$?$b$N$r(B @code{gr()} $B$N%0%l%V%J4pDl(B |
$BJd@8@.$7(B, $BHs@F<!2=(B, interreduce $B$7$?$b$N$r(B @code{gr()} $B$N%0%l%V%J4pDl(B |
$B%A%'%C%/It$G%A%'%C%/$9$k(B. 0 $B<!85%7%9%F%`(B ($B2r$N8D?t$,M-8B8D$NJ}Dx<07O(B) |
$B%A%'%C%/It$G%A%'%C%/$9$k(B. 0 $B<!85%7%9%F%`(B ($B2r$N8D?t$,M-8B8D$NJ}Dx<07O(B) |
$B$N>l9g(B, sugar strategy $B$,78?tKDD%$r0z$-5/$3$9>l9g$,$"$k(B. $B$3$N$h$&$J>l(B |
$B$N>l9g(B, sugar strategy $B$,78?tKDD%$r0z$-5/$3$9>l9g$,$"$k(B. $B$3$N$h$&$J>l(B |
$B9g(B, strategy $B$r@F<!2=$K$h$k(B strategy $B$KCV$-49$($k$3$H$K$h$j78?tKDD%$r(B |
$B9g(B, strategy $B$r@F<!2=$K$h$k(B strategy $B$KCV$-49$($k$3$H$K$h$j78?tKDD%$r(B |
$BM^@)$9$k$3$H$,$G$-$k>l9g$,B?$$(B. |
$BM^@)$9$k$3$H$,$G$-$k>l9g$,B?$$(B. |
|
\E |
|
\BEG |
|
After homogenizing the input polynomials a candidate of the \gr basis |
|
is computed by trace-lifting. Then the candidate is dehomogenized and |
|
checked whether it is indeed a Groebner basis of the input. Sugar |
|
strategy often causes intermediate coefficient swells. It is |
|
empirically known that the combination of homogenization and supresses |
|
the swells for such cases. |
|
\E |
|
|
@item gr_mod(@var{plist},@var{vlist},@var{order},@var{p}) |
@item gr_mod(@var{plist},@var{vlist},@var{order},@var{p}) |
|
|
|
\BJP |
Gebauer-Moeller $B$K$h$k(B useless pair elimination criteria, sugar |
Gebauer-Moeller $B$K$h$k(B useless pair elimination criteria, sugar |
strategy $B$*$h$S(B Buchberger $B%"%k%4%j%:%`$K$h$k(B GF(p) $B78?t%0%l%V%J4pDl7W(B |
strategy $B$*$h$S(B Buchberger $B%"%k%4%j%:%`$K$h$k(B GF(p) $B78?t%0%l%V%J4pDl7W(B |
$B;;H!?t(B. |
$B;;H!?t(B. |
|
\E |
|
\BEG |
|
Function that computes Groebner bases over GF(@var{p}). The same |
|
algorithm as @code{gr()} is used. |
|
\E |
|
|
@end table |
@end table |
|
|
|
\BJP |
@node $B7W;;$*$h$SI=<($N@)8f(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $B7W;;$*$h$SI=<($N@)8f(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $B7W;;$*$h$SI=<($N@)8f(B |
@section $B7W;;$*$h$SI=<($N@)8f(B |
|
\E |
|
\BEG |
|
@node Controlling Groebner basis computations,,, Groebner basis computation |
|
@section Controlling Groebner basis computations |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$B%0%l%V%J4pDl$N7W;;$K$*$$$F(B, $B$5$^$6$^$J%Q%i%a%?@_Dj$r9T$&$3$H$K$h$j7W;;(B, |
$B%0%l%V%J4pDl$N7W;;$K$*$$$F(B, $B$5$^$6$^$J%Q%i%a%?@_Dj$r9T$&$3$H$K$h$j7W;;(B, |
$BI=<($r@)8f$9$k$3$H$,$G$-$k(B. $B$3$l$i$O(B, $BAH$_9~$_H!?t(B @code{dp_gr_flags()} |
$BI=<($r@)8f$9$k$3$H$,$G$-$k(B. $B$3$l$i$O(B, $BAH$_9~$_H!?t(B @code{dp_gr_flags()} |
$B$K$h$j@_Dj;2>H$9$k$3$H$,$G$-$k(B. $BL50z?t$G(B @code{dp_gr_flags()} $B$r<B9T$9$k(B |
$B$K$h$j@_Dj;2>H$9$k$3$H$,$G$-$k(B. $BL50z?t$G(B @code{dp_gr_flags()} $B$r<B9T$9$k(B |
$B$H(B, $B8=:_@_Dj$5$l$F$$$k%Q%i%a%?$,(B, $BL>A0$HCM$N%j%9%H$GJV$5$l$k(B. |
$B$H(B, $B8=:_@_Dj$5$l$F$$$k%Q%i%a%?$,(B, $BL>A0$HCM$N%j%9%H$GJV$5$l$k(B. |
|
\E |
|
\BEG |
|
One can cotrol a Groebner basis computation by setting various parameters. |
|
These parameters can be set and examined by a built-in function |
|
@code{dp_gr_flags()}. Without argument it returns the current settings. |
|
\E |
|
|
@example |
@example |
[100] dp_gr_flags(); |
[100] dp_gr_flags(); |
[Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0,ShowMag,1, |
[Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0, |
Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0] |
ShowMag,1,Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0] |
[101] |
[101] |
@end example |
@end example |
|
|
|
\BJP |
$B0J2<$G(B, $B3F%Q%i%a%?$N0UL#$r@bL@$9$k(B. on $B$N>l9g$H$O(B, $B%Q%i%a%?$,(B 0 $B$G$J$$>l9g$r(B |
$B0J2<$G(B, $B3F%Q%i%a%?$N0UL#$r@bL@$9$k(B. on $B$N>l9g$H$O(B, $B%Q%i%a%?$,(B 0 $B$G$J$$>l9g$r(B |
$B$$$&(B. $B$3$l$i$N%Q%i%a%?$N=i4|CM$OA4$F(B 0 (off) $B$G$"$k(B. |
$B$$$&(B. $B$3$l$i$N%Q%i%a%?$N=i4|CM$OA4$F(B 0 (off) $B$G$"$k(B. |
|
\E |
|
\BEG |
|
The return value is a list which contains the names of parameters and their |
|
values. The meaning of the parameters are as follows. `on' means that the |
|
parameter is not zero. |
|
\E |
|
|
|
|
@table @code |
@table @code |
@item NoSugar |
@item NoSugar |
|
\BJP |
on $B$N>l9g(B, sugar strategy $B$NBe$o$j$K(B Buchberger$B$N(B normal strategy $B$,MQ(B |
on $B$N>l9g(B, sugar strategy $B$NBe$o$j$K(B Buchberger$B$N(B normal strategy $B$,MQ(B |
$B$$$i$l$k(B. |
$B$$$i$l$k(B. |
|
\E |
|
\BEG |
|
If `on', Buchberger's normal strategy is used instead of sugar strategy. |
|
\E |
|
|
@item NoCriB |
@item NoCriB |
on $B$N>l9g(B, $BITI,MWBP8!=P5,=`$N$&$A(B, $B5,=`(B B $B$rE,MQ$7$J$$(B. |
\JP on $B$N>l9g(B, $BITI,MWBP8!=P5,=`$N$&$A(B, $B5,=`(B B $B$rE,MQ$7$J$$(B. |
|
\EG If `on', criterion B among the Gebauer-Moeller's criteria is not applied. |
|
|
@item NoGC |
@item NoGC |
on $B$N>l9g(B, $B7k2L$,%0%l%V%J4pDl$K$J$C$F$$$k$+$I$&$+$N%A%'%C%/$r9T$o$J$$(B. |
\JP on $B$N>l9g(B, $B7k2L$,%0%l%V%J4pDl$K$J$C$F$$$k$+$I$&$+$N%A%'%C%/$r9T$o$J$$(B. |
|
\BEG |
|
If `on', the check that a Groebner basis candidate is indeed a Groebner basis, |
|
is not executed. |
|
\E |
|
|
@item NoMC |
@item NoMC |
|
\BJP |
on $B$N>l9g(B, $B7k2L$,F~NO%$%G%"%k$HF1Ey$N%$%G%"%k$G$"$k$+$I$&$+$N%A%'%C%/(B |
on $B$N>l9g(B, $B7k2L$,F~NO%$%G%"%k$HF1Ey$N%$%G%"%k$G$"$k$+$I$&$+$N%A%'%C%/(B |
$B$r9T$o$J$$(B. |
$B$r9T$o$J$$(B. |
|
\E |
|
\BEG |
|
If `on', the check that the resulting polynomials generates the same ideal as |
|
the ideal generated by the input, is not executed. |
|
\E |
|
|
@item NoRA |
@item NoRA |
|
\BJP |
on $B$N>l9g(B, $B7k2L$r(B reduced $B%0%l%V%J4pDl$K$9$k$?$a$N(B |
on $B$N>l9g(B, $B7k2L$r(B reduced $B%0%l%V%J4pDl$K$9$k$?$a$N(B |
interreduce $B$r9T$o$J$$(B. |
interreduce $B$r9T$o$J$$(B. |
|
\E |
|
\BEG |
|
If `on', the interreduction, which makes the Groebner basis reduced, is not |
|
executed. |
|
\E |
|
|
@item NoGCD |
@item NoGCD |
|
\BJP |
on $B$N>l9g(B, $BM-M}<078?t$N%0%l%V%J4pDl7W;;$K$*$$$F(B, $B@8@.$5$l$?B?9`<0$N(B, |
on $B$N>l9g(B, $BM-M}<078?t$N%0%l%V%J4pDl7W;;$K$*$$$F(B, $B@8@.$5$l$?B?9`<0$N(B, |
$B78?t$N(B content $B$r$H$i$J$$(B. |
$B78?t$N(B content $B$r$H$i$J$$(B. |
|
\E |
|
\BEG |
|
If `on', content removals are not executed during a Groebner basis computation |
|
over a rational function field. |
|
\E |
|
|
@item Top |
@item Top |
on $B$N>l9g(B, normal form $B7W;;$K$*$$$FF,9`>C5n$N$_$r9T$&(B. |
\JP on $B$N>l9g(B, normal form $B7W;;$K$*$$$FF,9`>C5n$N$_$r9T$&(B. |
|
\EG If `on', Only the head term of the polynomial being reduced is reduced. |
|
|
@item Interreduce |
@comment @item Interreduce |
on $B$N>l9g(B, $BB?9`<0$r@8@.$9$kKh$K(B, $B$=$l$^$G@8@.$5$l$?4pDl$r$=$NB?9`<0$K(B |
@comment \BJP |
$B$h$k(B normal form $B$GCV$-49$($k(B. |
@comment on $B$N>l9g(B, $BB?9`<0$r@8@.$9$kKh$K(B, $B$=$l$^$G@8@.$5$l$?4pDl$r$=$NB?9`<0$K(B |
|
@comment $B$h$k(B normal form $B$GCV$-49$($k(B. |
|
@comment \E |
|
@comment \BEG |
|
@comment If `on', intermediate basis elements are reduced by using a newly generated |
|
@comment basis element. |
|
@comment \E |
|
|
@item Reverse |
@item Reverse |
|
\BJP |
on $B$N>l9g(B, normal form $B7W;;$N:]$N(B reducer $B$r(B, $B?7$7$/@8@.$5$l$?$b$N$rM%(B |
on $B$N>l9g(B, normal form $B7W;;$N:]$N(B reducer $B$r(B, $B?7$7$/@8@.$5$l$?$b$N$rM%(B |
$B@h$7$FA*$V(B. |
$B@h$7$FA*$V(B. |
|
\E |
|
\BEG |
|
If `on', the selection strategy of reducer in a normal form computation |
|
is such that a newer reducer is used first. |
|
\E |
|
|
@item Print |
@item Print |
on $B$N>l9g(B, $B%0%l%V%J4pDl7W;;$NESCf$K$*$1$k$5$^$6$^$J>pJs$rI=<($9$k(B. |
\JP on $B$N>l9g(B, $B%0%l%V%J4pDl7W;;$NESCf$K$*$1$k$5$^$6$^$J>pJs$rI=<($9$k(B. |
|
\BEG |
|
If `on', various informations during a Groebner basis computation is |
|
displayed. |
|
\E |
|
|
|
@item PrintShort |
|
\JP on $B$G!"(BPrint $B$,(B off $B$N>l9g(B, $B%0%l%V%J4pDl7W;;$NESCf$N>pJs$rC;=L7A$GI=<($9$k(B. |
|
\BEG |
|
If `on' and Print is `off', short information during a Groebner basis computation is |
|
displayed. |
|
\E |
|
|
@item Stat |
@item Stat |
|
\BJP |
on $B$G(B @code{Print} $B$,(B off $B$J$i$P(B, @code{Print} $B$,(B on $B$N$H$-I=<($5(B |
on $B$G(B @code{Print} $B$,(B off $B$J$i$P(B, @code{Print} $B$,(B on $B$N$H$-I=<($5(B |
$B$l$k%G!<%?$NFb(B, $B=87W%G!<%?$N$_$,I=<($5$l$k(B. |
$B$l$k%G!<%?$NFb(B, $B=87W%G!<%?$N$_$,I=<($5$l$k(B. |
|
\E |
|
\BEG |
|
If `on', a summary of informations is shown after a Groebner basis |
|
computation. Note that the summary is always shown if @code{Print} is `on'. |
|
\E |
|
|
@item ShowMag |
@item ShowMag |
|
\BJP |
on $B$G(B @code{Print} $B$,(B on $B$J$i$P(B, $B@8@.$,@8@.$5$l$kKh$K(B, $B$=$NB?9`<0$N(B |
on $B$G(B @code{Print} $B$,(B on $B$J$i$P(B, $B@8@.$,@8@.$5$l$kKh$K(B, $B$=$NB?9`<0$N(B |
$B78?t$N%S%C%HD9$NOB$rI=<($7(B, $B:G8e$K(B, $B$=$l$i$NOB$N:GBgCM$rI=<($9$k(B. |
$B78?t$N%S%C%HD9$NOB$rI=<($7(B, $B:G8e$K(B, $B$=$l$i$NOB$N:GBgCM$rI=<($9$k(B. |
|
\E |
|
\BEG |
|
If `on' and @code{Print} is `on', the sum of bit length of |
|
coefficients of a generated basis element, which we call @var{magnitude}, |
|
is shown after every normal computation. After comleting the |
|
computation the maximal value among the sums is shown. |
|
\E |
|
|
@item Multiple |
@item Content |
0 $B$G$J$$@0?t$N;~(B, $BM-M}?t>e$N@55,7A7W;;$K$*$$$F(B, $B78?t$N%S%C%HD9$NOB$,(B |
@itemx Multiple |
@code{Multiple} $BG\$K$J$k$4$H$K78?tA4BN$N(B GCD $B$,7W;;$5$l(B, $B$=$N(B GCD $B$G(B |
\BJP |
$B3d$C$?B?9`<0$r4JLs$9$k(B. @code{Multiple} $B$,(B 1 $B$J$i$P(B, $B4JLs$9$k$4$H$K(B |
0 $B$G$J$$M-M}?t$N;~(B, $BM-M}?t>e$N@55,7A7W;;$K$*$$$F(B, $B78?t$N%S%C%HD9$NOB$,(B |
GCD $B7W;;$,9T$o$l0lHL$K$O8zN($,0-$/$J$k$,(B, @code{Multiple} $B$r(B 2 $BDxEY(B |
@code{Content} $BG\$K$J$k$4$H$K78?tA4BN$N(B GCD $B$,7W;;$5$l(B, $B$=$N(B GCD $B$G(B |
|
$B3d$C$?B?9`<0$r4JLs$9$k(B. @code{Content} $B$,(B 1 $B$J$i$P(B, $B4JLs$9$k$4$H$K(B |
|
GCD $B7W;;$,9T$o$l0lHL$K$O8zN($,0-$/$J$k$,(B, @code{Content} $B$r(B 2 $BDxEY(B |
$B$H$9$k$H(B, $B5pBg$J@0?t$,78?t$K8=$l$k>l9g(B, $B8zN($,NI$/$J$k>l9g$,$"$k(B. |
$B$H$9$k$H(B, $B5pBg$J@0?t$,78?t$K8=$l$k>l9g(B, $B8zN($,NI$/$J$k>l9g$,$"$k(B. |
|
backward compatibility $B$N$?$a!"(B@code{Multiple} $B$G@0?tCM$r;XDj$G$-$k(B. |
|
\E |
|
\BEG |
|
If a non-zero rational number, in a normal form computation |
|
over the rationals, the integer content of the polynomial being |
|
reduced is removed when its magnitude becomes @code{Content} times |
|
larger than a registered value, which is set to the magnitude of the |
|
input polynomial. After each content removal the registered value is |
|
set to the magnitude of the resulting polynomial. @code{Content} is |
|
equal to 1, the simiplification is done after every normal form computation. |
|
It is empirically known that it is often efficient to set @code{Content} to 2 |
|
for the case where large integers appear during the computation. |
|
An integer value can be set by the keyword @code{Multiple} for |
|
backward compatibility. |
|
\E |
|
|
@item Demand |
@item Demand |
|
|
|
\BJP |
$B@5Ev$J%G%#%l%/%H%jL>(B ($BJ8;zNs(B) $B$rCM$K;}$D$H$-(B, $B@8@.$5$l$?B?9`<0$O%a%b%j(B |
$B@5Ev$J%G%#%l%/%H%jL>(B ($BJ8;zNs(B) $B$rCM$K;}$D$H$-(B, $B@8@.$5$l$?B?9`<0$O%a%b%j(B |
$BCf$K$*$+$l$:(B, $B$=$N%G%#%l%/%H%jCf$K%P%$%J%j%G!<%?$H$7$FCV$+$l(B, $B$=$NB?9`(B |
$BCf$K$*$+$l$:(B, $B$=$N%G%#%l%/%H%jCf$K%P%$%J%j%G!<%?$H$7$FCV$+$l(B, $B$=$NB?9`(B |
$B<0$rMQ$$$k(B normal form $B7W;;$N:](B, $B<+F0E*$K%a%b%jCf$K%m!<%I$5$l$k(B. $B3FB?(B |
$B<0$rMQ$$$k(B normal form $B7W;;$N:](B, $B<+F0E*$K%a%b%jCf$K%m!<%I$5$l$k(B. $B3FB?(B |
$B9`<0$O(B, $BFbIt$G$N%$%s%G%C%/%9$r%U%!%$%kL>$K;}$D%U%!%$%k$K3JG<$5$l$k(B. |
$B9`<0$O(B, $BFbIt$G$N%$%s%G%C%/%9$r%U%!%$%kL>$K;}$D%U%!%$%k$K3JG<$5$l$k(B. |
$B$3$3$G;XDj$5$l$?%G%#%l%/%H%j$K=q$+$l$?%U%!%$%k$O<+F0E*$K$O>C5n$5$l$J$$(B |
$B$3$3$G;XDj$5$l$?%G%#%l%/%H%j$K=q$+$l$?%U%!%$%k$O<+F0E*$K$O>C5n$5$l$J$$(B |
$B$?$a(B, $B%f!<%6$,@UG$$r;}$C$F>C5n$9$kI,MW$,$"$k(B. |
$B$?$a(B, $B%f!<%6$,@UG$$r;}$C$F>C5n$9$kI,MW$,$"$k(B. |
|
\E |
|
\BEG |
|
If the value (a character string) is a valid directory name, then |
|
generated basis elements are put in the directory and are loaded on |
|
demand during normal form computations. Each elements is saved in the |
|
binary form and its name coincides with the index internally used in |
|
the computation. These binary files are not removed automatically |
|
and one should remove them by hand. |
|
\E |
@end table |
@end table |
|
|
@noindent |
@noindent |
@code{Print} $B$,(B 0 $B$G$J$$>l9g<!$N$h$&$J%G!<%?$,I=<($5$l$k(B. |
\JP @code{Print} $B$,(B 0 $B$G$J$$>l9g<!$N$h$&$J%G!<%?$,I=<($5$l$k(B. |
|
\EG If @code{Print} is `on', the following informations are shown. |
|
|
@example |
@example |
[93] gr(cyclic(4),[c0,c1,c2,c3],0)$ |
[93] gr(cyclic(4),[c0,c1,c2,c3],0)$ |
|
|
(0,0)(0,0)(0,0)(0,0) |
(0,0)(0,0)(0,0)(0,0) |
gbcheck total 8 pairs |
gbcheck total 8 pairs |
........ |
........ |
UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0)ZNFM=(0.010002,0)PZ=(0,0) |
UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0)ZNFM=(0.010002,0) |
NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6 D=12 ZR=5 NZR=6 |
PZ=(0,0)NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6 |
Max_mag=6 |
D=12 ZR=5 NZR=6 Max_mag=6 |
[94] |
[94] |
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
$B:G=i$KI=<($5$l$k(B @code{mod}, @code{eval} $B$O(B, trace-lifting $B$GMQ$$$i$l$kK!(B |
$B:G=i$KI=<($5$l$k(B @code{mod}, @code{eval} $B$O(B, trace-lifting $B$GMQ$$$i$l$kK!(B |
$B$G$"$k(B. @code{mod} $B$OAG?t(B, @code{eval} $B$OM-M}<078?t$N>l9g$KMQ$$$i$l$k(B |
$B$G$"$k(B. @code{mod} $B$OAG?t(B, @code{eval} $B$OM-M}<078?t$N>l9g$KMQ$$$i$l$k(B |
$B?t$N%j%9%H$G$"$k(B. |
$B?t$N%j%9%H$G$"$k(B. |
|
\E |
|
\BEG |
|
In this example @code{mod} and @code{eval} indicate moduli used in |
|
trace-lifting. @code{mod} is a prime and @code{eval} is a list of integers |
|
used for evaluation when the ground field is a field of rational functions. |
|
\E |
|
|
@noindent |
@noindent |
$B7W;;ESCf$GB?9`<0$,@8@.$5$l$kKh$K<!$N7A$N%G!<%?$,I=<($5$l$k(B. |
\JP $B7W;;ESCf$GB?9`<0$,@8@.$5$l$kKh$K<!$N7A$N%G!<%?$,I=<($5$l$k(B. |
|
\EG The following information is shown after every normal form computation. |
|
|
@example |
@example |
(TNF)(TCONT)HT(INDEX),nb=NB,nab=NAB,rp=RP,sugar=S,mag=M |
(TNF)(TCONT)HT(INDEX),nb=NB,nab=NAB,rp=RP,sugar=S,mag=M |
@end example |
@end example |
|
|
@noindent |
@noindent |
$B$=$l$i$N0UL#$O<!$NDL$j(B. |
\JP $B$=$l$i$N0UL#$O<!$NDL$j(B. |
|
\EG Meaning of each component is as follows. |
|
|
@table @code |
@table @code |
|
\BJP |
@item TNF |
@item TNF |
|
|
normal form $B7W;;;~4V(B ($BIC(B) |
normal form $B7W;;;~4V(B ($BIC(B) |
|
|
@item TCONT |
@item TCONT |
|
|
content $B7W;;;~4V(B ($BIC(B) |
content $B7W;;;~4V(B ($BIC(B) |
|
|
@item HT |
@item HT |
|
|
$B@8@.$5$l$?B?9`<0$NF,9`(B |
$B@8@.$5$l$?B?9`<0$NF,9`(B |
|
|
@item INDEX |
@item INDEX |
|
|
S-$BB?9`<0$r9=@.$9$kB?9`<0$N%$%s%G%C%/%9$N%Z%"(B |
S-$BB?9`<0$r9=@.$9$kB?9`<0$N%$%s%G%C%/%9$N%Z%"(B |
|
|
@item NB |
@item NB |
|
|
$B8=:_$N(B, $B>iD9@-$r=|$$$?4pDl$N?t(B |
$B8=:_$N(B, $B>iD9@-$r=|$$$?4pDl$N?t(B |
|
|
@item NAB |
@item NAB |
|
|
$B8=:_$^$G$K@8@.$5$l$?4pDl$N?t(B |
$B8=:_$^$G$K@8@.$5$l$?4pDl$N?t(B |
|
|
@item RP |
@item RP |
|
|
$B;D$j$N%Z%"$N?t(B |
$B;D$j$N%Z%"$N?t(B |
|
|
@item S |
@item S |
|
|
$B@8@.$5$l$?B?9`<0$N(B sugar $B$NCM(B |
$B@8@.$5$l$?B?9`<0$N(B sugar $B$NCM(B |
|
|
@item M |
@item M |
|
|
$B@8@.$5$l$?B?9`<0$N78?t$N%S%C%HD9$NOB(B (@code{ShowMag} $B$,(B on $B$N;~$KI=<($5$l$k(B. ) |
$B@8@.$5$l$?B?9`<0$N78?t$N%S%C%HD9$NOB(B (@code{ShowMag} $B$,(B on $B$N;~$KI=<($5$l$k(B. ) |
|
\E |
|
\BEG |
|
@item TNF |
|
|
|
CPU time for normal form computation (second) |
|
|
|
@item TCONT |
|
|
|
CPU time for content removal(second) |
|
|
|
@item HT |
|
|
|
Head term of the generated basis element |
|
|
|
@item INDEX |
|
|
|
Pair of indices which corresponds to the reduced S-polynomial |
|
|
|
@item NB |
|
|
|
Number of basis elements after removing redundancy |
|
|
|
@item NAB |
|
|
|
Number of all the basis elements |
|
|
|
@item RP |
|
|
|
Number of remaining pairs |
|
|
|
@item S |
|
|
|
Sugar of the generated basis element |
|
|
|
@item M |
|
|
|
Magnitude of the genrated basis element (shown if @code{ShowMag} is `on'.) |
|
\E |
@end table |
@end table |
|
|
@noindent |
@noindent |
|
\BJP |
$B:G8e$K(B, $B=87W%G!<%?$,I=<($5$l$k(B. $B0UL#$O<!$NDL$j(B. |
$B:G8e$K(B, $B=87W%G!<%?$,I=<($5$l$k(B. $B0UL#$O<!$NDL$j(B. |
($B;~4V$NI=<($K$*$$$F(B, $B?t;z$,(B 2 $B$D$"$k$b$N$O(B, $B7W;;;~4V$H(B GC $B;~4V$N%Z%"$G$"$k(B.) |
($B;~4V$NI=<($K$*$$$F(B, $B?t;z$,(B 2 $B$D$"$k$b$N$O(B, $B7W;;;~4V$H(B GC $B;~4V$N%Z%"$G$"$k(B.) |
|
\E |
|
\BEG |
|
The summary of the informations shown after a Groebner basis |
|
computation is as follows. If a component shows timings and it |
|
contains two numbers, they are a pair of time for computation and time |
|
for garbage colection. |
|
\E |
|
|
|
|
@table @code |
@table @code |
|
\BJP |
@item UP |
@item UP |
|
|
$B%Z%"$N%j%9%H$NA`:n$K$+$+$C$?;~4V(B |
$B%Z%"$N%j%9%H$NA`:n$K$+$+$C$?;~4V(B |
|
|
@item SP |
@item SP |
|
|
$BM-M}?t>e$N(B S-$BB?9`<07W;;;~4V(B |
$BM-M}?t>e$N(B S-$BB?9`<07W;;;~4V(B |
|
|
@item SPM |
@item SPM |
|
|
$BM-8BBN>e$N(B S-$BB?9`<07W;;;~4V(B |
$BM-8BBN>e$N(B S-$BB?9`<07W;;;~4V(B |
|
|
@item NF |
@item NF |
|
|
$BM-M}?t>e$N(B normal form $B7W;;;~4V(B |
$BM-M}?t>e$N(B normal form $B7W;;;~4V(B |
|
|
@item NFM |
@item NFM |
|
|
$BM-8BBN>e$N(B normal form $B7W;;;~4V(B |
$BM-8BBN>e$N(B normal form $B7W;;;~4V(B |
|
|
@item ZNFM |
@item ZNFM |
|
|
@code{NFM} $B$NFb(B, 0 $B$X$N(B reduction $B$K$+$+$C$?;~4V(B |
@code{NFM} $B$NFb(B, 0 $B$X$N(B reduction $B$K$+$+$C$?;~4V(B |
|
|
@item PZ |
@item PZ |
|
|
content $B7W;;;~4V(B |
content $B7W;;;~4V(B |
|
|
@item NP |
@item NP |
|
|
$BM-M}?t78?tB?9`<0$N78?t$KBP$9$k>jM>1i;;$N7W;;;~4V(B |
$BM-M}?t78?tB?9`<0$N78?t$KBP$9$k>jM>1i;;$N7W;;;~4V(B |
|
|
@item MP |
@item MP |
|
|
S-$BB?9`<0$r@8@.$9$k%Z%"$NA*Br$K$+$+$C$?;~4V(B |
S-$BB?9`<0$r@8@.$9$k%Z%"$NA*Br$K$+$+$C$?;~4V(B |
|
|
@item RA |
@item RA |
|
|
interreduce $B7W;;;~4V(B |
interreduce $B7W;;;~4V(B |
|
|
@item MC |
@item MC |
|
|
trace-lifting $B$K$*$1$k(B, $BF~NOB?9`<0$N%a%s%P%7%C%W7W;;;~4V(B |
trace-lifting $B$K$*$1$k(B, $BF~NOB?9`<0$N%a%s%P%7%C%W7W;;;~4V(B |
|
|
@item GC |
@item GC |
|
|
$B7k2L$N%0%l%V%J4pDl8uJd$N%0%l%V%J4pDl%A%'%C%/;~4V(B |
$B7k2L$N%0%l%V%J4pDl8uJd$N%0%l%V%J4pDl%A%'%C%/;~4V(B |
|
|
@item T |
@item T |
|
|
$B@8@.$5$l$?%Z%"$N?t(B |
$B@8@.$5$l$?%Z%"$N?t(B |
|
|
@item B, M, F, D |
@item B, M, F, D |
|
|
$B3F(B criterion $B$K$h$j=|$+$l$?%Z%"$N?t(B |
$B3F(B criterion $B$K$h$j=|$+$l$?%Z%"$N?t(B |
|
|
@item ZR |
@item ZR |
|
|
0 $B$K(B reduce $B$5$l$?%Z%"$N?t(B |
0 $B$K(B reduce $B$5$l$?%Z%"$N?t(B |
|
|
@item NZR |
@item NZR |
|
|
0 $B$G$J$$B?9`<0$K(B reduce $B$5$l$?%Z%"$N?t(B |
0 $B$G$J$$B?9`<0$K(B reduce $B$5$l$?%Z%"$N?t(B |
|
|
@item Max_mag |
@item Max_mag |
|
|
$B@8@.$5$l$?B?9`<0$N(B, $B78?t$N%S%C%HD9$NOB$N:GBgCM(B |
$B@8@.$5$l$?B?9`<0$N(B, $B78?t$N%S%C%HD9$NOB$N:GBgCM(B |
|
\E |
|
\BEG |
|
@item UP |
|
|
|
Time to manipulate the list of critical pairs |
|
|
|
@item SP |
|
|
|
Time to compute S-polynomials over the rationals |
|
|
|
@item SPM |
|
|
|
Time to compute S-polynomials over a finite field |
|
|
|
@item NF |
|
|
|
Time to compute normal forms over the rationals |
|
|
|
@item NFM |
|
|
|
Time to compute normal forms over a finite field |
|
|
|
@item ZNFM |
|
|
|
Time for zero reductions in @code{NFM} |
|
|
|
@item PZ |
|
|
|
Time to remove integer contets |
|
|
|
@item NP |
|
|
|
Time to compute remainders for coefficients of polynomials with coeffieints |
|
in the rationals |
|
|
|
@item MP |
|
|
|
Time to select pairs from which S-polynomials are computed |
|
|
|
@item RA |
|
|
|
Time to interreduce the Groebner basis candidate |
|
|
|
@item MC |
|
|
|
Time to check that each input polynomial is a member of the ideal |
|
generated by the Groebner basis candidate. |
|
|
|
@item GC |
|
|
|
Time to check that the Groebner basis candidate is a Groebner basis |
|
|
|
@item T |
|
|
|
Number of critical pairs generated |
|
|
|
@item B, M, F, D |
|
|
|
Number of critical pairs removed by using each criterion |
|
|
|
@item ZR |
|
|
|
Number of S-polynomials reduced to 0 |
|
|
|
@item NZR |
|
|
|
Number of S-polynomials reduced to non-zero results |
|
|
|
@item Max_mag |
|
|
|
Maximal magnitude among all the generated polynomials |
|
\E |
@end table |
@end table |
|
|
|
\BJP |
@node $B9`=g=x$N@_Dj(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $B9`=g=x$N@_Dj(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $B9`=g=x$N@_Dj(B |
@section $B9`=g=x$N@_Dj(B |
|
\E |
|
\BEG |
|
@node Setting term orderings,,, Groebner basis computation |
|
@section Setting term orderings |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$B9`$OFbIt$G$O(B, $B3FJQ?t$K4X$9$k;X?t$r@.J,$H$9$k@0?t%Y%/%H%k$H$7$FI=8=$5$l(B |
$B9`$OFbIt$G$O(B, $B3FJQ?t$K4X$9$k;X?t$r@.J,$H$9$k@0?t%Y%/%H%k$H$7$FI=8=$5$l(B |
$B$k(B. $BB?9`<0$rJ,;6I=8=B?9`<0$KJQ49$9$k:](B, $B3FJQ?t$,$I$N@.J,$KBP1~$9$k$+$r(B |
$B$k(B. $BB?9`<0$rJ,;6I=8=B?9`<0$KJQ49$9$k:](B, $B3FJQ?t$,$I$N@.J,$KBP1~$9$k$+$r(B |
$B;XDj$9$k$N$,(B, $BJQ?t%j%9%H$G$"$k(B. $B$5$i$K(B, $B$=$l$i@0?t%Y%/%H%k$NA4=g=x$r(B |
$B;XDj$9$k$N$,(B, $BJQ?t%j%9%H$G$"$k(B. $B$5$i$K(B, $B$=$l$i@0?t%Y%/%H%k$NA4=g=x$r(B |
$B;XDj$9$k$N$,9`=g=x$N7?$G$"$k(B. $B9`=g=x7?$O(B, $B?t(B, $B?t$N%j%9%H$"$k$$$O(B |
$B;XDj$9$k$N$,9`=g=x$N7?$G$"$k(B. $B9`=g=x7?$O(B, $B?t(B, $B?t$N%j%9%H$"$k$$$O(B |
$B9TNs$GI=8=$5$l$k(B. |
$B9TNs$GI=8=$5$l$k(B. |
|
\E |
|
\BEG |
|
A term is internally represented as an integer vector whose components |
|
are exponents with respect to variables. A variable list specifies the |
|
correspondences between variables and components. A type of term ordering |
|
specifies a total order for integer vectors. A type of term ordering is |
|
represented by an integer, a list of integer or matrices. |
|
\E |
|
|
@noindent |
@noindent |
$B4pK\E*$J9`=g=x7?$H$7$F<!$N(B 3 $B$D$,$"$k(B. |
\JP $B4pK\E*$J9`=g=x7?$H$7$F<!$N(B 3 $B$D$,$"$k(B. |
|
\EG There are following three fundamental types. |
|
|
@table @code |
@table @code |
@item 0 (DegRevLex; @b{$BA4<!?t5U<-=q<0=g=x(B}) |
\JP @item 0 (DegRevLex; @b{$BA4<!?t5U<-=q<0=g=x(B}) |
|
\EG @item 0 (DegRevLex; @b{total degree reverse lexicographic ordering}) |
|
|
|
\BJP |
$B0lHL$K(B, $B$3$N=g=x$K$h$k%0%l%V%J4pDl7W;;$,:G$b9bB.$G$"$k(B. $B$?$@$7(B, |
$B0lHL$K(B, $B$3$N=g=x$K$h$k%0%l%V%J4pDl7W;;$,:G$b9bB.$G$"$k(B. $B$?$@$7(B, |
$BJ}Dx<0$r2r$/$H$$$&L\E*$KMQ$$$k$3$H$O(B, $B0lHL$K$O$G$-$J$$(B. $B$3$N(B |
$BJ}Dx<0$r2r$/$H$$$&L\E*$KMQ$$$k$3$H$O(B, $B0lHL$K$O$G$-$J$$(B. $B$3$N(B |
$B=g=x$K$h$k%0%l%V%J4pDl$O(B, $B2r$N8D?t$N7W;;(B, $B%$%G%"%k$N%a%s%P%7%C%W$d(B, |
$B=g=x$K$h$k%0%l%V%J4pDl$O(B, $B2r$N8D?t$N7W;;(B, $B%$%G%"%k$N%a%s%P%7%C%W$d(B, |
$BB>$NJQ?t=g=x$X$N4pDlJQ49$N$?$a$N%=!<%9$H$7$FMQ$$$i$l$k(B. |
$BB>$NJQ?t=g=x$X$N4pDlJQ49$N$?$a$N%=!<%9$H$7$FMQ$$$i$l$k(B. |
|
\E |
|
\BEG |
|
In general, computation by this ordering shows the fastest speed |
|
in most Groebner basis computations. |
|
However, for the purpose to solve polynomial equations, this type |
|
of ordering is, in general, not so suitable. |
|
The Groebner bases obtained by this ordering is used for computing |
|
the number of solutions, solving ideal membership problem and seeds |
|
for conversion to other Groebner bases under different ordering. |
|
\E |
|
|
@item 1 (DegLex; @b{$BA4<!?t<-=q<0=g=x(B}) |
\JP @item 1 (DegLex; @b{$BA4<!?t<-=q<0=g=x(B}) |
|
\EG @item 1 (DegLex; @b{total degree lexicographic ordering}) |
|
|
|
\BJP |
$B$3$N=g=x$b(B, $B<-=q<0=g=x$KHf$Y$F9bB.$K%0%l%V%J4pDl$r5a$a$k$3$H$,$G$-$k$,(B, |
$B$3$N=g=x$b(B, $B<-=q<0=g=x$KHf$Y$F9bB.$K%0%l%V%J4pDl$r5a$a$k$3$H$,$G$-$k$,(B, |
@code{DegRevLex} $B$HF1MMD>@\$=$N7k2L$rMQ$$$k$3$H$O:$Fq$G$"$k(B. $B$7$+$7(B, |
@code{DegRevLex} $B$HF1MMD>@\$=$N7k2L$rMQ$$$k$3$H$O:$Fq$G$"$k(B. $B$7$+$7(B, |
$B<-=q<0=g=x$N%0%l%V%J4pDl$r5a$a$k:]$K(B, $B@F<!2=8e$K$3$N=g=x$G%0%l%V%J4pDl(B |
$B<-=q<0=g=x$N%0%l%V%J4pDl$r5a$a$k:]$K(B, $B@F<!2=8e$K$3$N=g=x$G%0%l%V%J4pDl(B |
$B$r5a$a$F$$$k(B. |
$B$r5a$a$F$$$k(B. |
|
\E |
|
\BEG |
|
By this type term ordering, Groebner bases are obtained fairly faster |
|
than Lex (lexicographic) ordering, too. |
|
Alike the @code{DegRevLex} ordering, the result, in general, cannot directly |
|
be used for solving polynomial equations. |
|
It is used, however, in such a way |
|
that a Groebner basis is computed in this ordering after homogenization |
|
to obtain the final lexicographic Groebner basis. |
|
\E |
|
|
@item 2 (Lex; @b{$B<-=q<0=g=x(B}) |
\JP @item 2 (Lex; @b{$B<-=q<0=g=x(B}) |
|
\EG @item 2 (Lex; @b{lexicographic ordering}) |
|
|
|
\BJP |
$B$3$N=g=x$K$h$k%0%l%V%J4pDl$O(B, $BJ}Dx<0$r2r$/>l9g$K:GE,$N7A$N4pDl$rM?$($k$,(B |
$B$3$N=g=x$K$h$k%0%l%V%J4pDl$O(B, $BJ}Dx<0$r2r$/>l9g$K:GE,$N7A$N4pDl$rM?$($k$,(B |
$B7W;;;~4V$,$+$+$j2a$.$k$N$,FqE@$G$"$k(B. $BFC$K(B, $B2r$,M-8B8D$N>l9g(B, $B7k2L$N(B |
$B7W;;;~4V$,$+$+$j2a$.$k$N$,FqE@$G$"$k(B. $BFC$K(B, $B2r$,M-8B8D$N>l9g(B, $B7k2L$N(B |
$B78?t$,6K$a$FD9Bg$JB?G\D9?t$K$J$k>l9g$,B?$$(B. $B$3$N>l9g(B, @code{gr()}, |
$B78?t$,6K$a$FD9Bg$JB?G\D9?t$K$J$k>l9g$,B?$$(B. $B$3$N>l9g(B, @code{gr()}, |
@code{hgr()} $B$K$h$k7W;;$,6K$a$FM-8z$K$J$k>l9g$,B?$$(B. |
@code{hgr()} $B$K$h$k7W;;$,6K$a$FM-8z$K$J$k>l9g$,B?$$(B. |
|
\E |
|
\BEG |
|
Groebner bases computed by this ordering give the most convenient |
|
Groebner bases for solving the polynomial equations. |
|
The only and serious shortcoming is the enormously long computation |
|
time. |
|
It is often observed that the number coefficients of the result becomes |
|
very very long integers, especially if the ideal is 0-dimensional. |
|
For such a case, it is empirically true for many cases |
|
that i.e., computation by |
|
@code{gr()} and/or @code{hgr()} may be quite effective. |
|
\E |
@end table |
@end table |
|
|
@noindent |
@noindent |
|
\BJP |
$B$3$l$i$rAH$_9g$o$;$F%j%9%H$G;XDj$9$k$3$H$K$h$j(B, $BMM!9$J>C5n=g=x$,;XDj$G$-$k(B. |
$B$3$l$i$rAH$_9g$o$;$F%j%9%H$G;XDj$9$k$3$H$K$h$j(B, $BMM!9$J>C5n=g=x$,;XDj$G$-$k(B. |
$B$3$l$O(B, |
$B$3$l$O(B, |
|
\E |
|
\BEG |
|
By combining these fundamental orderingl into a list, one can make |
|
various term ordering called elimination orderings. |
|
\E |
|
|
@code{[[O1,L1],[O2,L2],...]} |
@code{[[O1,L1],[O2,L2],...]} |
|
|
@noindent |
@noindent |
|
\BJP |
$B$G;XDj$5$l$k(B. @code{Oi} $B$O(B 0, 1, 2 $B$N$$$:$l$+$G(B, @code{Li} $B$OJQ?t$N8D(B |
$B$G;XDj$5$l$k(B. @code{Oi} $B$O(B 0, 1, 2 $B$N$$$:$l$+$G(B, @code{Li} $B$OJQ?t$N8D(B |
$B?t$rI=$9(B. $B$3$N;XDj$O(B, $BJQ?t$r@hF,$+$i(B @code{L1}, @code{L2} , ...$B8D(B |
$B?t$rI=$9(B. $B$3$N;XDj$O(B, $BJQ?t$r@hF,$+$i(B @code{L1}, @code{L2} , ...$B8D(B |
$B$:$D$NAH$KJ,$1(B, $B$=$l$>$l$NJQ?t$K4X$7(B, $B=g$K(B @code{O1}, @code{O2}, |
$B$:$D$NAH$KJ,$1(B, $B$=$l$>$l$NJQ?t$K4X$7(B, $B=g$K(B @code{O1}, @code{O2}, |
...$B$N9`=g=x7?$GBg>.$,7hDj$9$k$^$GHf3S$9$k$3$H$r0UL#$9$k(B. $B$3$N7?$N(B |
...$B$N9`=g=x7?$GBg>.$,7hDj$9$k$^$GHf3S$9$k$3$H$r0UL#$9$k(B. $B$3$N7?$N(B |
$B=g=x$O0lHL$K>C5n=g=x$H8F$P$l$k(B. |
$B=g=x$O0lHL$K>C5n=g=x$H8F$P$l$k(B. |
|
\E |
|
\BEG |
|
In this example @code{Oi} indicates 0, 1 or 2 and @code{Li} indicates |
|
the number of variables subject to the correspoinding orderings. |
|
This specification means the following. |
|
|
|
The variable list is separated into sub lists from left to right where |
|
the @code{i}-th list contains @code{Li} members and it corresponds to |
|
the ordering of type @code{Oi}. The result of a comparison is equal |
|
to that for the leftmost different sub components. This type of ordering |
|
is called an elimination ordering. |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$B$5$i$K(B, $B9TNs$K$h$j9`=g=x$r;XDj$9$k$3$H$,$G$-$k(B. $B0lHL$K(B, @code{n} $B9T(B |
$B$5$i$K(B, $B9TNs$K$h$j9`=g=x$r;XDj$9$k$3$H$,$G$-$k(B. $B0lHL$K(B, @code{n} $B9T(B |
@code{m} $BNs$N<B?t9TNs(B @code{M} $B$,<!$N@-<A$r;}$D$H$9$k(B. |
@code{m} $BNs$N<B?t9TNs(B @code{M} $B$,<!$N@-<A$r;}$D$H$9$k(B. |
|
\E |
|
\BEG |
|
Furthermore one can specify a term ordering by a matix. |
|
Suppose that a real @code{n}, @code{m} matrix @code{M} has the |
|
following properties. |
|
\E |
|
|
@enumerate |
@enumerate |
@item |
@item |
$BD9$5(B @code{m} $B$N@0?t%Y%/%H%k(B @code{v} $B$KBP$7(B @code{Mv=0} $B$H(B @code{v=0} $B$OF1CM(B. |
\JP $BD9$5(B @code{m} $B$N@0?t%Y%/%H%k(B @code{v} $B$KBP$7(B @code{Mv=0} $B$H(B @code{v=0} $B$OF1CM(B. |
|
\BEG |
|
For all integer verctors @code{v} of length @code{m} @code{Mv=0} is equivalent |
|
to @code{v=0}. |
|
\E |
|
|
@item |
@item |
|
\BJP |
$BHsIi@.J,$r;}$DD9$5(B @code{m} $B$N(B 0 $B$G$J$$@0?t%Y%/%H%k(B @code{v} $B$KBP$7(B, |
$BHsIi@.J,$r;}$DD9$5(B @code{m} $B$N(B 0 $B$G$J$$@0?t%Y%/%H%k(B @code{v} $B$KBP$7(B, |
@code{Mv} $B$N(B 0 $B$G$J$$:G=i$N@.J,$OHsIi(B. |
@code{Mv} $B$N(B 0 $B$G$J$$:G=i$N@.J,$OHsIi(B. |
|
\E |
|
\BEG |
|
For all non-negative integer vectors @code{v} the first non-zero component |
|
of @code{Mv} is non-negative. |
|
\E |
@end enumerate |
@end enumerate |
|
|
@noindent |
@noindent |
|
\BJP |
$B$3$N;~(B, 2 $B$D$N%Y%/%H%k(B @code{t}, @code{s} $B$KBP$7(B, |
$B$3$N;~(B, 2 $B$D$N%Y%/%H%k(B @code{t}, @code{s} $B$KBP$7(B, |
@code{t>s} $B$r(B, @code{M(t-s)} $B$N(B 0 $B$G$J$$:G=i$N@.J,$,HsIi(B, |
@code{t>s} $B$r(B, @code{M(t-s)} $B$N(B 0 $B$G$J$$:G=i$N@.J,$,HsIi(B, |
$B$GDj5A$9$k$3$H$K$h$j9`=g=x$,Dj5A$G$-$k(B. |
$B$GDj5A$9$k$3$H$K$h$j9`=g=x$,Dj5A$G$-$k(B. |
|
\E |
|
\BEG |
|
Then we can define a term ordering such that, for two vectors |
|
@code{t}, @code{s}, @code{t>s} means that the first non-zero component |
|
of @code{M(t-s)} is non-negative. |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$B9`=g=x7?$O(B, @code{gr()} $B$J$I$N0z?t$H$7$F;XDj$5$l$kB>(B, $BAH$_9~$_H!?t(B |
$B9`=g=x7?$O(B, @code{gr()} $B$J$I$N0z?t$H$7$F;XDj$5$l$kB>(B, $BAH$_9~$_H!?t(B |
@code{dp_ord()} $B$G;XDj$5$l(B, $B$5$^$6$^$JH!?t$N<B9T$N:]$K;2>H$5$l$k(B. |
@code{dp_ord()} $B$G;XDj$5$l(B, $B$5$^$6$^$JH!?t$N<B9T$N:]$K;2>H$5$l$k(B. |
|
\E |
|
\BEG |
|
Types of term orderings are used as arguments of functions such as |
|
@code{gr()}. It is also set internally by @code{dp_ord()} and is used |
|
during executions of various functions. |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$B$3$l$i$N=g=x$N6qBNE*$JDj5A$*$h$S%0%l%V%J4pDl$K4X$9$k99$K>\$7$$2r@b$O(B |
$B$3$l$i$N=g=x$N6qBNE*$JDj5A$*$h$S%0%l%V%J4pDl$K4X$9$k99$K>\$7$$2r@b$O(B |
@code{[Becker,Weispfenning]} $B$J$I$r;2>H$N$3$H(B. |
@code{[Becker,Weispfenning]} $B$J$I$r;2>H$N$3$H(B. |
|
\E |
|
\BEG |
|
For concrete definitions of term ordering and more information |
|
about Groebner basis, refer to, for example, the book |
|
@code{[Becker,Weispfenning]}. |
|
\E |
|
|
@noindent |
@noindent |
$B9`=g=x7?$N@_Dj$NB>$K(B, $BJQ?t$N=g=x<+BN$b7W;;;~4V$KBg$-$J1F6A$rM?$($k(B. |
\JP $B9`=g=x7?$N@_Dj$NB>$K(B, $BJQ?t$N=g=x<+BN$b7W;;;~4V$KBg$-$J1F6A$rM?$($k(B. |
|
\BEG |
|
Note that the variable ordering have strong effects on the computation |
|
time as well as the choice of types of term orderings. |
|
\E |
|
|
@example |
@example |
[90] B=[x^10-t,x^8-z,x^31-x^6-x-y]$ |
[90] B=[x^10-t,x^8-z,x^31-x^6-x-y]$ |
Line 443 trace-lifting $B$K$*$1$k(B, $BF~NOB?9`<0$N%a%s%P%7% |
|
Line 1005 trace-lifting $B$K$*$1$k(B, $BF~NOB?9`<0$N%a%s%P%7% |
|
-40*t^8+70*t^7+252*t^6+30*t^5-140*t^4-168*t^3+2*t^2-12*t+16)*z^2*y |
-40*t^8+70*t^7+252*t^6+30*t^5-140*t^4-168*t^3+2*t^2-12*t+16)*z^2*y |
+(-12*t^16+72*t^13-28*t^11-180*t^10+112*t^8+240*t^7+28*t^6-127*t^5 |
+(-12*t^16+72*t^13-28*t^11-180*t^10+112*t^8+240*t^7+28*t^6-127*t^5 |
-167*t^4-55*t^3+30*t^2+58*t-15)*z^4, |
-167*t^4-55*t^3+30*t^2+58*t-15)*z^4, |
(y+t^2*z^2)*x+y^7+(20*t^2+6*t+1)*y^2+(-t^17+6*t^14-21*t^12-15*t^11+84*t^9 |
(y+t^2*z^2)*x+y^7+(20*t^2+6*t+1)*y^2+(-t^17+6*t^14-21*t^12-15*t^11 |
+20*t^8-35*t^7-126*t^6-15*t^5+70*t^4+84*t^3-t^2+5*t-9)*z^2*y+(6*t^16-36*t^13 |
+84*t^9+20*t^8-35*t^7-126*t^6-15*t^5+70*t^4+84*t^3-t^2+5*t-9)*z^2*y |
+14*t^11+90*t^10-56*t^8-120*t^7-14*t^6+64*t^5+84*t^4+27*t^3-16*t^2-30*t+7)*z^4, |
+(6*t^16-36*t^13+14*t^11+90*t^10-56*t^8-120*t^7-14*t^6+64*t^5+84*t^4 |
(t^3-1)*x-y^6+(-6*t^13+24*t^10-20*t^8-36*t^7+40*t^5+24*t^4-6*t^3-20*t^2-6*t-1)*y |
+27*t^3-16*t^2-30*t+7)*z^4, |
+(t^17-6*t^14+9*t^12+15*t^11-36*t^9-20*t^8-5*t^7+54*t^6+15*t^5+10*t^4-36*t^3 |
(t^3-1)*x-y^6+(-6*t^13+24*t^10-20*t^8-36*t^7+40*t^5+24*t^4-6*t^3-20*t^2 |
-11*t^2-5*t+9)*z^2, |
-6*t-1)*y+(t^17-6*t^14+9*t^12+15*t^11-36*t^9-20*t^8-5*t^7+54*t^6+15*t^5 |
|
+10*t^4-36*t^3-11*t^2-5*t+9)*z^2, |
-y^8-8*t*y^3+16*z^2*y^2+(-8*t^16+48*t^13-56*t^11-120*t^10+224*t^8+160*t^7 |
-y^8-8*t*y^3+16*z^2*y^2+(-8*t^16+48*t^13-56*t^11-120*t^10+224*t^8+160*t^7 |
-56*t^6-336*t^5-112*t^4+112*t^3+224*t^2+24*t-56)*z^4*y+(t^24-8*t^21+20*t^19 |
-56*t^6-336*t^5-112*t^4+112*t^3+224*t^2+24*t-56)*z^4*y+(t^24-8*t^21 |
+28*t^18-120*t^16-56*t^15+14*t^14+300*t^13+70*t^12-56*t^11-400*t^10-84*t^9 |
+20*t^19+28*t^18-120*t^16-56*t^15+14*t^14+300*t^13+70*t^12-56*t^11 |
+84*t^8+268*t^7+84*t^6-56*t^5-63*t^4-36*t^3+46*t^2-12*t+1)*z, |
-400*t^10-84*t^9+84*t^8+268*t^7+84*t^6-56*t^5-63*t^4-36*t^3+46*t^2 |
2*t*y^5+z*y^2+(-2*t^11+8*t^8-20*t^6-12*t^5+40*t^3+8*t^2-10*t-20)*z^3*y+8*t^14 |
-12*t+1)*z,2*t*y^5+z*y^2+(-2*t^11+8*t^8-20*t^6-12*t^5+40*t^3+8*t^2 |
-32*t^11+48*t^8-t^7-32*t^5-6*t^4+9*t^2-t, |
-10*t-20)*z^3*y+8*t^14-32*t^11+48*t^8-t^7-32*t^5-6*t^4+9*t^2-t, |
-z*y^3+(t^7-2*t^4+3*t^2+t)*y+(-2*t^6+4*t^3+2*t-2)*z^2, |
-z*y^3+(t^7-2*t^4+3*t^2+t)*y+(-2*t^6+4*t^3+2*t-2)*z^2, |
2*t^2*y^3+z^2*y^2+(-2*t^5+4*t^2-6)*z^4*y+(4*t^8-t^7-8*t^5+2*t^4-4*t^3+5*t^2-t)*z, |
2*t^2*y^3+z^2*y^2+(-2*t^5+4*t^2-6)*z^4*y |
|
+(4*t^8-t^7-8*t^5+2*t^4-4*t^3+5*t^2-t)*z, |
z^3*y^2+2*t^3*y+(-t^7+2*t^4+t^2-t)*z^2, |
z^3*y^2+2*t^3*y+(-t^7+2*t^4+t^2-t)*z^2, |
-t*z*y^2-2*z^3*y+t^8-2*t^5-t^3+t^2, |
-t*z*y^2-2*z^3*y+t^8-2*t^5-t^3+t^2, |
-t^3*y^2-2*t^2*z^2*y+(t^6-2*t^3-t+1)*z^4, |
-t^3*y^2-2*t^2*z^2*y+(t^6-2*t^3-t+1)*z^4,z^5-t^4] |
z^5-t^4] |
|
[93] gr(B,[t,z,y,x],2); |
[93] gr(B,[t,z,y,x],2); |
[x^10-t,x^8-z,x^31-x^6-x-y] |
[x^10-t,x^8-z,x^31-x^6-x-y] |
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
$BJQ?t=g=x(B @code{[x,y,z,t]} $B$K$*$1$k%0%l%V%J4pDl$O(B, $B4pDl$N?t$bB?$/(B, $B$=$l$>$l$N(B |
$BJQ?t=g=x(B @code{[x,y,z,t]} $B$K$*$1$k%0%l%V%J4pDl$O(B, $B4pDl$N?t$bB?$/(B, $B$=$l$>$l$N(B |
$B<0$bBg$-$$(B. $B$7$+$7(B, $B=g=x(B @code{[t,z,y,x]} $B$K$b$H$G$O(B, @code{B} $B$,$9$G$K(B |
$B<0$bBg$-$$(B. $B$7$+$7(B, $B=g=x(B @code{[t,z,y,x]} $B$K$b$H$G$O(B, @code{B} $B$,$9$G$K(B |
$B%0%l%V%J4pDl$H$J$C$F$$$k(B. $BBg;(GD$K$$$($P(B, $B<-=q<0=g=x$G%0%l%V%J4pDl$r5a$a$k(B |
$B%0%l%V%J4pDl$H$J$C$F$$$k(B. $BBg;(GD$K$$$($P(B, $B<-=q<0=g=x$G%0%l%V%J4pDl$r5a$a$k(B |
|
|
@code{x} $B$GI=$5$l$F$$$k$3$H$+$i$3$N$h$&$J6KC<$J7k2L$H$J$C$?$o$1$G$"$k(B. |
@code{x} $B$GI=$5$l$F$$$k$3$H$+$i$3$N$h$&$J6KC<$J7k2L$H$J$C$?$o$1$G$"$k(B. |
$B<B:]$K8=$l$k7W;;$K$*$$$F$O(B, $B$3$N$h$&$KA*$V$Y$-JQ?t=g=x$,L@$i$+$G$"$k(B |
$B<B:]$K8=$l$k7W;;$K$*$$$F$O(B, $B$3$N$h$&$KA*$V$Y$-JQ?t=g=x$,L@$i$+$G$"$k(B |
$B$3$H$O>/$J$/(B, $B;n9T:x8m$,I,MW$J>l9g$b$"$k(B. |
$B$3$H$O>/$J$/(B, $B;n9T:x8m$,I,MW$J>l9g$b$"$k(B. |
|
\E |
|
\BEG |
|
As you see in the above example, the Groebner base under variable |
|
ordering @code{[x,y,z,t]} has a lot of bases and each base itself is |
|
large. Under variable ordering @code{[t,z,y,x]}, however, @code{B} itself |
|
is already the Groebner basis. |
|
Roughly speaking, to obtain a Groebner base under the lexicographic |
|
ordering is to express the variables on the left (having higher order) |
|
in terms of variables on the right (having lower order). |
|
In the example, variables @code{t}, @code{z}, and @code{y} are already |
|
expressed by variable @code{x}, and the above explanation justifies |
|
such a drastic experimental results. |
|
In practice, however, optimum ordering for variables may not known |
|
beforehand, and some heuristic trial may be inevitable. |
|
\E |
|
|
|
\BJP |
@node $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B |
@section $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B |
|
\E |
|
\BEG |
|
@node Groebner basis computation with rational function coefficients,,, Groebner basis computation |
|
@section Groebner basis computation with rational function coefficients |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
@code{gr()} $B$J$I$N%H%C%W%l%Y%kH!?t$O(B, $B$$$:$l$b(B, $BF~NOB?9`<0%j%9%H$K(B |
@code{gr()} $B$J$I$N%H%C%W%l%Y%kH!?t$O(B, $B$$$:$l$b(B, $BF~NOB?9`<0%j%9%H$K(B |
$B8=$l$kJQ?t(B ($BITDj85(B) $B$H(B, $BJQ?t%j%9%H$K8=$l$kJQ?t$rHf3S$7$F(B, $BJQ?t%j%9%H$K(B |
$B8=$l$kJQ?t(B ($BITDj85(B) $B$H(B, $BJQ?t%j%9%H$K8=$l$kJQ?t$rHf3S$7$F(B, $BJQ?t%j%9%H$K(B |
$B$J$$JQ?t$,F~NOB?9`<0$K8=$l$F$$$k>l9g$K$O(B, $B<+F0E*$K(B, $B$=$NJQ?t$r(B, $B78?t(B |
$B$J$$JQ?t$,F~NOB?9`<0$K8=$l$F$$$k>l9g$K$O(B, $B<+F0E*$K(B, $B$=$NJQ?t$r(B, $B78?t(B |
$BBN$N85$H$7$F07$&(B. |
$BBN$N85$H$7$F07$&(B. |
|
\E |
|
\BEG |
|
Such variables that appear within the input polynomials but |
|
not appearing in the input variable list are automatically treated |
|
as elements in the coefficient field |
|
by top level functions, such as @code{gr()}. |
|
\E |
|
|
@example |
@example |
[64] gr([a*x+b*y-c,d*x+e*y-f],[x,y],2); |
[64] gr([a*x+b*y-c,d*x+e*y-f],[x,y],2); |
|
|
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
$B$3$NNc$G$O(B, @code{a}, @code{b}, @code{c}, @code{d} $B$,78?tBN$N85$H$7$F(B |
$B$3$NNc$G$O(B, @code{a}, @code{b}, @code{c}, @code{d} $B$,78?tBN$N85$H$7$F(B |
$B07$o$l$k(B. $B$9$J$o$A(B, $BM-M}H!?tBN(B |
$B07$o$l$k(B. $B$9$J$o$A(B, $BM-M}H!?tBN(B |
@b{F} = @b{Q}(@code{a},@code{b},@code{c},@code{d}) $B>e$N(B 2 $BJQ?tB?9`<04D(B |
@b{F} = @b{Q}(@code{a},@code{b},@code{c},@code{d}) $B>e$N(B 2 $BJQ?tB?9`<04D(B |
|
|
$B$K$O0[$J$k(B. $B$^$?(B, $B<g$H$7$F7W;;8zN(>e$NLdBj$N$?$a(B, $BJ,;6I=8=B?9`<0(B |
$B$K$O0[$J$k(B. $B$^$?(B, $B<g$H$7$F7W;;8zN(>e$NLdBj$N$?$a(B, $BJ,;6I=8=B?9`<0(B |
$B$N78?t$H$7$F<B:]$K5v$5$l$k$N$OB?9`<0$^$G$G$"$k(B. $B$9$J$o$A(B, $BJ,Jl$r(B |
$B$N78?t$H$7$F<B:]$K5v$5$l$k$N$OB?9`<0$^$G$G$"$k(B. $B$9$J$o$A(B, $BJ,Jl$r(B |
$B;}$DM-M}<0$OJ,;6I=8=B?9`<0$N78?t$H$7$F$O5v$5$l$J$$(B. |
$B;}$DM-M}<0$OJ,;6I=8=B?9`<0$N78?t$H$7$F$O5v$5$l$J$$(B. |
|
\E |
|
\BEG |
|
In this example, variables @code{a}, @code{b}, @code{c}, and @code{d} |
|
are treated as elements in the coefficient field. |
|
In this case, a Groebner basis is computed |
|
on a bi-variate polynomial ring |
|
@b{F}[@code{x},@code{y}] |
|
over rational function field |
|
@b{F} = @b{Q}(@code{a},@code{b},@code{c},@code{d}). |
|
Notice that coefficients are considered as a member in a field. |
|
As a consequence, polynomial factors common to the coefficients |
|
are removed so that the result, in general, is different from |
|
the result that would be obtained when the problem is considered |
|
as a computation of Groebner basis over a polynomial ring |
|
with rational function coefficients. |
|
And note that coefficients of a distributed polynomial are limited |
|
to numbers and polynomials because of efficiency. |
|
\E |
|
|
|
\BJP |
@node $B4pDlJQ49(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $B4pDlJQ49(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $B4pDlJQ49(B |
@section $B4pDlJQ49(B |
|
\E |
|
\BEG |
|
@node Change of ordering,,, Groebner basis computation |
|
@section Change of orderng |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$B<-=q<0=g=x$N%0%l%V%J4pDl$r5a$a$k>l9g(B, $BD>@\(B @code{gr()} $B$J$I$r5/F0$9$k(B |
$B<-=q<0=g=x$N%0%l%V%J4pDl$r5a$a$k>l9g(B, $BD>@\(B @code{gr()} $B$J$I$r5/F0$9$k(B |
$B$h$j(B, $B0lC6B>$N=g=x(B ($BNc$($PA4<!?t5U<-=q<0=g=x(B) $B$N%0%l%V%J4pDl$r7W;;$7$F(B, |
$B$h$j(B, $B0lC6B>$N=g=x(B ($BNc$($PA4<!?t5U<-=q<0=g=x(B) $B$N%0%l%V%J4pDl$r7W;;$7$F(B, |
$B$=$l$rF~NO$H$7$F<-=q<0=g=x$N%0%l%V%J4pDl$r7W;;$9$kJ}$,8zN($,$h$$>l9g(B |
$B$=$l$rF~NO$H$7$F<-=q<0=g=x$N%0%l%V%J4pDl$r7W;;$9$kJ}$,8zN($,$h$$>l9g(B |
|
|
$B0J2<$N(B 2 $B$D$NH!?t$O(B, $BJQ?t=g=x(B @var{vlist1}, $B9`=g=x7?(B @var{order} $B$G(B |
$B0J2<$N(B 2 $B$D$NH!?t$O(B, $BJQ?t=g=x(B @var{vlist1}, $B9`=g=x7?(B @var{order} $B$G(B |
$B4{$K%0%l%V%J4pDl$H$J$C$F$$$kB?9`<0%j%9%H(B @var{gbase} $B$r(B, $BJQ?t=g=x(B |
$B4{$K%0%l%V%J4pDl$H$J$C$F$$$kB?9`<0%j%9%H(B @var{gbase} $B$r(B, $BJQ?t=g=x(B |
@var{vlist2} $B$K$*$1$k<-=q<0=g=x$N%0%l%V%J4pDl$KJQ49$9$kH!?t$G$"$k(B. |
@var{vlist2} $B$K$*$1$k<-=q<0=g=x$N%0%l%V%J4pDl$KJQ49$9$kH!?t$G$"$k(B. |
|
\E |
|
\BEG |
|
When we compute a lex order Groebner basis, it is often efficient to |
|
compute it via Groebner basis with respect to another order such as |
|
degree reverse lex order, rather than to compute it directory by |
|
@code{gr()} etc. If we know that an input is a Groebner basis with |
|
respect to an order, we can apply special methods called change of |
|
ordering for a Groebner basis computation with respect to another |
|
order, without using Buchberger algorithm. The following two functions |
|
are ones for change of ordering such that they convert a Groebner |
|
basis @var{gbase} with respect to the variable order @var{vlist1} and |
|
the order type @var{order} into a lex Groebner basis with respect |
|
to the variable order @var{vlist2}. |
|
\E |
|
|
@table @code |
@table @code |
@item tolex(@var{gbase},@var{vlist1},@var{order},@var{vlist2}) |
@item tolex(@var{gbase},@var{vlist1},@var{order},@var{vlist2}) |
|
|
|
\BJP |
$B$3$NH!?t$O(B, @var{gbase} $B$,M-M}?tBN>e$N%7%9%F%`$N>l9g$K$N$_;HMQ2DG=$G$"$k(B. |
$B$3$NH!?t$O(B, @var{gbase} $B$,M-M}?tBN>e$N%7%9%F%`$N>l9g$K$N$_;HMQ2DG=$G$"$k(B. |
$B$3$NH!?t$O(B, $B<-=q<0=g=x$N%0%l%V%J4pDl$r(B, $BM-8BBN>e$G7W;;$5$l$?%0%l%V%J4pDl(B |
$B$3$NH!?t$O(B, $B<-=q<0=g=x$N%0%l%V%J4pDl$r(B, $BM-8BBN>e$G7W;;$5$l$?%0%l%V%J4pDl(B |
$B$r?w7?$H$7$F(B, $BL$Dj78?tK!$*$h$S(B Hensel $B9=@.$K$h$j5a$a$k$b$N$G$"$k(B. |
$B$r?w7?$H$7$F(B, $BL$Dj78?tK!$*$h$S(B Hensel $B9=@.$K$h$j5a$a$k$b$N$G$"$k(B. |
|
\E |
|
\BEG |
|
This function can be used only when @var{gbase} is an ideal over the |
|
rationals. The input @var{gbase} must be a Groebner basis with respect |
|
to the variable order @var{vlist1} and the order type @var{order}. Moreover |
|
the ideal generated by @var{gbase} must be zero-dimensional. |
|
This computes the lex Groebner basis of @var{gbase} |
|
by using the modular change of ordering algorithm. The algorithm first |
|
computes the lex Groebner basis over a finite field. Then each element |
|
in the lex Groebner basis over the rationals is computed with undetermined |
|
coefficient method and linear equation solving by Hensel lifting. |
|
\E |
|
|
@item tolex_tl(@var{gbase},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
@item tolex_tl(@var{gbase},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
|
|
|
\BJP |
$B$3$NH!?t$O(B, $B<-=q<0=g=x$N%0%l%V%J4pDl$r(B Buchberger $B%"%k%4%j%:%`$K$h$j5a(B |
$B$3$NH!?t$O(B, $B<-=q<0=g=x$N%0%l%V%J4pDl$r(B Buchberger $B%"%k%4%j%:%`$K$h$j5a(B |
$B$a$k$b$N$G$"$k$,(B, $BF~NO$,$"$k=g=x$K$*$1$k%0%l%V%J4pDl$G$"$k>l9g$N(B |
$B$a$k$b$N$G$"$k$,(B, $BF~NO$,$"$k=g=x$K$*$1$k%0%l%V%J4pDl$G$"$k>l9g$N(B |
trace-lifting$B$K$*$1$k%0%l%V%J4pDl8uJd$NF,9`(B, $BF,78?t$N@-<A$rMxMQ$7$F(B, |
trace-lifting$B$K$*$1$k%0%l%V%J4pDl8uJd$NF,9`(B, $BF,78?t$N@-<A$rMxMQ$7$F(B, |
Line 536 trace-lifting$B$K$*$1$k%0%l%V%J4pDl8uJd$NF,9`(B, $B |
|
Line 1183 trace-lifting$B$K$*$1$k%0%l%V%J4pDl8uJd$NF,9`(B, $B |
|
$BD>@\<-=q<0=g=x$N7W;;$r9T$&$h$j8zN($,$h$$(B. ($B$b$A$m$sNc30$"$j(B. ) |
$BD>@\<-=q<0=g=x$N7W;;$r9T$&$h$j8zN($,$h$$(B. ($B$b$A$m$sNc30$"$j(B. ) |
$B0z?t(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, @code{hgr()} $B$HF1MM$K@F<!2=$r7PM3$7$F(B |
$B0z?t(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, @code{hgr()} $B$HF1MM$K@F<!2=$r7PM3$7$F(B |
$B7W;;$r9T$&(B. |
$B7W;;$r9T$&(B. |
|
\E |
|
\BEG |
|
This function computes the lex Groebner basis of @var{gbase}. The |
|
input @var{gbase} must be a Groebner basis with respect to the |
|
variable order @var{vlist1} and the order type @var{order}. |
|
Buchberger algorithm with trace lifting is used to compute the lex |
|
Groebner basis, however the Groebner basis check and the ideal |
|
membership check can be omitted by using several properties derived |
|
from the fact that the input is a Groebner basis. So it is more |
|
efficient than simple repetition of Buchberger algorithm. If the input |
|
is zero-dimensional, this function inserts automatically a computation |
|
of Groebner basis with respect to an elimination order, which makes |
|
the whole computation more efficient for many cases. If @var{homo} is |
|
not equal to 0, homogenization is used in each step. |
|
\E |
@end table |
@end table |
|
|
@noindent |
@noindent |
|
\BJP |
$B$=$NB>(B, 0 $B<!85%7%9%F%`$KBP$7(B, $BM?$($i$l$?B?9`<0$N:G>.B?9`<0$r5a$a$k(B |
$B$=$NB>(B, 0 $B<!85%7%9%F%`$KBP$7(B, $BM?$($i$l$?B?9`<0$N:G>.B?9`<0$r5a$a$k(B |
$BH!?t(B, 0 $B<!85%7%9%F%`$N2r$r(B, $B$h$j%3%s%Q%/%H$KI=8=$9$k$?$a$NH!?t$J$I$,(B |
$BH!?t(B, 0 $B<!85%7%9%F%`$N2r$r(B, $B$h$j%3%s%Q%/%H$KI=8=$9$k$?$a$NH!?t$J$I$,(B |
@samp{gr} $B$GDj5A$5$l$F$$$k(B. $B$3$l$i$K$D$$$F$O8D!9$NH!?t$N@bL@$r;2>H$N$3$H(B. |
@samp{gr} $B$GDj5A$5$l$F$$$k(B. $B$3$l$i$K$D$$$F$O8D!9$NH!?t$N@bL@$r;2>H$N$3$H(B. |
|
\E |
|
\BEG |
|
For zero-dimensional systems, there are several fuctions to |
|
compute the minimal polynomial of a polynomial and or a more compact |
|
representation for zeros of the system. They are all defined in @samp{gr}. |
|
Refer to the sections for each functions. |
|
\E |
|
|
|
\BJP |
|
@node Weyl $BBe?t(B,,, $B%0%l%V%J4pDl$N7W;;(B |
|
@section Weyl $BBe?t(B |
|
\E |
|
\BEG |
|
@node Weyl algebra,,, Groebner basis computation |
|
@section Weyl algebra |
|
\E |
|
|
|
@noindent |
|
|
|
\BJP |
|
$B$3$l$^$G$O(B, $BDL>o$N2D49$JB?9`<04D$K$*$1$k%0%l%V%J4pDl7W;;$K$D$$$F(B |
|
$B=R$Y$F$-$?$,(B, $B%0%l%V%J4pDl$NM}O@$O(B, $B$"$k>r7o$rK~$?$9Hs2D49$J(B |
|
$B4D$K$b3HD%$G$-$k(B. $B$3$N$h$&$J4D$NCf$G(B, $B1~MQ>e$b=EMW$J(B, |
|
Weyl $BBe?t(B, $B$9$J$o$AB?9`<04D>e$NHyJ,:nMQAG4D$N1i;;$*$h$S(B |
|
$B%0%l%V%J4pDl7W;;$,(B Risa/Asir $B$K<BAu$5$l$F$$$k(B. |
|
|
|
$BBN(B @code{K} $B>e$N(B @code{n} $B<!85(B Weyl $BBe?t(B |
|
@code{D=K<x1,@dots{},xn,D1,@dots{},Dn>} $B$O(B |
|
\E |
|
|
|
\BEG |
|
So far we have explained Groebner basis computation in |
|
commutative polynomial rings. However Groebner basis can be |
|
considered in more general non-commutative rings. |
|
Weyl algebra is one of such rings and |
|
Risa/Asir implements fundamental operations |
|
in Weyl algebra and Groebner basis computation in Weyl algebra. |
|
|
|
The @code{n} dimensional Weyl algebra over a field @code{K}, |
|
@code{D=K<x1,@dots{},xn,D1,@dots{},Dn>} is a non-commutative |
|
algebra which has the following fundamental relations: |
|
\E |
|
|
|
@code{xi*xj-xj*xi=0}, @code{Di*Dj-Dj*Di=0}, @code{Di*xj-xj*Di=0} (@code{i!=j}), |
|
@code{Di*xi-xi*Di=1} |
|
|
|
\BJP |
|
$B$H$$$&4pK\4X78$r;}$D4D$G$"$k(B. @code{D} $B$O(B $BB?9`<04D(B @code{K[x1,@dots{},xn]} $B$r78?t(B |
|
$B$H$9$kHyJ,:nMQAG4D$G(B, @code{Di} $B$O(B @code{xi} $B$K$h$kHyJ,$rI=$9(B. $B8r494X78$K$h$j(B, |
|
@code{D} $B$N85$O(B, @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn} $B$J$kC19`(B |
|
$B<0$N(B @code{K} $B@~7A7k9g$H$7$F=q$-I=$9$3$H$,$G$-$k(B. |
|
Risa/Asir $B$K$*$$$F$O(B, $B$3$NC19`<0$r(B, $B2D49$JB?9`<0$HF1MM$K(B |
|
@code{<<i1,@dots{},in,j1,@dots{},jn>>} $B$GI=$9(B. $B$9$J$o$A(B, @code{D} $B$N85$b(B |
|
$BJ,;6I=8=B?9`<0$H$7$FI=$5$l$k(B. $B2C8:;;$O(B, $B2D49$N>l9g$HF1MM$K(B, @code{+}, @code{-} |
|
$B$K$h$j(B |
|
$B<B9T$G$-$k$,(B, $B>h;;$O(B, $BHs2D49@-$r9MN8$7$F(B @code{dp_weyl_mul()} $B$H$$$&4X?t(B |
|
$B$K$h$j<B9T$9$k(B. |
|
\E |
|
|
|
\BEG |
|
@code{D} is the ring of differential operators whose coefficients |
|
are polynomials in @code{K[x1,@dots{},xn]} and |
|
@code{Di} denotes the differentiation with respect to @code{xi}. |
|
According to the commutation relation, |
|
elements of @code{D} can be represented as a @code{K}-linear combination |
|
of monomials @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn}. |
|
In Risa/Asir, this type of monomial is represented |
|
by @code{<<i1,@dots{},in,j1,@dots{},jn>>} as in the case of commutative |
|
polynomial. |
|
That is, elements of @code{D} are represented by distributed polynomials. |
|
Addition and subtraction can be done by @code{+}, @code{-}, |
|
but multiplication is done by calling @code{dp_weyl_mul()} because of |
|
the non-commutativity of @code{D}. |
|
\E |
|
|
|
@example |
|
[0] A=<<1,2,2,1>>; |
|
(1)*<<1,2,2,1>> |
|
[1] B=<<2,1,1,2>>; |
|
(1)*<<2,1,1,2>> |
|
[2] A*B; |
|
(1)*<<3,3,3,3>> |
|
[3] dp_weyl_mul(A,B); |
|
(1)*<<3,3,3,3>>+(1)*<<3,2,3,2>>+(4)*<<2,3,2,3>>+(4)*<<2,2,2,2>> |
|
+(2)*<<1,3,1,3>>+(2)*<<1,2,1,2>> |
|
@end example |
|
|
|
\BJP |
|
$B%0%l%V%J4pDl7W;;$K$D$$$F$b(B, Weyl $BBe?t@lMQ$N4X?t$H$7$F(B, |
|
$B<!$N4X?t$,MQ0U$7$F$"$k(B. |
|
\E |
|
\BEG |
|
The following functions are avilable for Groebner basis computation |
|
in Weyl algebra: |
|
\E |
|
@code{dp_weyl_gr_main()}, |
|
@code{dp_weyl_gr_mod_main()}, |
|
@code{dp_weyl_gr_f_main()}, |
|
@code{dp_weyl_f4_main()}, |
|
@code{dp_weyl_f4_mod_main()}. |
|
\BJP |
|
$B$^$?(B, $B1~MQ$H$7$F(B, global b $B4X?t$N7W;;$,<BAu$5$l$F$$$k(B. |
|
\E |
|
\BEG |
|
Computation of the global b function is implemented as an application. |
|
\E |
|
|
|
\BJP |
@node $B%0%l%V%J4pDl$K4X$9$kH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $B%0%l%V%J4pDl$K4X$9$kH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
@section $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\E |
|
\BEG |
|
@node Functions for Groebner basis computation,,, Groebner basis computation |
|
@section Functions for Groebner basis computation |
|
\E |
|
|
@menu |
@menu |
* gr hgr gr_mod:: |
* gr hgr gr_mod:: |
Line 553 trace-lifting$B$K$*$1$k%0%l%V%J4pDl8uJd$NF,9`(B, $B |
|
Line 1327 trace-lifting$B$K$*$1$k%0%l%V%J4pDl8uJd$NF,9`(B, $B |
|
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* gr_minipoly minipoly:: |
* gr_minipoly minipoly:: |
* tolexm minipolym:: |
* tolexm minipolym:: |
* dp_gr_main dp_gr_mod_main:: |
* dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main:: |
* dp_f4_main dp_f4_mod_main:: |
* dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main:: |
* dp_gr_flags dp_gr_print:: |
* dp_gr_flags dp_gr_print:: |
* dp_ord:: |
* dp_ord:: |
* dp_ptod:: |
* dp_ptod:: |
Line 578 trace-lifting$B$K$*$1$k%0%l%V%J4pDl8uJd$NF,9`(B, $B |
|
Line 1352 trace-lifting$B$K$*$1$k%0%l%V%J4pDl8uJd$NF,9`(B, $B |
|
* katsura hkatsura cyclic hcyclic:: |
* katsura hkatsura cyclic hcyclic:: |
* dp_vtoe dp_etov:: |
* dp_vtoe dp_etov:: |
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
|
* primadec primedec:: |
|
* primedec_mod:: |
|
* bfunction bfct generic_bfct:: |
@end menu |
@end menu |
|
|
@node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node gr hgr gr_mod,,, Functions for Groebner basis computation |
@subsection @code{gr}, @code{hgr}, @code{gr_mod}, @code{dgr} |
@subsection @code{gr}, @code{hgr}, @code{gr_mod}, @code{dgr} |
@findex gr |
@findex gr |
@findex hgr |
@findex hgr |
Line 592 trace-lifting$B$K$*$1$k%0%l%V%J4pDl8uJd$NF,9`(B, $B |
|
Line 1370 trace-lifting$B$K$*$1$k%0%l%V%J4pDl8uJd$NF,9`(B, $B |
|
@itemx hgr(@var{plist},@var{vlist},@var{order}) |
@itemx hgr(@var{plist},@var{vlist},@var{order}) |
@itemx gr_mod(@var{plist},@var{vlist},@var{order},@var{p}) |
@itemx gr_mod(@var{plist},@var{vlist},@var{order},@var{p}) |
@itemx dgr(@var{plist},@var{vlist},@var{order},@var{procs}) |
@itemx dgr(@var{plist},@var{vlist},@var{order},@var{procs}) |
:: $B%0%l%V%J4pDl$N7W;;(B |
\JP :: $B%0%l%V%J4pDl$N7W;;(B |
|
\EG :: Groebner basis computation |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B%j%9%H(B |
\JP $B%j%9%H(B |
@item plist, vlist, procs |
\EG list |
$B%j%9%H(B |
@item plist vlist procs |
|
\JP $B%j%9%H(B |
|
\EG list |
@item order |
@item order |
$B?t(B, $B%j%9%H$^$?$O9TNs(B |
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
@item p |
@item p |
2^27 $BL$K~$NAG?t(B |
\JP 2^27 $BL$K~$NAG?t(B |
|
\EG prime less than 2^27 |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
$BI8=`%i%$%V%i%j$N(B @samp{gr} $B$GDj5A$5$l$F$$$k(B. |
$BI8=`%i%$%V%i%j$N(B @samp{gr} $B$GDj5A$5$l$F$$$k(B. |
@item |
@item |
Line 628 strategy $B$K$h$k7W;;(B, @code{hgr()} $B$O(B trace |
|
Line 1412 strategy $B$K$h$k7W;;(B, @code{hgr()} $B$O(B trace |
|
@item |
@item |
@code{dgr()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$G$N(B |
@code{dgr()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$G$N(B |
CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$N$?$a$N;~4V$G$"$k(B. |
CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$N$?$a$N;~4V$G$"$k(B. |
|
\E |
|
\BEG |
|
@item |
|
These functions are defined in @samp{gr} in the standard library |
|
directory. |
|
@item |
|
They compute a Groebner basis of a polynomial list @var{plist} with |
|
respect to the variable order @var{vlist} and the order type @var{order}. |
|
@code{gr()} and @code{hgr()} compute a Groebner basis over the rationals |
|
and @code{gr_mod} computes over GF(@var{p}). |
|
@item |
|
Variables not included in @var{vlist} are regarded as |
|
included in the ground field. |
|
@item |
|
@code{gr()} uses trace-lifting (an improvement by modular computation) |
|
and sugar strategy. |
|
@code{hgr()} uses trace-lifting and a cured sugar strategy |
|
by using homogenization. |
|
@item |
|
@code{dgr()} executes @code{gr()}, @code{dgr()} simultaneously on |
|
two process in a child process list @var{procs} and returns |
|
the result obtained first. The results returned from both the process |
|
should be equal, but it is not known in advance which method is faster. |
|
Therefore this function is useful to reduce the actual elapsed time. |
|
@item |
|
The CPU time shown after an exection of @code{dgr()} indicates |
|
that of the master process, and most of the time corresponds to the time |
|
for communication. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 642 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
Line 1455 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
@comment @fref{dp_gr_main dp_gr_mod_main}, |
\EG @item References |
@fref{dp_gr_main dp_gr_mod_main}, |
@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main}, |
@fref{dp_ord}. |
@fref{dp_ord}. |
@end table |
@end table |
|
|
@node lex_hensel lex_tl tolex tolex_d tolex_tl,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node lex_hensel lex_tl tolex tolex_d tolex_tl,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node lex_hensel lex_tl tolex tolex_d tolex_tl,,, Functions for Groebner basis computation |
@subsection @code{lex_hensel}, @code{lex_tl}, @code{tolex}, @code{tolex_d}, @code{tolex_tl} |
@subsection @code{lex_hensel}, @code{lex_tl}, @code{tolex}, @code{tolex_d}, @code{tolex_tl} |
@findex lex_hensel |
@findex lex_hensel |
@findex lex_tl |
@findex lex_tl |
Line 659 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
Line 1473 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
@table @t |
@table @t |
@item lex_hensel(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
@item lex_hensel(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
@itemx lex_tl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
@itemx lex_tl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
:: $B4pDlJQ49$K$h$k<-=q<0=g=x%0%l%V%J4pDl$N7W;;(B |
\JP :: $B4pDlJQ49$K$h$k<-=q<0=g=x%0%l%V%J4pDl$N7W;;(B |
|
\EG:: Groebner basis computation with respect to a lex order by change of ordering |
@item tolex(@var{plist},@var{vlist1},@var{order},@var{vlist2}) |
@item tolex(@var{plist},@var{vlist1},@var{order},@var{vlist2}) |
@itemx tolex_d(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{procs}) |
@itemx tolex_d(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{procs}) |
@itemx tolex_tl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
@itemx tolex_tl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
:: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, $B4pDlJQ49$K$h$k<-=q<0=g=x%0%l%V%J4pDl$N7W;;(B |
\JP :: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, $B4pDlJQ49$K$h$k<-=q<0=g=x%0%l%V%J4pDl$N7W;;(B |
|
\EG :: Groebner basis computation with respect to a lex order by change of ordering, starting from a Groebner basis |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B%j%9%H(B |
\JP $B%j%9%H(B |
@item plist, vlist1, vlist2, procs |
\EG list |
$B%j%9%H(B |
@item plist vlist1 vlist2 procs |
|
\JP $B%j%9%H(B |
|
\EG list |
@item order |
@item order |
$B?t(B, $B%j%9%H$^$?$O9TNs(B |
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
@item homo |
@item homo |
$B%U%i%0(B |
\JP $B%U%i%0(B |
|
\EG flag |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
$BI8=`%i%$%V%i%j$N(B @samp{gr} $B$GDj5A$5$l$F$$$k(B. |
$BI8=`%i%$%V%i%j$N(B @samp{gr} $B$GDj5A$5$l$F$$$k(B. |
@item |
@item |
Line 695 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
Line 1516 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
@item |
@item |
@code{lex_hensel()}, @code{lex_tl()} $B$K$*$$$F$O(B, $B<-=q<0=g=x%0%l%V%J4pDl$N(B |
@code{lex_hensel()}, @code{lex_tl()} $B$K$*$$$F$O(B, $B<-=q<0=g=x%0%l%V%J4pDl$N(B |
$B7W;;$O<!$N$h$&$K9T$o$l$k(B. (@code{[Noro,Yokoyama]} $B;2>H(B.) |
$B7W;;$O<!$N$h$&$K9T$o$l$k(B. (@code{[Noro,Yokoyama]} $B;2>H(B.) |
|
|
@enumerate |
@enumerate |
@item |
@item |
@var{vlist1}, @var{order} $B$K4X$9$k%0%l%V%J4pDl(B @var{G0} $B$r7W;;$9$k(B. |
@var{vlist1}, @var{order} $B$K4X$9$k%0%l%V%J4pDl(B @var{G0} $B$r7W;;$9$k(B. |
Line 750 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
Line 1570 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
@item |
@item |
@code{tolex_d()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$K(B |
@code{tolex_d()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$K(B |
$B$*$$$F9T$o$l$?7W;;$KBP1~$7$F$$$F(B, $B;R%W%m%;%9$K$*$1$k;~4V$O4^$^$l$J$$(B. |
$B$*$$$F9T$o$l$?7W;;$KBP1~$7$F$$$F(B, $B;R%W%m%;%9$K$*$1$k;~4V$O4^$^$l$J$$(B. |
|
\E |
|
\BEG |
|
@item |
|
These functions are defined in @samp{gr} in the standard library |
|
directory. |
|
@item |
|
@code{lex_hensel()} and @code{lex_tl()} first compute a Groebner basis |
|
with respect to the variable order @var{vlist1} and the order type @var{order}. |
|
Then the Groebner basis is converted into a lex order Groebner basis |
|
with respect to the varable order @var{vlist2}. |
|
@item |
|
@code{tolex()} and @code{tolex_tl()} convert a Groebner basis @var{plist} |
|
with respect to the variable order @var{vlist1} and the order type @var{order} |
|
into a lex order Groebner basis |
|
with respect to the varable order @var{vlist2}. |
|
@code{tolex_d()} does computations of basis elements in @code{tolex()} |
|
in parallel on the processes in a child process list @var{procs}. |
|
@item |
|
In @code{lex_hensel()} and @code{tolex_hensel()} a lex order Groebner basis |
|
is computed as follows.(Refer to @code{[Noro,Yokoyama]}.) |
|
@enumerate |
|
@item |
|
Compute a Groebner basis @var{G0} with respect to @var{vlist1} and @var{order}. |
|
(Only in @code{lex_hensel()}. ) |
|
@item |
|
Choose a prime which does not divide head coefficients of elements in @var{G0} |
|
with respect to @var{vlist1} and @var{order}. Then compute a lex order |
|
Groebner basis @var{Gp} over GF(@var{p}) with respect to @var{vlist2}. |
|
@item |
|
Compute @var{NF}, the set of all the normal forms with respect to |
|
@var{G0} of terms appearing in @var{Gp}. |
|
@item |
|
For each element @var{f} in @var{Gp}, replace coefficients and terms in @var{f} |
|
with undetermined coefficients and the corresponding polynomials in @var{NF} |
|
respectively, and generate a system of liear equation @var{Lf} by equating |
|
the coefficients of terms in the replaced polynomial with 0. |
|
@item |
|
Solve @var{Lf} by Hensel lifting, starting from the unique mod @var{p} |
|
solution. |
|
@item |
|
If all the linear equations generated from the elements in @var{Gp} |
|
could be solved, then the set of solutions corresponds to a lex order |
|
Groebner basis. Otherwise redo the whole process with another @var{p}. |
|
@end enumerate |
|
|
|
@item |
|
In @code{lex_tl()} and @code{tolex_tl()} a lex order Groebner basis |
|
is computed as follows.(Refer to @code{[Noro,Yokoyama]}.) |
|
|
|
@enumerate |
|
@item |
|
Compute a Groebner basis @var{G0} with respect to @var{vlist1} and @var{order}. |
|
(Only in @code{lex_tl()}. ) |
|
@item |
|
If @var{G0} is not zero-dimensional, choose a prime which does not divide |
|
head coefficients of elements in @var{G0} with respect to @var{vlist1} and |
|
@var{order}. Then compute a candidate of a lex order Groebner basis |
|
via trace lifting with @var{p}. If it succeeds the candidate is indeed |
|
a lex order Groebner basis without any check. Otherwise redo the whole |
|
process with another @var{p}. |
|
@item |
|
|
|
If @var{G0} is zero-dimensional, starting from @var{G0}, |
|
compute a Groebner basis @var{G1} with respect to an elimination order |
|
to eliminate variables other than the last varibale in @var{vlist2}. |
|
Then compute a lex order Groebner basis stating from @var{G1}. These |
|
computations are done by trace lifting and the selection of a mudulus |
|
@var{p} is the same as in non zero-dimensional cases. |
|
@end enumerate |
|
|
|
@item |
|
Computations with rational function coefficients can be done only by |
|
@code{lex_tl()} and @code{tolex_tl()}. |
|
@item |
|
If @code{homo} is not equal to 0, homogenization is used in Buchberger |
|
algorithm. |
|
@item |
|
The CPU time shown after an execution of @code{tolex_d()} indicates |
|
that of the master process, and it does not include the time in child |
|
processes. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 771 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
Line 1672 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
@fref{dp_gr_main dp_gr_mod_main}, |
\EG @item References |
@fref{dp_ord}, @fref{$BJ,;67W;;(B} |
@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main}, |
|
\JP @fref{dp_ord}, @fref{$BJ,;67W;;(B} |
|
\EG @fref{dp_ord}, @fref{Distributed computation} |
@end table |
@end table |
|
|
@node lex_hensel_gsl tolex_gsl tolex_gsl_d,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node lex_hensel_gsl tolex_gsl tolex_gsl_d,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node lex_hensel_gsl tolex_gsl tolex_gsl_d,,, Functions for Groebner basis computation |
@subsection @code{lex_hensel_gsl}, @code{tolex_gsl}, @code{tolex_gsl_d} |
@subsection @code{lex_hensel_gsl}, @code{tolex_gsl}, @code{tolex_gsl_d} |
@findex lex_hensel_gsl |
@findex lex_hensel_gsl |
@findex tolex_gsl |
@findex tolex_gsl |
Line 784 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
Line 1688 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
|
|
@table @t |
@table @t |
@item lex_hensel_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
@item lex_hensel_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
:: GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B |
\JP :: GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B |
@item tolex_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) |
\EG ::Computation of an GSL form ideal basis |
@itemx tolex_gsl_d(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo},@var{procs}) |
@item tolex_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2}) |
:: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B |
@itemx tolex_gsl_d(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{procs}) |
|
\JP :: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B |
|
\EG :: Computation of an GSL form ideal basis stating from a Groebner basis |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B%j%9%H(B |
\JP $B%j%9%H(B |
@item plist, vlist1, vlist2, procs |
\EG list |
$B%j%9%H(B |
@item plist vlist1 vlist2 procs |
|
\JP $B%j%9%H(B |
|
\EG list |
@item order |
@item order |
$B?t(B, $B%j%9%H$^$?$O9TNs(B |
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
@item homo |
@item homo |
$B%U%i%0(B |
\JP $B%U%i%0(B |
|
\EG flag |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@code{lex_hensel_gsl()} $B$O(B @code{lex_hensel()} $B$N(B, @code{tolex_gsl()} $B$O(B |
@code{lex_hensel_gsl()} $B$O(B @code{lex_hensel()} $B$N(B, @code{tolex_gsl()} $B$O(B |
@code{tolex()} $B$NJQ<o$G(B, $B7k2L$N$_$,0[$J$k(B. |
@code{tolex()} $B$NJQ<o$G(B, $B7k2L$N$_$,0[$J$k(B. |
Line 813 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
Line 1724 CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ |
|
@code{x0} $B$N(B 1 $BJQ?tB?9`<0(B) $B$J$k7A(B ($B$3$l$r(B SL $B7A<0$H8F$V(B) $B$r;}$D>l9g(B, |
@code{x0} $B$N(B 1 $BJQ?tB?9`<0(B) $B$J$k7A(B ($B$3$l$r(B SL $B7A<0$H8F$V(B) $B$r;}$D>l9g(B, |
@code{[[x1,g1,d1],...,[xn,gn,dn],[x0,f0,f0']]} $B$J$k%j%9%H(B ($B$3$l$r(B GSL $B7A<0$H8F$V(B) |
@code{[[x1,g1,d1],...,[xn,gn,dn],[x0,f0,f0']]} $B$J$k%j%9%H(B ($B$3$l$r(B GSL $B7A<0$H8F$V(B) |
$B$rJV$9(B. |
$B$rJV$9(B. |
$B$3$3$G(B, @code{gi} $B$O(B, @code{f0'fi-gi} $B$,(B @code{f0} $B$G3d$j@Z$l$k$h$&$J(B |
$B$3$3$G(B, @code{gi} $B$O(B, @code{di*f0'*fi-gi} $B$,(B @code{f0} $B$G3d$j@Z$l$k$h$&$J(B |
@code{x0} $B$N(B1 $BJQ?tB?9`<0$G(B, |
@code{x0} $B$N(B1 $BJQ?tB?9`<0$G(B, |
$B2r$O(B @code{f0(x0)=0} $B$J$k(B @code{x0} $B$KBP$7(B, @code{[x1=g1/(d1*f0'),...,xn=gn/(dn*f0')]} |
$B2r$O(B @code{f0(x0)=0} $B$J$k(B @code{x0} $B$KBP$7(B, @code{[x1=g1/(d1*f0'),...,xn=gn/(dn*f0')]} |
$B$H$J$k(B. $B<-=q<0=g=x%0%l%V%J4pDl$,>e$N$h$&$J7A$G$J$$>l9g(B, @code{tolex()} $B$K(B |
$B$H$J$k(B. $B<-=q<0=g=x%0%l%V%J4pDl$,>e$N$h$&$J7A$G$J$$>l9g(B, @code{tolex()} $B$K(B |
Line 823 GSL $B7A<0$K$h$jI=$5$l$k4pDl$O%0%l%V%J4pDl$G$O$J$$$, |
|
Line 1734 GSL $B7A<0$K$h$jI=$5$l$k4pDl$O%0%l%V%J4pDl$G$O$J$$$, |
|
$B$N%0%l%V%J4pDl$h$jHs>o$K>.$5$$$?$a7W;;$bB.$/(B, $B2r$b5a$a$d$9$$(B. |
$B$N%0%l%V%J4pDl$h$jHs>o$K>.$5$$$?$a7W;;$bB.$/(B, $B2r$b5a$a$d$9$$(B. |
@code{tolex_gsl_d()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$K(B |
@code{tolex_gsl_d()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$K(B |
$B$*$$$F9T$o$l$?7W;;$KBP1~$7$F$$$F(B, $B;R%W%m%;%9$K$*$1$k;~4V$O4^$^$l$J$$(B. |
$B$*$$$F9T$o$l$?7W;;$KBP1~$7$F$$$F(B, $B;R%W%m%;%9$K$*$1$k;~4V$O4^$^$l$J$$(B. |
|
\E |
|
\BEG |
|
@item |
|
@code{lex_hensel_gsl()} and @code{lex_hensel()} are variants of |
|
@code{tolex_gsl()} and @code{tolex()} respectively. The results are |
|
Groebner basis or a kind of ideal basis, called GSL form. |
|
@code{tolex_gsl_d()} does basis computations in parallel on child |
|
processes specified in @code{procs}. |
|
|
|
@item |
|
If the input is zero-dimensional and a lex order Groebner basis has |
|
the form @code{[f0,x1-f1,...,xn-fn]} (@code{f0},...,@code{fn} are |
|
univariate polynomials of @code{x0}; SL form), then this these |
|
functions return a list such as |
|
@code{[[x1,g1,d1],...,[xn,gn,dn],[x0,f0,f0']]} (GSL form). In this list |
|
@code{gi} is a univariate polynomial of @code{x0} such that |
|
@code{di*f0'*fi-gi} divides @code{f0} and the roots of the input ideal is |
|
@code{[x1=g1/(d1*f0'),...,xn=gn/(dn*f0')]} for @code{x0} |
|
such that @code{f0(x0)=0}. |
|
If the lex order Groebner basis does not have the above form, |
|
these functions return |
|
a lex order Groebner basis computed by @code{tolex()}. |
|
@item |
|
Though an ideal basis represented as GSL form is not a Groebner basis |
|
we can expect that the coefficients are much smaller than those in a Groebner |
|
basis and that the computation is efficient. |
|
The CPU time shown after an execution of @code{tolex_gsl_d()} indicates |
|
that of the master process, and it does not include the time in child |
|
processes. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 835 GSL $B7A<0$K$h$jI=$5$l$k4pDl$O%0%l%V%J4pDl$G$O$J$$$, |
|
Line 1776 GSL $B7A<0$K$h$jI=$5$l$k4pDl$O%0%l%V%J4pDl$G$O$J$$$, |
|
[108] GSL[1]; |
[108] GSL[1]; |
[u2,10352277157007342793600000000*u0^31-...] |
[u2,10352277157007342793600000000*u0^31-...] |
[109] GSL[5]; |
[109] GSL[5]; |
[u0,11771021876193064124640000000*u0^32-...,376672700038178051988480000000*u0^31-...] |
[u0,11771021876193064124640000000*u0^32-..., |
|
376672700038178051988480000000*u0^31-...] |
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{lex_hensel lex_tl tolex tolex_d tolex_tl}, |
@fref{lex_hensel lex_tl tolex tolex_d tolex_tl}, |
@fref{$BJ,;67W;;(B} |
\JP @fref{$BJ,;67W;;(B} |
|
\EG @fref{Distributed computation} |
@end table |
@end table |
|
|
@node gr_minipoly minipoly,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node gr_minipoly minipoly,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node gr_minipoly minipoly,,, Functions for Groebner basis computation |
@subsection @code{gr_minipoly}, @code{minipoly} |
@subsection @code{gr_minipoly}, @code{minipoly} |
@findex gr_minipoly |
@findex gr_minipoly |
@findex minipoly |
@findex minipoly |
|
|
@table @t |
@table @t |
@item gr_minipoly(@var{plist},@var{vlist},@var{order},@var{poly},@var{v},@var{homo}) |
@item gr_minipoly(@var{plist},@var{vlist},@var{order},@var{poly},@var{v},@var{homo}) |
:: $BB?9`<0$N(B, $B%$%G%"%k$rK!$H$7$?:G>.B?9`<0$N7W;;(B |
\JP :: $BB?9`<0$N(B, $B%$%G%"%k$rK!$H$7$?:G>.B?9`<0$N7W;;(B |
|
\EG :: Computation of the minimal polynomial of a polynomial modulo an ideal |
@item minipoly(@var{plist},@var{vlist},@var{order},@var{poly},@var{v}) |
@item minipoly(@var{plist},@var{vlist},@var{order},@var{poly},@var{v}) |
:: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, $BB?9`<0$N:G>.B?9`<0$N7W;;(B |
\JP :: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, $BB?9`<0$N:G>.B?9`<0$N7W;;(B |
|
\EG :: Computation of the minimal polynomial of a polynomial modulo an ideal |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BB?9`<0(B |
\JP $BB?9`<0(B |
@item plist, vlist |
\EG polynomial |
$B%j%9%H(B |
@item plist vlist |
|
\JP $B%j%9%H(B |
|
\EG list |
@item order |
@item order |
$B?t(B, $B%j%9%H$^$?$O9TNs(B |
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
@item poly |
@item poly |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@item v |
@item v |
$BITDj85(B |
\JP $BITDj85(B |
|
\EG indeterminate |
@item homo |
@item homo |
$B%U%i%0(B |
\JP $B%U%i%0(B |
|
\EG flag |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@code{gr_minipoly()} $B$O%0%l%V%J4pDl$N7W;;$+$i9T$$(B, @code{minipoly()} $B$O(B |
@code{gr_minipoly()} $B$O%0%l%V%J4pDl$N7W;;$+$i9T$$(B, @code{minipoly()} $B$O(B |
$BF~NO$r%0%l%V%J4pDl$H$_$J$9(B. |
$BF~NO$r%0%l%V%J4pDl$H$_$J$9(B. |
Line 890 K[@var{v}] $B$N85(B f(@var{v}) $B$K(B f(@var{p}) m |
|
Line 1844 K[@var{v}] $B$N85(B f(@var{v}) $B$K(B f(@var{p}) m |
|
@item |
@item |
@code{gr_minipoly()} $B$K;XDj$9$k9`=g=x$H$7$F$O(B, $BDL>oA4<!?t5U<-=q<0=g=x$r(B |
@code{gr_minipoly()} $B$K;XDj$9$k9`=g=x$H$7$F$O(B, $BDL>oA4<!?t5U<-=q<0=g=x$r(B |
$BMQ$$$k(B. |
$BMQ$$$k(B. |
|
\E |
|
\BEG |
|
@item |
|
@code{gr_minipoly()} begins by computing a Groebner basis. |
|
@code{minipoly()} regards an input as a Groebner basis with respect to |
|
the variable order @var{vlist} and the order type @var{order}. |
|
@item |
|
Let K be a field. If an ideal @var{I} in K[X] is zero-dimensional, then, for |
|
a polynomial @var{p} in K[X], the kernel of a homomorphism from |
|
K[@var{v}] to K[X]/@var{I} which maps f(@var{v}) to f(@var{p}) mod @var{I} |
|
is generated by a polynomial. The generator is called the minimal polynomial |
|
of @var{p} modulo @var{I}. |
|
@item |
|
@code{gr_minipoly()} and @code{minipoly()} computes the minimal polynomial |
|
of a polynomial @var{p} and returns it as a polynomial of @var{v}. |
|
@item |
|
The minimal polynomial can be computed as an element of a Groebner basis. |
|
But if we are only interested in the minimal polynomial, |
|
@code{minipoly()} and @code{gr_minipoly()} can compute it more efficiently |
|
than methods using Groebner basis computation. |
|
@item |
|
It is recommended to use a degree reverse lex order as a term order |
|
for @code{gr_minipoly()}. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 902 K[@var{v}] $B$N85(B f(@var{v}) $B$K(B f(@var{p}) m |
|
Line 1880 K[@var{v}] $B$N85(B f(@var{v}) $B$K(B f(@var{p}) m |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{lex_hensel lex_tl tolex tolex_d tolex_tl}. |
@fref{lex_hensel lex_tl tolex tolex_d tolex_tl}. |
@end table |
@end table |
|
|
@node tolexm minipolym,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node tolexm minipolym,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node tolexm minipolym,,, Functions for Groebner basis computation |
@subsection @code{tolexm}, @code{minipolym} |
@subsection @code{tolexm}, @code{minipolym} |
@findex tolexm |
@findex tolexm |
@findex minipolym |
@findex minipolym |
|
|
@table @t |
@table @t |
@item tolexm(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{mod}) |
@item tolexm(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{mod}) |
:: $BK!(B @var{mod} $B$G$N4pDlJQ49$K$h$k%0%l%V%J4pDl7W;;(B |
\JP :: $BK!(B @var{mod} $B$G$N4pDlJQ49$K$h$k%0%l%V%J4pDl7W;;(B |
|
\EG :: Groebner basis computation modulo @var{mod} by change of ordering. |
@item minipolym(@var{plist},@var{vlist1},@var{order},@var{poly},@var{v},@var{mod}) |
@item minipolym(@var{plist},@var{vlist1},@var{order},@var{poly},@var{v},@var{mod}) |
:: $BK!(B @var{mod} $B$G$N%0%l%V%J4pDl$K$h$kB?9`<0$N:G>.B?9`<0$N7W;;(B |
\JP :: $BK!(B @var{mod} $B$G$N%0%l%V%J4pDl$K$h$kB?9`<0$N:G>.B?9`<0$N7W;;(B |
|
\EG :: Minimal polynomial computation modulo @var{mod} the same method as |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
@code{tolexm()} : $B%j%9%H(B, @code{minipolym()} : $BB?9`<0(B |
\JP @code{tolexm()} : $B%j%9%H(B, @code{minipolym()} : $BB?9`<0(B |
@item plist, vlist1, vlist2 |
\EG @code{tolexm()} : list, @code{minipolym()} : polynomial |
$B%j%9%H(B |
@item plist vlist1 vlist2 |
|
\JP $B%j%9%H(B |
|
\EG list |
@item order |
@item order |
$B?t(B, $B%j%9%H$^$?$O9TNs(B |
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
@item mod |
@item mod |
$BAG?t(B |
\JP $BAG?t(B |
|
\EG prime |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
$BF~NO(B @var{plist} $B$O$$$:$l$b(B $BJQ?t=g=x(B @var{vlist1}, $B9`=g=x7?(B @var{order}, |
$BF~NO(B @var{plist} $B$O$$$:$l$b(B $BJQ?t=g=x(B @var{vlist1}, $B9`=g=x7?(B @var{order}, |
$BK!(B @var{mod} $B$K$*$1$k%0%l%V%J4pDl$G$J$1$l$P$J$i$J$$(B. |
$BK!(B @var{mod} $B$K$*$1$k%0%l%V%J4pDl$G$J$1$l$P$J$i$J$$(B. |
Line 938 K[@var{v}] $B$N85(B f(@var{v}) $B$K(B f(@var{p}) m |
|
Line 1925 K[@var{v}] $B$N85(B f(@var{v}) $B$K(B f(@var{p}) m |
|
@item |
@item |
@code{tolexm()} $B$O(B FGLM $BK!$K$h$k4pDlJQ49$K$h$j(B @var{vlist2}, |
@code{tolexm()} $B$O(B FGLM $BK!$K$h$k4pDlJQ49$K$h$j(B @var{vlist2}, |
$B<-=q<0=g=x$K$h$k%0%l%V%J4pDl$r7W;;$9$k(B. |
$B<-=q<0=g=x$K$h$k%0%l%V%J4pDl$r7W;;$9$k(B. |
|
\E |
|
\BEG |
|
@item |
|
An input @var{plist} must be a Groebner basis modulo @var{mod} |
|
with respect to the variable order @var{vlist1} and the order type @var{order}. |
|
@item |
|
@code{minipolym()} executes the same computation as in @code{minipoly}. |
|
@item |
|
@code{tolexm()} computes a lex order Groebner basis modulo @var{mod} |
|
with respect to the variable order @var{vlist2}, by using FGLM algorithm. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 948 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
Line 1946 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{lex_hensel lex_tl tolex tolex_d tolex_tl}, |
@fref{lex_hensel lex_tl tolex tolex_d tolex_tl}, |
@fref{gr_minipoly minipoly}. |
@fref{gr_minipoly minipoly}. |
@end table |
@end table |
|
|
@node dp_gr_main dp_gr_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
@subsection @code{dp_gr_main}, @code{dp_gr_mod_main} |
\EG @node dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main,,, Functions for Groebner basis computation |
|
@subsection @code{dp_gr_main}, @code{dp_gr_mod_main}, @code{dp_gr_f_main}, @code{dp_weyl_gr_main}, @code{dp_weyl_gr_mod_main}, @code{dp_weyl_gr_f_main} |
@findex dp_gr_main |
@findex dp_gr_main |
@findex dp_gr_mod_main |
@findex dp_gr_mod_main |
|
@findex dp_gr_f_main |
|
@findex dp_weyl_gr_main |
|
@findex dp_weyl_gr_mod_main |
|
@findex dp_weyl_gr_f_main |
|
|
@table @t |
@table @t |
@item dp_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) |
@item dp_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) |
@itemx dp_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) |
@itemx dp_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) |
:: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) |
@itemx dp_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order}) |
|
@itemx dp_weyl_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) |
|
@itemx dp_weyl_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) |
|
@itemx dp_weyl_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order}) |
|
\JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) |
|
\EG :: Groebner basis computation (built-in functions) |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B%j%9%H(B |
\JP $B%j%9%H(B |
@item plist, vlist |
\EG list |
$B%j%9%H(B |
@item plist vlist |
|
\JP $B%j%9%H(B |
|
\EG list |
@item order |
@item order |
$B?t(B, $B%j%9%H$^$?$O9TNs(B |
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
@item homo |
@item homo |
$B%U%i%0(B |
\JP $B%U%i%0(B |
|
\EG flag |
@item modular |
@item modular |
$B%U%i%0$^$?$OAG?t(B |
\JP $B%U%i%0$^$?$OAG?t(B |
|
\EG flag or prime |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
$B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;$N4pK\E*AH$_9~$_H!?t$G$"$j(B, @code{gr()}, |
$B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;$N4pK\E*AH$_9~$_H!?t$G$"$j(B, @code{gr()}, |
@code{hgr()}, @code{gr_mod()} $B$J$I$O$9$Y$F$3$l$i$NH!?t$r8F$S=P$7$F7W;;(B |
@code{hgr()}, @code{gr_mod()} $B$J$I$O$9$Y$F$3$l$i$NH!?t$r8F$S=P$7$F7W;;(B |
$B$r9T$C$F$$$k(B. |
$B$r9T$C$F$$$k(B. $B4X?tL>$K(B weyl $B$,F~$C$F$$$k$b$N$O(B, Weyl $BBe?t>e$N7W;;(B |
|
$B$N$?$a$N4X?t$G$"$k(B. |
@item |
@item |
|
@code{dp_gr_f_main()}, @code{dp_weyl_f_main()} $B$O(B, $B<o!9$NM-8BBN>e$N%0%l%V%J4pDl$r7W;;$9$k(B |
|
$B>l9g$KMQ$$$k(B. $BF~NO$O(B, $B$"$i$+$8$a(B, @code{simp_ff()} $B$J$I$G(B, |
|
$B9M$($kM-8BBN>e$K<M1F$5$l$F$$$kI,MW$,$"$k(B. |
|
@item |
$B%U%i%0(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, $BF~NO$r@F<!2=$7$F$+$i(B Buchberger $B%"%k%4%j%:%`(B |
$B%U%i%0(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, $BF~NO$r@F<!2=$7$F$+$i(B Buchberger $B%"%k%4%j%:%`(B |
$B$r<B9T$9$k(B. |
$B$r<B9T$9$k(B. |
@item |
@item |
Line 1009 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
Line 2029 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
@item |
@item |
@var{homo}, @var{modular} $B$NB>$K(B, @code{dp_gr_flags()} $B$G@_Dj$5$l$k(B |
@var{homo}, @var{modular} $B$NB>$K(B, @code{dp_gr_flags()} $B$G@_Dj$5$l$k(B |
$B$5$^$6$^$J%U%i%0$K$h$j7W;;$,@)8f$5$l$k(B. |
$B$5$^$6$^$J%U%i%0$K$h$j7W;;$,@)8f$5$l$k(B. |
|
\E |
|
\BEG |
|
@item |
|
These functions are fundamental built-in functions for Groebner basis |
|
computation and @code{gr()},@code{hgr()} and @code{gr_mod()} |
|
are all interfaces to these functions. Functions whose names |
|
contain weyl are those for computation in Weyl algebra. |
|
@item |
|
@code{dp_gr_f_main()} and @code{dp_weyl_gr_f_main()} |
|
are functions for Groebner basis computation |
|
over various finite fields. Coefficients of input polynomials |
|
must be converted to elements of a finite field |
|
currently specified by @code{setmod_ff()}. |
|
@item |
|
If @var{homo} is not equal to 0, homogenization is applied before entering |
|
Buchberger algorithm |
|
@item |
|
For @code{dp_gr_mod_main()}, @var{modular} means a computation over |
|
GF(@var{modular}). |
|
For @code{dp_gr_main()}, @var{modular} has the following mean. |
|
@enumerate |
|
@item |
|
If @var{modular} is 1 , trace lifting is used. Primes for trace lifting |
|
are generated by @code{lprime()}, starting from @code{lprime(0)}, until |
|
the computation succeeds. |
|
@item |
|
If @var{modular} is an integer greater than 1, the integer is regarded as a |
|
prime and trace lifting is executed by using the prime. If the computation |
|
fails then 0 is returned. |
|
@item |
|
If @var{modular} is negative, the above rule is applied for @var{-modular} |
|
but the Groebner basis check and ideal-membership check are omitted in |
|
the last stage of trace lifting. |
|
@end enumerate |
|
|
|
@item |
|
@code{gr(P,V,O)}, @code{hgr(P,V,O)} and @code{gr_mod(P,V,O,M)} execute |
|
@code{dp_gr_main(P,V,0,1,O)}, @code{dp_gr_main(P,V,1,1,O)} |
|
and @code{dp_gr_mod_main(P,V,0,M,O)} respectively. |
|
@item |
|
Actual computation is controlled by various parameters set by |
|
@code{dp_gr_flags()}, other then by @var{homo} and @var{modular}. |
|
\E |
@end itemize |
@end itemize |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{dp_ord}, |
@fref{dp_ord}, |
@fref{dp_gr_flags dp_gr_print}, |
@fref{dp_gr_flags dp_gr_print}, |
@fref{gr hgr gr_mod}, |
@fref{gr hgr gr_mod}, |
@fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
@fref{setmod_ff}, |
|
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
|
\EG @fref{Controlling Groebner basis computations} |
@end table |
@end table |
|
|
@node dp_f4_main dp_f4_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
@subsection @code{dp_f4_main}, @code{dp_f4_mod_main} |
\EG @node dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main,,, Functions for Groebner basis computation |
|
@subsection @code{dp_f4_main}, @code{dp_f4_mod_main}, @code{dp_weyl_f4_main}, @code{dp_weyl_f4_mod_main} |
@findex dp_f4_main |
@findex dp_f4_main |
@findex dp_f4_mod_main |
@findex dp_f4_mod_main |
|
@findex dp_weyl_f4_main |
|
@findex dp_weyl_f4_mod_main |
|
|
@table @t |
@table @t |
@item dp_f4_main(@var{plist},@var{vlist},@var{order}) |
@item dp_f4_main(@var{plist},@var{vlist},@var{order}) |
@itemx dp_f4_mod_main(@var{plist},@var{vlist},@var{order}) |
@itemx dp_f4_mod_main(@var{plist},@var{vlist},@var{order}) |
:: F4 $B%"%k%4%j%:%`$K$h$k%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) |
@itemx dp_weyl_f4_main(@var{plist},@var{vlist},@var{order}) |
|
@itemx dp_weyl_f4_mod_main(@var{plist},@var{vlist},@var{order}) |
|
\JP :: F4 $B%"%k%4%j%:%`$K$h$k%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) |
|
\EG :: Groebner basis computation by F4 algorithm (built-in functions) |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B%j%9%H(B |
\JP $B%j%9%H(B |
@item plist, vlist |
\EG list |
$B%j%9%H(B |
@item plist vlist |
|
\JP $B%j%9%H(B |
|
\EG list |
@item order |
@item order |
$B?t(B, $B%j%9%H$^$?$O9TNs(B |
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
F4 $B%"%k%4%j%:%`$K$h$j%0%l%V%J4pDl$N7W;;$r9T$&(B. |
F4 $B%"%k%4%j%:%`$K$h$j%0%l%V%J4pDl$N7W;;$r9T$&(B. |
@item |
@item |
Line 1047 F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$ |
|
Line 2123 F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$ |
|
$B;;K!$G$"$j(B, $BK\<BAu$O(B, $BCf9q>jM>DjM}$K$h$k@~7AJ}Dx<05a2r$rMQ$$$?(B |
$B;;K!$G$"$j(B, $BK\<BAu$O(B, $BCf9q>jM>DjM}$K$h$k@~7AJ}Dx<05a2r$rMQ$$$?(B |
$B;n83E*$J<BAu$G$"$k(B. |
$B;n83E*$J<BAu$G$"$k(B. |
@item |
@item |
$B0z?t$*$h$SF0:n$O$=$l$>$l(B @code{dp_gr_main()}, @code{dp_gr_mod_main()} |
$B@F<!2=$N0z?t$,$J$$$3$H$r=|$1$P(B, $B0z?t$*$h$SF0:n$O$=$l$>$l(B |
|
@code{dp_gr_main()}, @code{dp_gr_mod_main()}, |
|
@code{dp_weyl_gr_main()}, @code{dp_weyl_gr_mod_main()} |
$B$HF1MM$G$"$k(B. |
$B$HF1MM$G$"$k(B. |
|
\E |
|
\BEG |
|
@item |
|
These functions compute Groebner bases by F4 algorithm. |
|
@item |
|
F4 is a new generation algorithm for Groebner basis computation |
|
invented by J.C. Faugere. The current implementation of @code{dp_f4_main()} |
|
uses Chinese Remainder theorem and not highly optimized. |
|
@item |
|
Arguments and actions are the same as those of |
|
@code{dp_gr_main()}, @code{dp_gr_mod_main()}, |
|
@code{dp_weyl_gr_main()}, @code{dp_weyl_gr_mod_main()}, |
|
except for lack of the argument for controlling homogenization. |
|
\E |
@end itemize |
@end itemize |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{dp_ord}, |
@fref{dp_ord}, |
@fref{dp_gr_flags dp_gr_print}, |
@fref{dp_gr_flags dp_gr_print}, |
@fref{gr hgr gr_mod}, |
@fref{gr hgr gr_mod}, |
@fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
|
\EG @fref{Controlling Groebner basis computations} |
@end table |
@end table |
|
|
@node dp_gr_flags dp_gr_print,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_gr_flags dp_gr_print,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_gr_flags dp_gr_print,,, Functions for Groebner basis computation |
@subsection @code{dp_gr_flags}, @code{dp_gr_print} |
@subsection @code{dp_gr_flags}, @code{dp_gr_print} |
@findex dp_gr_flags |
@findex dp_gr_flags |
@findex dp_gr_print |
@findex dp_gr_print |
|
|
@table @t |
@table @t |
@item dp_gr_flags([@var{list}]) |
@item dp_gr_flags([@var{list}]) |
@itemx dp_gr_print([@var{0|1}]) |
@itemx dp_gr_print([@var{i}]) |
:: $B7W;;$*$h$SI=<(MQ%Q%i%a%?$N@_Dj(B, $B;2>H(B |
\JP :: $B7W;;$*$h$SI=<(MQ%Q%i%a%?$N@_Dj(B, $B;2>H(B |
|
\BEG :: Set and show various parameters for cotrolling computations |
|
and showing informations. |
|
\E |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B@_DjCM(B |
\JP $B@_DjCM(B |
|
\EG value currently set |
@item list |
@item list |
$B%j%9%H(B |
\JP $B%j%9%H(B |
|
\EG list |
|
@item i |
|
\JP $B@0?t(B |
|
\EG integer |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@code{dp_gr_main()}, @code{dp_gr_mod_main()} $B<B9T;~$K$*$1$k$5$^$6$^(B |
@code{dp_gr_main()}, @code{dp_gr_mod_main()}, @code{dp_gr_f_main()} $B<B9T;~$K$*$1$k$5$^$6$^(B |
$B$J%Q%i%a%?$r@_Dj(B, $B;2>H$9$k(B. |
$B$J%Q%i%a%?$r@_Dj(B, $B;2>H$9$k(B. |
@item |
@item |
$B0z?t$,$J$$>l9g(B, $B8=:_$N@_Dj$,JV$5$l$k(B. |
$B0z?t$,$J$$>l9g(B, $B8=:_$N@_Dj$,JV$5$l$k(B. |
Line 1087 F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$ |
|
Line 2191 F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$ |
|
$B0z?t$O(B, @code{["Print",1,"NoSugar",1,...]} $B$J$k7A$N%j%9%H$G(B, $B:8$+$i=g$K(B |
$B0z?t$O(B, @code{["Print",1,"NoSugar",1,...]} $B$J$k7A$N%j%9%H$G(B, $B:8$+$i=g$K(B |
$B@_Dj$5$l$k(B. $B%Q%i%a%?L>$OJ8;zNs$GM?$($kI,MW$,$"$k(B. |
$B@_Dj$5$l$k(B. $B%Q%i%a%?L>$OJ8;zNs$GM?$($kI,MW$,$"$k(B. |
@item |
@item |
@code{dp_gr_print()} $B$O(B, $BFC$K%Q%i%a%?(B @code{Print} $B$NCM$rD>@\@_Dj(B, $B;2>H(B |
@code{dp_gr_print()} $B$O(B, $BFC$K%Q%i%a%?(B @code{Print}, @code{PrintShort} $B$NCM$rD>@\@_Dj(B, $B;2>H(B |
$B$G$-$k(B. $B$3$l$O(B, @code{dp_gr_main()} $B$J$I$r%5%V%k!<%A%s$H$7$FMQ$$$k%f!<%6(B |
$B$G$-$k(B. $B@_Dj$5$l$kCM$O<!$NDL$j$G$"$k!#(B |
$BH!?t$K$*$$$F(B, @code{Print} $B$NCM$r8+$F(B, $B$=$N%5%V%k!<%A%s$,Cf4V>pJs$NI=<((B |
@table @var |
|
@item i=0 |
|
@code{Print=0}, @code{PrintShort=0} |
|
@item i=1 |
|
@code{Print=1}, @code{PrintShort=0} |
|
@item i=2 |
|
@code{Print=0}, @code{PrintShort=1} |
|
@end table |
|
$B$3$l$O(B, @code{dp_gr_main()} $B$J$I$r%5%V%k!<%A%s$H$7$FMQ$$$k%f!<%6(B |
|
$BH!?t$K$*$$$F(B, $B$=$N%5%V%k!<%A%s$,Cf4V>pJs$NI=<((B |
$B$r9T$&:]$K(B, $B?WB.$K%U%i%0$r8+$k$3$H$,$G$-$k$h$&$KMQ0U$5$l$F$$$k(B. |
$B$r9T$&:]$K(B, $B?WB.$K%U%i%0$r8+$k$3$H$,$G$-$k$h$&$KMQ0U$5$l$F$$$k(B. |
|
\E |
|
\BEG |
|
@item |
|
@code{dp_gr_flags()} sets and shows various parameters for Groebner basis |
|
computation. |
|
@item |
|
If no argument is specified the current settings are returned. |
|
@item |
|
Arguments must be specified as a list such as |
|
@code{["Print",1,"NoSugar",1,...]}. Names of parameters must be character |
|
strings. |
|
@item |
|
@code{dp_gr_print()} is used to set and show the value of a parameter |
|
@code{Print} and @code{PrintShort}. |
|
@table @var |
|
@item i=0 |
|
@code{Print=0}, @code{PrintShort=0} |
|
@item i=1 |
|
@code{Print=1}, @code{PrintShort=0} |
|
@item i=2 |
|
@code{Print=0}, @code{PrintShort=1} |
|
@end table |
|
This functions is prepared to get quickly the value |
|
when a user defined function calling @code{dp_gr_main()} etc. |
|
uses the value as a flag for showing intermediate informations. |
|
\E |
@end itemize |
@end itemize |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
@fref{$B7W;;$*$h$SI=<($N@)8f(B} |
\EG @item References |
|
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B} |
|
\EG @fref{Controlling Groebner basis computations} |
@end table |
@end table |
|
|
@node dp_ord,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_ord,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_ord,,, Functions for Groebner basis computation |
@subsection @code{dp_ord} |
@subsection @code{dp_ord} |
@findex dp_ord |
@findex dp_ord |
|
|
@table @t |
@table @t |
@item dp_ord([@var{order}]) |
@item dp_ord([@var{order}]) |
:: $BJQ?t=g=x7?$N@_Dj(B, $B;2>H(B |
\JP :: $BJQ?t=g=x7?$N@_Dj(B, $B;2>H(B |
|
\EG :: Set and show the ordering type. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BJQ?t=g=x7?(B ($B?t(B, $B%j%9%H$^$?$O9TNs(B) |
\JP $BJQ?t=g=x7?(B ($B?t(B, $B%j%9%H$^$?$O9TNs(B) |
|
\EG ordering type (number, list or matrix) |
@item order |
@item order |
$B?t(B, $B%j%9%H$^$?$O9TNs(B |
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
$B0z?t$,$"$k;~(B, $BJQ?t=g=x7?$r(B @var{order} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B, |
$B0z?t$,$"$k;~(B, $BJQ?t=g=x7?$r(B @var{order} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B, |
$B8=:_@_Dj$5$l$F$$$kJQ?t=g=x7?$rJV$9(B. |
$B8=:_@_Dj$5$l$F$$$kJQ?t=g=x7?$rJV$9(B. |
Line 1137 F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$ |
|
Line 2283 F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$ |
|
@item |
@item |
$B%H%C%W%l%Y%kH!?t0J30$NH!?t$rD>@\8F$S=P$9>l9g$K$O(B, $B$3$NH!?t$K$h$j(B |
$B%H%C%W%l%Y%kH!?t0J30$NH!?t$rD>@\8F$S=P$9>l9g$K$O(B, $B$3$NH!?t$K$h$j(B |
$BJQ?t=g=x7?$r@5$7$/@_Dj$7$J$1$l$P$J$i$J$$(B. |
$BJQ?t=g=x7?$r@5$7$/@_Dj$7$J$1$l$P$J$i$J$$(B. |
|
\E |
|
\BEG |
|
@item |
|
If an argument is specified, the function |
|
sets the current ordering type to @var{order}. |
|
If no argument is specified, the function returns the ordering |
|
type currently set. |
|
|
|
@item |
|
There are two types of functions concerning distributed polynomial, |
|
functions which take a ordering type and those which don't take it. |
|
The latter ones use the current setting. |
|
|
|
@item |
|
Functions such as @code{gr()}, which need a ordering type as an argument, |
|
call @code{dp_ord()} internally during the execution. |
|
The setting remains after the execution. |
|
|
|
Fundamental arithmetics for distributed polynomial also use the current |
|
setting. Therefore, when such arithmetics for distributed polynomials |
|
are done, the current setting must coincide with the ordering type |
|
which was used upon the creation of the polynomials. It is assumed |
|
that such polynomials were generated under the same ordering type. |
|
|
|
@item |
|
Type of term ordering must be correctly set by this function |
|
when functions other than top level functions are called directly. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1149 F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$ |
|
Line 2323 F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$ |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
@fref{$B9`=g=x$N@_Dj(B} |
\EG @item References |
|
\JP @fref{$B9`=g=x$N@_Dj(B} |
|
\EG @fref{Setting term orderings} |
@end table |
@end table |
|
|
@node dp_ptod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_ptod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_ptod,,, Functions for Groebner basis computation |
@subsection @code{dp_ptod} |
@subsection @code{dp_ptod} |
@findex dp_ptod |
@findex dp_ptod |
|
|
@table @t |
@table @t |
@item dp_ptod(@var{poly},@var{vlist}) |
@item dp_ptod(@var{poly},@var{vlist}) |
:: $BB?9`<0$rJ,;6I=8=B?9`<0$KJQ49$9$k(B. |
\JP :: $BB?9`<0$rJ,;6I=8=B?9`<0$KJQ49$9$k(B. |
|
\EG :: Converts an ordinary polynomial into a distributed polynomial. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@item poly |
@item poly |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@item vlist |
@item vlist |
$B%j%9%H(B |
\JP $B%j%9%H(B |
|
\EG list |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
$BJQ?t=g=x(B @var{vlist} $B$*$h$S8=:_$NJQ?t=g=x7?$K=>$C$FJ,;6I=8=B?9`<0$KJQ49$9$k(B. |
$BJQ?t=g=x(B @var{vlist} $B$*$h$S8=:_$NJQ?t=g=x7?$K=>$C$FJ,;6I=8=B?9`<0$KJQ49$9$k(B. |
@item |
@item |
@var{vlist} $B$K4^$^$l$J$$ITDj85$O(B, $B78?tBN$KB0$9$k$H$7$FJQ49$5$l$k(B. |
@var{vlist} $B$K4^$^$l$J$$ITDj85$O(B, $B78?tBN$KB0$9$k$H$7$FJQ49$5$l$k(B. |
|
\E |
|
\BEG |
|
@item |
|
According to the variable ordering @var{vlist} and current |
|
type of term ordering, this function converts an ordinary |
|
polynomial into a distributed polynomial. |
|
@item |
|
Indeterminates not included in @var{vlist} are regarded to belong to |
|
the coefficient field. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1185 F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$ |
|
Line 2377 F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$ |
|
(1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>> |
(1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>> |
+(1)*<<0,0,2>> |
+(1)*<<0,0,2>> |
[52] dp_ptod((x+y+z)^2,[x,y]); |
[52] dp_ptod((x+y+z)^2,[x,y]); |
(1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>+(z^2)*<<0,0>> |
(1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>> |
|
+(z^2)*<<0,0>> |
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{dp_dtop}, |
@fref{dp_dtop}, |
@fref{dp_ord}. |
@fref{dp_ord}. |
@end table |
@end table |
|
|
@node dp_dtop,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_dtop,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_dtop,,, Functions for Groebner basis computation |
@subsection @code{dp_dtop} |
@subsection @code{dp_dtop} |
@findex dp_dtop |
@findex dp_dtop |
|
|
@table @t |
@table @t |
@item dp_dtop(@var{dpoly},@var{vlist}) |
@item dp_dtop(@var{dpoly},@var{vlist}) |
:: $BJ,;6I=8=B?9`<0$rB?9`<0$KJQ49$9$k(B. |
\JP :: $BJ,;6I=8=B?9`<0$rB?9`<0$KJQ49$9$k(B. |
|
\EG :: Converts a distributed polynomial into an ordinary polynomial. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@item dpoly |
@item dpoly |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@item vlist |
@item vlist |
$B%j%9%H(B |
\JP $B%j%9%H(B |
|
\EG list |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
$BJ,;6I=8=B?9`<0$r(B, $BM?$($i$l$?ITDj85%j%9%H$rMQ$$$FB?9`<0$KJQ49$9$k(B. |
$BJ,;6I=8=B?9`<0$r(B, $BM?$($i$l$?ITDj85%j%9%H$rMQ$$$FB?9`<0$KJQ49$9$k(B. |
@item |
@item |
$BITDj85%j%9%H$O(B, $BD9$5J,;6I=8=B?9`<0$NJQ?t$N8D?t$H0lCW$7$F$$$l$P2?$G$b$h$$(B. |
$BITDj85%j%9%H$O(B, $BD9$5J,;6I=8=B?9`<0$NJQ?t$N8D?t$H0lCW$7$F$$$l$P2?$G$b$h$$(B. |
|
\E |
|
\BEG |
|
@item |
|
This function converts a distributed polynomial into an ordinary polynomial |
|
according to a list of indeterminates @var{vlist}. |
|
@item |
|
@var{vlist} is such a list that its length coincides with the number of |
|
variables of @var{dpoly}. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
[53] T=dp_ptod((x+y+z)^2,[x,y]); |
[53] T=dp_ptod((x+y+z)^2,[x,y]); |
(1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>+(z^2)*<<0,0>> |
(1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>> |
|
+(z^2)*<<0,0>> |
[54] P=dp_dtop(T,[a,b]); |
[54] P=dp_dtop(T,[a,b]); |
z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
@end example |
@end example |
|
|
@node dp_mod dp_rat,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_mod dp_rat,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_mod dp_rat,,, Functions for Groebner basis computation |
@subsection @code{dp_mod}, @code{dp_rat} |
@subsection @code{dp_mod}, @code{dp_rat} |
@findex dp_mod |
@findex dp_mod |
@findex dp_rat |
@findex dp_rat |
|
|
@table @t |
@table @t |
@item dp_mod(@var{p},@var{mod},@var{subst}) |
@item dp_mod(@var{p},@var{mod},@var{subst}) |
:: $BM-M}?t78?tJ,;6I=8=B?9`<0$NM-8BBN78?t$X$NJQ49(B |
\JP :: $BM-M}?t78?tJ,;6I=8=B?9`<0$NM-8BBN78?t$X$NJQ49(B |
|
\EG :: Converts a disributed polynomial into one with coefficients in a finite field. |
@item dp_rat(@var{p}) |
@item dp_rat(@var{p}) |
:: $BM-8BBN78?tJ,;6I=8=B?9`<0$NM-M}?t78?t$X$NJQ49(B |
\JP :: $BM-8BBN78?tJ,;6I=8=B?9`<0$NM-M}?t78?t$X$NJQ49(B |
|
\BEG |
|
:: Converts a distributed polynomial with coefficients in a finite field into |
|
one with coefficients in the rationals. |
|
\E |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@item p |
@item p |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@item mod |
@item mod |
$BAG?t(B |
\JP $BAG?t(B |
|
\EG prime |
@item subst |
@item subst |
$B%j%9%H(B |
\JP $B%j%9%H(B |
|
\EG list |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@code{dp_nf_mod()}, @code{dp_true_nf_mod()} $B$O(B, $BF~NO$H$7$FM-8BBN78?t$N(B |
@code{dp_nf_mod()}, @code{dp_true_nf_mod()} $B$O(B, $BF~NO$H$7$FM-8BBN78?t$N(B |
$BJ,;6I=8=B?9`<0$rI,MW$H$9$k(B. $B$3$N$h$&$J>l9g(B, @code{dp_mod()} $B$K$h$j(B |
$BJ,;6I=8=B?9`<0$rI,MW$H$9$k(B. $B$3$N$h$&$J>l9g(B, @code{dp_mod()} $B$K$h$j(B |
Line 1263 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
Line 2484 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
@var{subst} $B$O(B, $B78?t$,M-M}<0$N>l9g(B, $B$=$NM-M}<0$NJQ?t$K$"$i$+$8$a?t$rBeF~(B |
@var{subst} $B$O(B, $B78?t$,M-M}<0$N>l9g(B, $B$=$NM-M}<0$NJQ?t$K$"$i$+$8$a?t$rBeF~(B |
$B$7$?8eM-8BBN78?t$KJQ49$9$k$H$$$&A`:n$r9T$&:]$N(B, $BBeF~CM$r;XDj$9$k$b$N$G(B, |
$B$7$?8eM-8BBN78?t$KJQ49$9$k$H$$$&A`:n$r9T$&:]$N(B, $BBeF~CM$r;XDj$9$k$b$N$G(B, |
@code{[[@var{var},@var{value}],...]} $B$N7A$N%j%9%H$G$"$k(B. |
@code{[[@var{var},@var{value}],...]} $B$N7A$N%j%9%H$G$"$k(B. |
|
\E |
|
\BEG |
|
@item |
|
@code{dp_nf_mod()} and @code{dp_true_nf_mod()} require |
|
distributed polynomials with coefficients in a finite field as arguments. |
|
@code{dp_mod()} is used to convert distributed polynomials with rational |
|
number coefficients into appropriate ones. |
|
Polynomials with coefficients in a finite field |
|
cannot be used as inputs of operations with polynomials |
|
with rational number coefficients. @code{dp_rat()} is used for such cases. |
|
@item |
|
The ground finite field must be set in advance by using @code{setmod()}. |
|
@item |
|
@var{subst} is such a list as @code{[[@var{var},@var{value}],...]}. |
|
This is valid when the ground field of the input polynomial is a |
|
rational function field. @var{var}'s are variables in the ground field and |
|
the list means that @var{value} is substituted for @var{var} before |
|
converting the coefficients into elements of a finite field. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod}, |
@fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod}, |
@fref{subst psubst}, |
@fref{subst psubst}, |
@fref{setmod}. |
@fref{setmod}. |
@end table |
@end table |
|
|
@node dp_homo dp_dehomo,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_homo dp_dehomo,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_homo dp_dehomo,,, Functions for Groebner basis computation |
@subsection @code{dp_homo}, @code{dp_dehomo} |
@subsection @code{dp_homo}, @code{dp_dehomo} |
@findex dp_homo |
@findex dp_homo |
@findex dp_dehomo |
@findex dp_dehomo |
|
|
@table @t |
@table @t |
@item dp_homo(@var{dpoly}) |
@item dp_homo(@var{dpoly}) |
:: $BJ,;6I=8=B?9`<0$N@F<!2=(B |
\JP :: $BJ,;6I=8=B?9`<0$N@F<!2=(B |
|
\EG :: Homogenize a distributed polynomial |
@item dp_dehomo(@var{dpoly}) |
@item dp_dehomo(@var{dpoly}) |
:: $B@F<!J,;6I=8=B?9`<0$NHs@F<!2=(B |
\JP :: $B@F<!J,;6I=8=B?9`<0$NHs@F<!2=(B |
|
\EG :: Dehomogenize a homogenious distributed polynomial |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@item dpoly |
@item dpoly |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@code{dp_homo()} $B$O(B, @var{dpoly} $B$N(B $B3F9`(B @var{t} $B$K$D$$$F(B, $B;X?t%Y%/%H%k$ND9$5$r(B |
@code{dp_homo()} $B$O(B, @var{dpoly} $B$N(B $B3F9`(B @var{t} $B$K$D$$$F(B, $B;X?t%Y%/%H%k$ND9$5$r(B |
1 $B?-$P$7(B, $B:G8e$N@.J,$NCM$r(B @var{d}-@code{deg(@var{t})} |
1 $B?-$P$7(B, $B:G8e$N@.J,$NCM$r(B @var{d}-@code{deg(@var{t})} |
Line 1307 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
Line 2554 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
$B@5$7$/@_Dj$9$kI,MW$,$"$k(B. |
$B@5$7$/@_Dj$9$kI,MW$,$"$k(B. |
@item |
@item |
@code{hgr()} $B$J$I$K$*$$$F(B, $BFbItE*$KMQ$$$i$l$F$$$k(B. |
@code{hgr()} $B$J$I$K$*$$$F(B, $BFbItE*$KMQ$$$i$l$F$$$k(B. |
|
\E |
|
\BEG |
|
@item |
|
@code{dp_homo()} makes a copy of @var{dpoly}, extends |
|
the length of the exponent vector of each term @var{t} in the copy by 1, |
|
and sets the value of the newly appended |
|
component to @var{d}-@code{deg(@var{t})}, where @var{d} is the total |
|
degree of @var{dpoly}. |
|
@item |
|
@code{dp_dehomo()} make a copy of @var{dpoly} and removes the last component |
|
of each terms in the copy. |
|
@item |
|
Appropriate term orderings must be set when the results are used as inputs |
|
of some operations. |
|
@item |
|
These are used internally in @code{hgr()} etc. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1319 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
Line 2583 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{gr hgr gr_mod}. |
@fref{gr hgr gr_mod}. |
@end table |
@end table |
|
|
@node dp_ptozp dp_prim,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_ptozp dp_prim,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_ptozp dp_prim,,, Functions for Groebner basis computation |
@subsection @code{dp_ptozp}, @code{dp_prim} |
@subsection @code{dp_ptozp}, @code{dp_prim} |
@findex dp_ptozp |
@findex dp_ptozp |
@findex dp_prim |
@findex dp_prim |
|
|
@table @t |
@table @t |
@item dp_ptozp(@var{dpoly}) |
@item dp_ptozp(@var{dpoly}) |
:: $BDj?tG\$7$F78?t$r@0?t78?t$+$D78?t$N@0?t(B GCD $B$r(B 1 $B$K$9$k(B. |
\JP :: $BDj?tG\$7$F78?t$r@0?t78?t$+$D78?t$N@0?t(B GCD $B$r(B 1 $B$K$9$k(B. |
|
\BEG |
|
:: Converts a distributed polynomial @var{poly} with rational coefficients |
|
into an integral distributed polynomial such that GCD of all its coefficients |
|
is 1. |
|
\E |
@itemx dp_prim(@var{dpoly}) |
@itemx dp_prim(@var{dpoly}) |
:: $BM-M}<0G\$7$F78?t$r@0?t78?tB?9`<078?t$+$D78?t$NB?9`<0(B GCD $B$r(B 1 $B$K$9$k(B. |
\JP :: $BM-M}<0G\$7$F78?t$r@0?t78?tB?9`<078?t$+$D78?t$NB?9`<0(B GCD $B$r(B 1 $B$K$9$k(B. |
|
\BEG |
|
:: Converts a distributed polynomial @var{poly} with rational function |
|
coefficients into an integral distributed polynomial such that polynomial |
|
GCD of all its coefficients is 1. |
|
\E |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@item dpoly |
@item dpoly |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@code{dp_ptozp()} $B$O(B, @code{ptozp()} $B$KAjEv$9$kA`:n$rJ,;6I=8=B?9`<0$K(B |
@code{dp_ptozp()} $B$O(B, @code{ptozp()} $B$KAjEv$9$kA`:n$rJ,;6I=8=B?9`<0$K(B |
$BBP$7$F9T$&(B. $B78?t$,B?9`<0$r4^$`>l9g(B, $B78?t$K4^$^$l$kB?9`<06&DL0x;R$O(B |
$BBP$7$F9T$&(B. $B78?t$,B?9`<0$r4^$`>l9g(B, $B78?t$K4^$^$l$kB?9`<06&DL0x;R$O(B |
Line 1350 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
Line 2629 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
@item |
@item |
@code{dp_prim()} $B$O(B, $B78?t$,B?9`<0$r4^$`>l9g(B, $B78?t$K4^$^$l$kB?9`<06&DL0x;R(B |
@code{dp_prim()} $B$O(B, $B78?t$,B?9`<0$r4^$`>l9g(B, $B78?t$K4^$^$l$kB?9`<06&DL0x;R(B |
$B$r<h$j=|$/(B. |
$B$r<h$j=|$/(B. |
|
\E |
|
\BEG |
|
@item |
|
@code{dp_ptozp()} executes the same operation as @code{ptozp()} for |
|
a distributed polynomial. If the coefficients include polynomials, |
|
polynomial contents included in the coefficients are not removed. |
|
@item |
|
@code{dp_prim()} removes polynomial contents. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1362 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
Line 2650 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{ptozp}. |
@fref{ptozp}. |
@end table |
@end table |
|
|
@node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod,,, Functions for Groebner basis computation |
@subsection @code{dp_nf}, @code{dp_nf_mod}, @code{dp_true_nf}, @code{dp_true_nf_mod} |
@subsection @code{dp_nf}, @code{dp_nf_mod}, @code{dp_true_nf}, @code{dp_true_nf_mod} |
@findex dp_nf |
@findex dp_nf |
@findex dp_true_nf |
@findex dp_true_nf |
Line 1376 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
Line 2666 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
@table @t |
@table @t |
@item dp_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce}) |
@item dp_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce}) |
@item dp_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod}) |
@item dp_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod}) |
:: $BJ,;6I=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B) |
\JP :: $BJ,;6I=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B) |
|
|
|
\BEG |
|
:: Computes the normal form of a distributed polynomial. |
|
(The result may be multiplied by a constant in the ground field.) |
|
\E |
@item dp_true_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce}) |
@item dp_true_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce}) |
@item dp_true_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod}) |
@item dp_true_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod}) |
:: $BJ,;6I=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B??$N7k2L$r(B @code{[$BJ,;R(B, $BJ,Jl(B]} $B$N7A$GJV$9(B) |
\JP :: $BJ,;6I=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B??$N7k2L$r(B @code{[$BJ,;R(B, $BJ,Jl(B]} $B$N7A$GJV$9(B) |
|
\BEG |
|
:: Computes the normal form of a distributed polynomial. (The true result |
|
is returned in such a list as @code{[numerator, denominator]}) |
|
\E |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
@code{dp_nf()} : $BJ,;6I=8=B?9`<0(B, @code{dp_true_nf()} : $B%j%9%H(B |
\JP @code{dp_nf()} : $BJ,;6I=8=B?9`<0(B, @code{dp_true_nf()} : $B%j%9%H(B |
|
\EG @code{dp_nf()} : distributed polynomial, @code{dp_true_nf()} : list |
@item indexlist |
@item indexlist |
$B%j%9%H(B |
\JP $B%j%9%H(B |
|
\EG list |
@item dpoly |
@item dpoly |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@item dpolyarray |
@item dpolyarray |
$BG[Ns(B |
\JP $BG[Ns(B |
|
\EG array of distributed polynomial |
@item fullreduce |
@item fullreduce |
$B%U%i%0(B |
\JP $B%U%i%0(B |
|
\EG flag |
@item mod |
@item mod |
$BAG?t(B |
\JP $BAG?t(B |
|
\EG prime |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
$BJ,;6I=8=B?9`<0(B @var{dpoly} $B$N@55,7A$r5a$a$k(B. |
$BJ,;6I=8=B?9`<0(B @var{dpoly} $B$N@55,7A$r5a$a$k(B. |
@item |
@item |
Line 1429 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
Line 2734 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
$BJ,;6I=8=$G$J$$8GDj$5$l$?B?9`<0=89g$K$h$k@55,7A$rB??t5a$a$kI,MW$,$"$k>l9g(B |
$BJ,;6I=8=$G$J$$8GDj$5$l$?B?9`<0=89g$K$h$k@55,7A$rB??t5a$a$kI,MW$,$"$k>l9g(B |
$B$KJXMx$G$"$k(B. $BC10l$N1i;;$K4X$7$F$O(B, @code{p_nf}, @code{p_true_nf} $B$r(B |
$B$KJXMx$G$"$k(B. $BC10l$N1i;;$K4X$7$F$O(B, @code{p_nf}, @code{p_true_nf} $B$r(B |
$BMQ$$$k$H$h$$(B. |
$BMQ$$$k$H$h$$(B. |
|
\E |
|
\BEG |
|
@item |
|
Computes the normal form of a distributed polynomial. |
|
@item |
|
@code{dp_nf_mod()} and @code{dp_true_nf_mod()} require |
|
distributed polynomials with coefficients in a finite field as arguments. |
|
@item |
|
The result of @code{dp_nf()} may be multiplied by a constant in the |
|
ground field in order to make the result integral. The same is true |
|
for @code{dp_nf_mod()}, but it returns the true normal form if |
|
the ground field is a finite field. |
|
@item |
|
@code{dp_true_nf()} and @code{dp_true_nf_mod()} return |
|
such a list as @code{[@var{nm},@var{dn}]}. |
|
Here @var{nm} is a distributed polynomial whose coefficients are integral |
|
in the ground field, @var{dn} is an integral element in the ground |
|
field and @var{nm}/@var{dn} is the true normal form. |
|
@item |
|
@var{dpolyarray} is a vector whose components are distributed polynomials |
|
and @var{indexlist} is a list of indices which is used for the normal form |
|
computation. |
|
@item |
|
When argument @var{fullreduce} has non-zero value, |
|
all terms are reduced. When it has value 0, |
|
only the head term is reduced. |
|
@item |
|
As for the polynomials specified by @var{indexlist}, one specified by |
|
an index placed at the preceding position has priority to be selected. |
|
@item |
|
In general, the result of the function may be different depending on |
|
@var{indexlist}. However, the result is unique for Groebner bases. |
|
@item |
|
These functions are useful when a fixed non-distributed polynomial set |
|
is used as a set of reducers to compute normal forms of many polynomials. |
|
For single computation @code{p_nf} and @code{p_true_nf} are sufficient. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1443 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
Line 2784 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2 |
|
[74] DP2=newvect(length(G),map(dp_ptod,G,V))$ |
[74] DP2=newvect(length(G),map(dp_ptod,G,V))$ |
[75] T=dp_ptod((u0-u1+u2-u3+u4)^2,V)$ |
[75] T=dp_ptod((u0-u1+u2-u3+u4)^2,V)$ |
[76] dp_dtop(dp_nf([0,1,2,3,4],T,DP1,1),V); |
[76] dp_dtop(dp_nf([0,1,2,3,4],T,DP1,1),V); |
u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2^2+(6*u1-2)*u2+9*u1^2-6*u1+1 |
u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2^2 |
|
+(6*u1-2)*u2+9*u1^2-6*u1+1 |
[77] dp_dtop(dp_nf([4,3,2,1,0],T,DP1,1),V); |
[77] dp_dtop(dp_nf([4,3,2,1,0],T,DP1,1),V); |
-5*u4^2+(-4*u3-4*u2-4*u1)*u4-u3^2-3*u3-u2^2+(2*u1-1)*u2-2*u1^2-3*u1+1 |
-5*u4^2+(-4*u3-4*u2-4*u1)*u4-u3^2-3*u3-u2^2+(2*u1-1)*u2-2*u1^2-3*u1+1 |
[78] dp_dtop(dp_nf([0,1,2,3,4],T,DP2,1),V); |
[78] dp_dtop(dp_nf([0,1,2,3,4],T,DP2,1),V); |
-1138087976845165778088612297273078520347097001020471455633353049221045677593 |
-11380879768451657780886122972730785203470970010204714556333530492210 |
0005716505560062087150928400876150217079820311439477560587583488*u4^15+... |
456775930005716505560062087150928400876150217079820311439477560587583 |
|
488*u4^15+... |
[79] dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V); |
[79] dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V); |
-1138087976845165778088612297273078520347097001020471455633353049221045677593 |
-11380879768451657780886122972730785203470970010204714556333530492210 |
0005716505560062087150928400876150217079820311439477560587583488*u4^15+... |
456775930005716505560062087150928400876150217079820311439477560587583 |
|
488*u4^15+... |
[80] @@78==@@79; |
[80] @@78==@@79; |
1 |
1 |
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{dp_dtop}, |
@fref{dp_dtop}, |
@fref{dp_ord}, |
@fref{dp_ord}, |
@fref{dp_mod dp_rat}, |
@fref{dp_mod dp_rat}, |
@fref{p_nf p_nf_mod p_true_nf p_true_nf_mod}. |
@fref{p_nf p_nf_mod p_true_nf p_true_nf_mod}. |
@end table |
@end table |
|
|
@node dp_hm dp_ht dp_hc dp_rest,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_hm dp_ht dp_hc dp_rest,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_hm dp_ht dp_hc dp_rest,,, Functions for Groebner basis computation |
@subsection @code{dp_hm}, @code{dp_ht}, @code{dp_hc}, @code{dp_rest} |
@subsection @code{dp_hm}, @code{dp_ht}, @code{dp_hc}, @code{dp_rest} |
@findex dp_hm |
@findex dp_hm |
@findex dp_ht |
@findex dp_ht |
Line 1473 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
Line 2819 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
|
|
@table @t |
@table @t |
@item dp_hm(@var{dpoly}) |
@item dp_hm(@var{dpoly}) |
:: $BF,C19`<0$r<h$j=P$9(B. |
\JP :: $BF,C19`<0$r<h$j=P$9(B. |
|
\EG :: Gets the head monomial. |
@item dp_ht(@var{dpoly}) |
@item dp_ht(@var{dpoly}) |
:: $BF,9`$r<h$j=P$9(B. |
\JP :: $BF,9`$r<h$j=P$9(B. |
|
\EG :: Gets the head term. |
@item dp_hc(@var{dpoly}) |
@item dp_hc(@var{dpoly}) |
:: $BF,78?t$r<h$j=P$9(B. |
\JP :: $BF,78?t$r<h$j=P$9(B. |
|
\EG :: Gets the head coefficient. |
@item dp_rest(@var{dpoly}) |
@item dp_rest(@var{dpoly}) |
:: $BF,C19`<0$r<h$j=|$$$?;D$j$rJV$9(B. |
\JP :: $BF,C19`<0$r<h$j=|$$$?;D$j$rJV$9(B. |
|
\EG :: Gets the remainder of the polynomial where the head monomial is removed. |
@end table |
@end table |
|
|
@table @var |
@table @var |
|
\BJP |
@item return |
@item return |
@code{dp_hm()}, @code{dp_ht()}, @code{dp_rest()} : $BJ,;6I=8=B?9`<0(B, |
@code{dp_hm()}, @code{dp_ht()}, @code{dp_rest()} : $BJ,;6I=8=B?9`<0(B, |
@code{dp_hc()} : $B?t$^$?$OB?9`<0(B |
@code{dp_hc()} : $B?t$^$?$OB?9`<0(B |
@item dpoly |
@item dpoly |
$BJ,;6I=8=B?9`<0(B |
$BJ,;6I=8=B?9`<0(B |
|
\E |
|
\BEG |
|
@item return |
|
@code{dp_hm()}, @code{dp_ht()}, @code{dp_rest()} : distributed polynomial |
|
@code{dp_hc()} : number or polynomial |
|
@item dpoly |
|
distributed polynomial |
|
\E |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
$B$3$l$i$O(B, $BJ,;6I=8=B?9`<0$N3FItJ,$r<h$j=P$9$?$a$NH!?t$G$"$k(B. |
$B$3$l$i$O(B, $BJ,;6I=8=B?9`<0$N3FItJ,$r<h$j=P$9$?$a$NH!?t$G$"$k(B. |
@item |
@item |
$BJ,;6I=8=B?9`<0(B @var{p} $B$KBP$7<!$,@.$jN)$D(B. |
$BJ,;6I=8=B?9`<0(B @var{p} $B$KBP$7<!$,@.$jN)$D(B. |
|
\E |
|
\BEG |
|
@item |
|
These are used to get various parts of a distributed polynomial. |
|
@item |
|
The next equations hold for a distributed polynomial @var{p}. |
|
\E |
@table @code |
@table @code |
@item @var{p} = dp_hm(@var{p}) + dp_rest(@var{p}) |
@item @var{p} = dp_hm(@var{p}) + dp_rest(@var{p}) |
@item dp_hm(@var{p}) = dp_hc(@var{p}) dp_ht(@var{p}) |
@item dp_hm(@var{p}) = dp_hc(@var{p}) dp_ht(@var{p}) |
Line 1516 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
Line 2883 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
+(-490)*<<0,0,0>> |
+(-490)*<<0,0,0>> |
@end example |
@end example |
|
|
@node dp_td dp_sugar,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_td dp_sugar,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_td dp_sugar,,, Functions for Groebner basis computation |
@subsection @code{dp_td}, @code{dp_sugar} |
@subsection @code{dp_td}, @code{dp_sugar} |
@findex dp_td |
@findex dp_td |
@findex dp_sugar |
@findex dp_sugar |
|
|
@table @t |
@table @t |
@item dp_td(@var{dpoly}) |
@item dp_td(@var{dpoly}) |
:: $BF,9`$NA4<!?t$rJV$9(B. |
\JP :: $BF,9`$NA4<!?t$rJV$9(B. |
|
\EG :: Gets the total degree of the head term. |
@item dp_sugar(@var{dpoly}) |
@item dp_sugar(@var{dpoly}) |
:: $BB?9`<0$N(B @code{sugar} $B$rJV$9(B. |
\JP :: $BB?9`<0$N(B @code{sugar} $B$rJV$9(B. |
|
\EG :: Gets the @code{sugar} of a polynomial. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B<+A3?t(B |
\JP $B<+A3?t(B |
|
\EG non-negative integer |
@item dpoly |
@item dpoly |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@item onoff |
@item onoff |
$B%U%i%0(B |
\JP $B%U%i%0(B |
|
\EG flag |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@code{dp_td()} $B$O(B, $BF,9`$NA4<!?t(B, $B$9$J$o$A3FJQ?t$N;X?t$NOB$rJV$9(B. |
@code{dp_td()} $B$O(B, $BF,9`$NA4<!?t(B, $B$9$J$o$A3FJQ?t$N;X?t$NOB$rJV$9(B. |
@item |
@item |
Line 1546 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
Line 2920 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
@item |
@item |
@code{sugar} $B$O(B, $B%0%l%V%J4pDl7W;;$K$*$1$k@55,2=BP$NA*Br$N%9%H%i%F%8$r(B |
@code{sugar} $B$O(B, $B%0%l%V%J4pDl7W;;$K$*$1$k@55,2=BP$NA*Br$N%9%H%i%F%8$r(B |
$B7hDj$9$k$?$a$N=EMW$J;X?K$H$J$k(B. |
$B7hDj$9$k$?$a$N=EMW$J;X?K$H$J$k(B. |
|
\E |
|
\BEG |
|
@item |
|
Function @code{dp_td()} returns the total degree of the head term, |
|
i.e., the sum of all exponent of variables in that term. |
|
@item |
|
Upon creation of a distributed polynomial, an integer called @code{sugar} |
|
is associated. This value is |
|
the total degree of the virtually homogenized one of the original |
|
polynomial. |
|
@item |
|
The quantity @code{sugar} is an important guide to determine the |
|
selection strategy of critical pairs in Groebner basis computation. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1558 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
Line 2946 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
3 |
3 |
@end example |
@end example |
|
|
@node dp_lcm,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_lcm,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_lcm,,, Functions for Groebner basis computation |
@subsection @code{dp_lcm} |
@subsection @code{dp_lcm} |
@findex dp_lcm |
@findex dp_lcm |
|
|
@table @t |
@table @t |
@item dp_lcm(@var{dpoly1},@var{dpoly2}) |
@item dp_lcm(@var{dpoly1},@var{dpoly2}) |
:: $B:G>.8xG\9`$rJV$9(B. |
\JP :: $B:G>.8xG\9`$rJV$9(B. |
|
\EG :: Returns the least common multiple of the head terms of the given two polynomials. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
@item dpoly1, dpoly2 |
\EG distributed polynomial |
$BJ,;6I=8=B?9`<0(B |
@item dpoly1 dpoly2 |
|
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
$B$=$l$>$l$N0z?t$NF,9`$N:G>.8xG\9`$rJV$9(B. $B78?t$O(B 1 $B$G$"$k(B. |
$B$=$l$>$l$N0z?t$NF,9`$N:G>.8xG\9`$rJV$9(B. $B78?t$O(B 1 $B$G$"$k(B. |
|
\E |
|
\BEG |
|
@item |
|
Returns the least common multiple of the head terms of the given |
|
two polynomials, where coefficient is always set to 1. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1585 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
Line 2984 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{p_nf p_nf_mod p_true_nf p_true_nf_mod}. |
@fref{p_nf p_nf_mod p_true_nf p_true_nf_mod}. |
@end table |
@end table |
|
|
@node dp_redble,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_redble,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_redble,,, Functions for Groebner basis computation |
@subsection @code{dp_redble} |
@subsection @code{dp_redble} |
@findex dp_redble |
@findex dp_redble |
|
|
@table @t |
@table @t |
@item dp_redble(@var{dpoly1},@var{dpoly2}) |
@item dp_redble(@var{dpoly1},@var{dpoly2}) |
:: $BF,9`$I$&$7$,@0=|2DG=$+$I$&$+D4$Y$k(B. |
\JP :: $BF,9`$I$&$7$,@0=|2DG=$+$I$&$+D4$Y$k(B. |
|
\EG :: Checks whether one head term is divisible by the other head term. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B@0?t(B |
\JP $B@0?t(B |
@item dpoly1, dpoly2 |
\EG integer |
$BJ,;6I=8=B?9`<0(B |
@item dpoly1 dpoly2 |
|
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@var{dpoly1} $B$NF,9`$,(B @var{dpoly2} $B$NF,9`$G3d$j@Z$l$l$P(B 1, $B3d$j@Z$l$J$1$l$P(B |
@var{dpoly1} $B$NF,9`$,(B @var{dpoly2} $B$NF,9`$G3d$j@Z$l$l$P(B 1, $B3d$j@Z$l$J$1$l$P(B |
0 $B$rJV$9(B. |
0 $B$rJV$9(B. |
@item |
@item |
$BB?9`<0$N4JLs$r9T$&:](B, $B$I$N9`$r4JLs$G$-$k$+$rC5$9$N$KMQ$$$k(B. |
$BB?9`<0$N4JLs$r9T$&:](B, $B$I$N9`$r4JLs$G$-$k$+$rC5$9$N$KMQ$$$k(B. |
|
\E |
|
\BEG |
|
@item |
|
Returns 1 if the head term of @var{dpoly2} divides the head term of |
|
@var{dpoly1}; otherwise 0. |
|
@item |
|
Used for finding candidate terms at reduction of polynomials. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1626 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
Line 3039 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{dp_red dp_red_mod}. |
@fref{dp_red dp_red_mod}. |
@end table |
@end table |
|
|
@node dp_subd,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_subd,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_subd,,, Functions for Groebner basis computation |
@subsection @code{dp_subd} |
@subsection @code{dp_subd} |
@findex dp_subd |
@findex dp_subd |
|
|
@table @t |
@table @t |
@item dp_subd(@var{dpoly1},@var{dpoly2}) |
@item dp_subd(@var{dpoly1},@var{dpoly2}) |
:: $BF,9`$N>&C19`<0$rJV$9(B. |
\JP :: $BF,9`$N>&C19`<0$rJV$9(B. |
|
\EG :: Returns the quotient monomial of the head terms. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
@item dpoly1, dpoly2 |
\EG distributed polynomial |
$BJ,;6I=8=B?9`<0(B |
@item dpoly1 dpoly2 |
|
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@code{dp_ht(@var{dpoly1})/dp_ht(@var{dpoly2})} $B$r5a$a$k(B. $B7k2L$N78?t$O(B 1 |
@code{dp_ht(@var{dpoly1})/dp_ht(@var{dpoly2})} $B$r5a$a$k(B. $B7k2L$N78?t$O(B 1 |
$B$G$"$k(B. |
$B$G$"$k(B. |
@item |
@item |
$B3d$j@Z$l$k$3$H$,$"$i$+$8$a$o$+$C$F$$$kI,MW$,$"$k(B. |
$B3d$j@Z$l$k$3$H$,$"$i$+$8$a$o$+$C$F$$$kI,MW$,$"$k(B. |
|
\E |
|
\BEG |
|
@item |
|
Gets @code{dp_ht(@var{dpoly1})/dp_ht(@var{dpoly2})}. |
|
The coefficient of the result is always set to 1. |
|
@item |
|
Divisibility assumed. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1660 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
Line 3087 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{dp_red dp_red_mod}. |
@fref{dp_red dp_red_mod}. |
@end table |
@end table |
|
|
@node dp_vtoe dp_etov,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_vtoe dp_etov,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_vtoe dp_etov,,, Functions for Groebner basis computation |
@subsection @code{dp_vtoe}, @code{dp_etov} |
@subsection @code{dp_vtoe}, @code{dp_etov} |
@findex dp_vtoe |
@findex dp_vtoe |
@findex dp_etov |
@findex dp_etov |
|
|
@table @t |
@table @t |
@item dp_vtoe(@var{vect}) |
@item dp_vtoe(@var{vect}) |
:: $B;X?t%Y%/%H%k$r9`$KJQ49(B |
\JP :: $B;X?t%Y%/%H%k$r9`$KJQ49(B |
|
\EG :: Converts an exponent vector into a term. |
@item dp_etov(@var{dpoly}) |
@item dp_etov(@var{dpoly}) |
:: $BF,9`$r;X?t%Y%/%H%k$KJQ49(B |
\JP :: $BF,9`$r;X?t%Y%/%H%k$KJQ49(B |
|
\EG :: Convert the head term of a distributed polynomial into an exponent vector. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
@code{dp_vtoe} : $BJ,;6I=8=B?9`<0(B, @code{dp_etov} : $B%Y%/%H%k(B |
\JP @code{dp_vtoe} : $BJ,;6I=8=B?9`<0(B, @code{dp_etov} : $B%Y%/%H%k(B |
|
\EG @code{dp_vtoe} : distributed polynomial, @code{dp_etov} : vector |
@item vect |
@item vect |
$B%Y%/%H%k(B |
\JP $B%Y%/%H%k(B |
|
\EG vector |
@item dpoly |
@item dpoly |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@code{dp_vtoe()} $B$O(B, $B%Y%/%H%k(B @var{vect} $B$r;X?t%Y%/%H%k$H$9$k9`$r@8@.$9$k(B. |
@code{dp_vtoe()} $B$O(B, $B%Y%/%H%k(B @var{vect} $B$r;X?t%Y%/%H%k$H$9$k9`$r@8@.$9$k(B. |
@item |
@item |
@code{dp_etov()} $B$O(B, $BJ,;6I=8=B?9`<0(B @code{dpoly} $B$NF,9`$N;X?t%Y%/%H%k$r(B |
@code{dp_etov()} $B$O(B, $BJ,;6I=8=B?9`<0(B @code{dpoly} $B$NF,9`$N;X?t%Y%/%H%k$r(B |
$B%Y%/%H%k$KJQ49$9$k(B. |
$B%Y%/%H%k$KJQ49$9$k(B. |
|
\E |
|
\BEG |
|
@item |
|
@code{dp_vtoe()} generates a term whose exponent vector is @var{vect}. |
|
@item |
|
@code{dp_etov()} generates a vector which is the exponent vector of the |
|
head term of @code{dpoly}. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1703 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
Line 3146 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
(1)*<<1,2,4>> |
(1)*<<1,2,4>> |
@end example |
@end example |
|
|
@node dp_mbase,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_mbase,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_mbase,,, Functions for Groebner basis computation |
@subsection @code{dp_mbase} |
@subsection @code{dp_mbase} |
@findex dp_mbase |
@findex dp_mbase |
|
|
@table @t |
@table @t |
@item dp_mbase(@var{dplist}) |
@item dp_mbase(@var{dplist}) |
:: monomial $B4pDl$N7W;;(B |
\JP :: monomial $B4pDl$N7W;;(B |
|
\EG :: Computes the monomial basis |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BJ,;6I=8=B?9`<0$N%j%9%H(B |
\JP $BJ,;6I=8=B?9`<0$N%j%9%H(B |
|
\EG list of distributed polynomial |
@item dplist |
@item dplist |
$BJ,;6I=8=B?9`<0$N%j%9%H(B |
\JP $BJ,;6I=8=B?9`<0$N%j%9%H(B |
|
\EG list of distributed polynomial |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
$B$"$k=g=x$G%0%l%V%J4pDl$H$J$C$F$$$kB?9`<0=89g$N(B, $B$=$N=g=x$K4X$9$kJ,;6I=8=(B |
$B$"$k=g=x$G%0%l%V%J4pDl$H$J$C$F$$$kB?9`<0=89g$N(B, $B$=$N=g=x$K4X$9$kJ,;6I=8=(B |
$B$G$"$k(B @var{dplist} $B$K$D$$$F(B, |
$B$G$"$k(B @var{dplist} $B$K$D$$$F(B, |
Line 1727 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
Line 3175 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 |
|
K $B>eM-8B<!85@~7A6u4V$G$"$k(B K[X]/I $B$N(B monomial $B$K$h$k4pDl$r5a$a$k(B. |
K $B>eM-8B<!85@~7A6u4V$G$"$k(B K[X]/I $B$N(B monomial $B$K$h$k4pDl$r5a$a$k(B. |
@item |
@item |
$BF@$i$l$?4pDl$N8D?t$,(B, K[X]/I $B$N(B K-$B@~7A6u4V$H$7$F$N<!85$KEy$7$$(B. |
$BF@$i$l$?4pDl$N8D?t$,(B, K[X]/I $B$N(B K-$B@~7A6u4V$H$7$F$N<!85$KEy$7$$(B. |
|
\E |
|
\BEG |
|
@item |
|
Assuming that @var{dplist} is a list of distributed polynomials which |
|
is a Groebner basis with respect to the current ordering type and |
|
that the ideal @var{I} generated by @var{dplist} in K[X] is zero-dimensional, |
|
this function computes the monomial basis of a finite dimenstional K-vector |
|
space K[X]/I. |
|
@item |
|
The number of elements in the monomial basis is equal to the |
|
K-dimenstion of K[X]/I. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1741 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3201 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{gr hgr gr_mod}. |
@fref{gr hgr gr_mod}. |
@end table |
@end table |
|
|
@node dp_mag,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_mag,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_mag,,, Functions for Groebner basis computation |
@subsection @code{dp_mag} |
@subsection @code{dp_mag} |
@findex dp_mag |
@findex dp_mag |
|
|
@table @t |
@table @t |
@item dp_mag(@var{p}) |
@item dp_mag(@var{p}) |
:: $B78?t$N%S%C%HD9$NOB$rJV$9(B |
\JP :: $B78?t$N%S%C%HD9$NOB$rJV$9(B |
|
\EG :: Computes the sum of bit lengths of coefficients of a distributed polynomial. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B?t(B |
\JP $B?t(B |
|
\EG integer |
@item p |
@item p |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
$BJ,;6I=8=B?9`<0$N78?t$K8=$l$kM-M}?t$K$D$-(B, $B$=$NJ,JlJ,;R(B ($B@0?t$N>l9g$OJ,;R(B) |
$BJ,;6I=8=B?9`<0$N78?t$K8=$l$kM-M}?t$K$D$-(B, $B$=$NJ,JlJ,;R(B ($B@0?t$N>l9g$OJ,;R(B) |
$B$N%S%C%HD9$NAmOB$rJV$9(B. |
$B$N%S%C%HD9$NAmOB$rJV$9(B. |
Line 1772 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3238 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
@item |
@item |
@code{dp_gr_flags()} $B$G(B, @code{ShowMag}, @code{Print} $B$r(B on $B$K$9$k$3$H$K$h$j(B |
@code{dp_gr_flags()} $B$G(B, @code{ShowMag}, @code{Print} $B$r(B on $B$K$9$k$3$H$K$h$j(B |
$BESCf@8@.$5$l$kB?9`<0$K$?$$$9$k(B @code{dp_mag()} $B$NCM$r8+$k$3$H$,$G$-$k(B. |
$BESCf@8@.$5$l$kB?9`<0$K$?$$$9$k(B @code{dp_mag()} $B$NCM$r8+$k$3$H$,$G$-$k(B. |
|
\E |
|
\BEG |
|
@item |
|
This function computes the sum of bit lengths of coefficients of a |
|
distributed polynomial @var{p}. If a coefficient is non integral, |
|
the sum of bit lengths of the numerator and the denominator is taken. |
|
@item |
|
This is a measure of the size of a polynomial. Especially for |
|
zero-dimensional system coefficient swells are often serious and |
|
the returned value is useful to detect such swells. |
|
@item |
|
If @code{ShowMag} and @code{Print} for @code{dp_gr_flags()} are on, |
|
values of @code{dp_mag()} for intermediate basis elements are shown. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1781 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3261 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{dp_gr_flags dp_gr_print}. |
@fref{dp_gr_flags dp_gr_print}. |
@end table |
@end table |
|
|
@node dp_red dp_red_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_red dp_red_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_red dp_red_mod,,, Functions for Groebner basis computation |
@subsection @code{dp_red}, @code{dp_red_mod} |
@subsection @code{dp_red}, @code{dp_red_mod} |
@findex dp_red |
@findex dp_red |
@findex dp_red_mod |
@findex dp_red_mod |
Line 1793 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3275 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
@table @t |
@table @t |
@item dp_red(@var{dpoly1},@var{dpoly2},@var{dpoly3}) |
@item dp_red(@var{dpoly1},@var{dpoly2},@var{dpoly3}) |
@item dp_red_mod(@var{dpoly1},@var{dpoly2},@var{dpoly3},@var{mod}) |
@item dp_red_mod(@var{dpoly1},@var{dpoly2},@var{dpoly3},@var{mod}) |
:: $B0l2s$N4JLsA`:n(B |
\JP :: $B0l2s$N4JLsA`:n(B |
|
\EG :: Single reduction operation |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B%j%9%H(B |
\JP $B%j%9%H(B |
@item dpoly1, dpoly2, dpoly3 |
\EG list |
$BJ,;6I=8=B?9`<0(B |
@item dpoly1 dpoly2 dpoly3 |
|
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@item vlist |
@item vlist |
$B%j%9%H(B |
\JP $B%j%9%H(B |
|
\EG list |
@item mod |
@item mod |
$BAG?t(B |
\JP $BAG?t(B |
|
\EG prime |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@var{dpoly1} + @var{dpoly2} $B$J$kJ,;6I=8=B?9`<0$r(B @var{dpoly3} $B$G(B |
@var{dpoly1} + @var{dpoly2} $B$J$kJ,;6I=8=B?9`<0$r(B @var{dpoly3} $B$G(B |
1 $B2s4JLs$9$k(B. |
1 $B2s4JLs$9$k(B. |
Line 1819 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3307 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
$B$J$i$J$$(B. |
$B$J$i$J$$(B. |
@item |
@item |
$B0z?t$,@0?t78?t$N;~(B, $B4JLs$O(B, $BJ,?t$,8=$l$J$$$h$&(B, $B@0?t(B @var{a}, @var{b}, |
$B0z?t$,@0?t78?t$N;~(B, $B4JLs$O(B, $BJ,?t$,8=$l$J$$$h$&(B, $B@0?t(B @var{a}, @var{b}, |
$B9`(B @var{t} $B$K$h$j(B @var{a(dpoly1 + dpoly2)-bt dpoly3} $B$H$7$F7W;;$5$l$k(B. |
$B9`(B @var{t} $B$K$h$j(B @var{a}(@var{dpoly1} + @var{dpoly2})-@var{bt} @var{dpoly3} $B$H$7$F7W;;$5$l$k(B. |
@item |
@item |
$B7k2L$O(B, @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]} $B$J$k%j%9%H$G$"$k(B. |
$B7k2L$O(B, @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]} $B$J$k%j%9%H$G$"$k(B. |
|
\E |
|
\BEG |
|
@item |
|
Reduces a distributed polynomial, @var{dpoly1} + @var{dpoly2}, |
|
by @var{dpoly3} for single time. |
|
@item |
|
An input for @code{dp_red_mod()} must be converted into a distributed |
|
polynomial with coefficients in a finite field. |
|
@item |
|
This implies that |
|
the divisibility of the head term of @var{dpoly2} by the head term of |
|
@var{dpoly3} is assumed. |
|
@item |
|
When integral coefficients, computation is so carefully performed that |
|
no rational operations appear in the reduction procedure. |
|
It is computed for integers @var{a} and @var{b}, and a term @var{t} as: |
|
@var{a}(@var{dpoly1} + @var{dpoly2})-@var{bt} @var{dpoly3}. |
|
@item |
|
The result is a list @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]}. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1832 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3340 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
[159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>; |
[159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>; |
(12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>> |
(12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>> |
[160] dp_red(D,R,C); |
[160] dp_red(D,R,C); |
[(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>,(-1)*<<0,1,1,1,0>> |
[(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>, |
+(-1)*<<1,1,0,0,1>>] |
(-1)*<<0,1,1,1,0>>+(-1)*<<1,1,0,0,1>>] |
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{dp_mod dp_rat}. |
@fref{dp_mod dp_rat}. |
@end table |
@end table |
|
|
@node dp_sp dp_sp_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_sp dp_sp_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_sp dp_sp_mod,,, Functions for Groebner basis computation |
@subsection @code{dp_sp}, @code{dp_sp_mod} |
@subsection @code{dp_sp}, @code{dp_sp_mod} |
@findex dp_sp |
@findex dp_sp |
@findex dp_sp_mod |
@findex dp_sp_mod |
Line 1849 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3359 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
@table @t |
@table @t |
@item dp_sp(@var{dpoly1},@var{dpoly2}) |
@item dp_sp(@var{dpoly1},@var{dpoly2}) |
@item dp_sp_mod(@var{dpoly1},@var{dpoly2},@var{mod}) |
@item dp_sp_mod(@var{dpoly1},@var{dpoly2},@var{mod}) |
:: S-$BB?9`<0$N7W;;(B |
\JP :: S-$BB?9`<0$N7W;;(B |
|
\EG :: Computation of an S-polynomial |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
@item dpoly1, dpoly2 |
\EG distributed polynomial |
$BJ,;6I=8=B?9`<0(B |
@item dpoly1 dpoly2 |
|
\JP $BJ,;6I=8=B?9`<0(B |
|
\EG distributed polynomial |
@item mod |
@item mod |
$BAG?t(B |
\JP $BAG?t(B |
|
\EG prime |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@var{dpoly1}, @var{dpoly2} $B$N(B S-$BB?9`<0$r7W;;$9$k(B. |
@var{dpoly1}, @var{dpoly2} $B$N(B S-$BB?9`<0$r7W;;$9$k(B. |
@item |
@item |
Line 1869 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3384 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
@item |
@item |
$B7k2L$KM-M}?t(B, $BM-M}<0$,F~$k$N$rHr$1$k$?$a(B, $B7k2L$,Dj?tG\(B, $B$"$k$$$OB?9`<0(B |
$B7k2L$KM-M}?t(B, $BM-M}<0$,F~$k$N$rHr$1$k$?$a(B, $B7k2L$,Dj?tG\(B, $B$"$k$$$OB?9`<0(B |
$BG\$5$l$F$$$k2DG=@-$,$"$k(B. |
$BG\$5$l$F$$$k2DG=@-$,$"$k(B. |
|
\E |
|
\BEG |
|
@item |
|
This function computes the S-polynomial of @var{dpoly1} and @var{dpoly2}. |
|
@item |
|
Inputs of @code{dp_sp_mod()} must be polynomials with coefficients in a |
|
finite field. |
|
@item |
|
The result may be multiplied by a constant in the ground field in order to |
|
make the result integral. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1881 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3407 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{dp_mod dp_rat}. |
@fref{dp_mod dp_rat}. |
@end table |
@end table |
@node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, Functions for Groebner basis computation |
@subsection @code{p_nf}, @code{p_nf_mod}, @code{p_true_nf}, @code{p_true_nf_mod} |
@subsection @code{p_nf}, @code{p_nf_mod}, @code{p_true_nf}, @code{p_true_nf_mod} |
@findex p_nf |
@findex p_nf |
@findex p_nf_mod |
@findex p_nf_mod |
Line 1894 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3422 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
@table @t |
@table @t |
@item p_nf(@var{poly},@var{plist},@var{vlist},@var{order}) |
@item p_nf(@var{poly},@var{plist},@var{vlist},@var{order}) |
@itemx p_nf_mod(@var{poly},@var{plist},@var{vlist},@var{order},@var{mod}) |
@itemx p_nf_mod(@var{poly},@var{plist},@var{vlist},@var{order},@var{mod}) |
:: $BI=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B) |
\JP :: $BI=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B) |
|
\BEG |
|
:: Computes the normal form of the given polynomial. |
|
(The result may be multiplied by a constant.) |
|
\E |
@item p_true_nf(@var{poly},@var{plist},@var{vlist},@var{order}) |
@item p_true_nf(@var{poly},@var{plist},@var{vlist},@var{order}) |
@itemx p_true_nf_mod(@var{poly},@var{plist},@var{vlist},@var{order},@var{mod}) |
@itemx p_true_nf_mod(@var{poly},@var{plist},@var{vlist},@var{order},@var{mod}) |
:: $BI=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B??$N7k2L$r(B @code{[$BJ,;R(B, $BJ,Jl(B]} $B$N7A$GJV$9(B) |
\JP :: $BI=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B??$N7k2L$r(B @code{[$BJ,;R(B, $BJ,Jl(B]} $B$N7A$GJV$9(B) |
|
\BEG |
|
:: Computes the normal form of the given polynomial. (The result is returned |
|
as a form of @code{[numerator, denominator]}) |
|
\E |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
@code{p_nf} : $BB?9`<0(B, @code{p_true_nf} : $B%j%9%H(B |
\JP @code{p_nf} : $BB?9`<0(B, @code{p_true_nf} : $B%j%9%H(B |
|
\EG @code{p_nf} : polynomial, @code{p_true_nf} : list |
@item poly |
@item poly |
$BB?9`<0(B |
\JP $BB?9`<0(B |
@item plist,vlist |
\EG polynomial |
$B%j%9%H(B |
@item plist vlist |
|
\JP $B%j%9%H(B |
|
\EG list |
@item order |
@item order |
$B?t(B, $B%j%9%H$^$?$O9TNs(B |
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
@item mod |
@item mod |
$BAG?t(B |
\JP $BAG?t(B |
|
\EG prime |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@samp{gr} $B$GDj5A$5$l$F$$$k(B. |
@samp{gr} $B$GDj5A$5$l$F$$$k(B. |
@item |
@item |
Line 1934 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3476 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
@item |
@item |
@code{p_true_nf()}, @code{p_true_nf_mod()} $B$N=PNO$K4X$7$F$O(B, |
@code{p_true_nf()}, @code{p_true_nf_mod()} $B$N=PNO$K4X$7$F$O(B, |
@code{dp_true_nf()}, @code{dp_true_nf_mod()} $B$N9`$r;2>H(B. |
@code{dp_true_nf()}, @code{dp_true_nf_mod()} $B$N9`$r;2>H(B. |
|
\E |
|
\BEG |
|
@item |
|
Defined in the package @samp{gr}. |
|
@item |
|
Obtains the normal form of a polynomial by a polynomial list. |
|
@item |
|
These are interfaces to @code{dp_nf()}, @code{dp_true_nf()}, @code{dp_nf_mod()}, |
|
@code{dp_true_nf_mod} |
|
@item |
|
The polynomial @var{poly} and the polynomials in @var{plist} is |
|
converted, according to the variable ordering @var{vlist} and |
|
type of term ordering @var{otype}, into their distributed polynomial |
|
counterparts and passed to @code{dp_nf()}. |
|
@item |
|
@code{dp_nf()}, @code{dp_true_nf()}, @code{dp_nf_mod()} and |
|
@code{dp_true_nf_mod()} |
|
is called with value 1 for @var{fullreduce}. |
|
@item |
|
The result is converted back into an ordinary polynomial. |
|
@item |
|
As for @code{p_true_nf()}, @code{p_true_nf_mod()} |
|
refer to @code{dp_true_nf()} and @code{dp_true_nf_mod()}. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1949 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3515 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{dp_ptod}, |
@fref{dp_ptod}, |
@fref{dp_dtop}, |
@fref{dp_dtop}, |
@fref{dp_ord}, |
@fref{dp_ord}, |
@fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod}. |
@fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod}. |
@end table |
@end table |
|
|
@node p_terms,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node p_terms,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node p_terms,,, Functions for Groebner basis computation |
@subsection @code{p_terms} |
@subsection @code{p_terms} |
@findex p_terms |
@findex p_terms |
|
|
@table @t |
@table @t |
@item p_terms(@var{poly},@var{vlist},@var{order}) |
@item p_terms(@var{poly},@var{vlist},@var{order}) |
:: $BB?9`<0$K$"$i$o$l$kC19`$r%j%9%H$K$9$k(B. |
\JP :: $BB?9`<0$K$"$i$o$l$kC19`$r%j%9%H$K$9$k(B. |
|
\EG :: Monomials appearing in the given polynomial is collected into a list. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B%j%9%H(B |
\JP $B%j%9%H(B |
|
\EG list |
@item poly |
@item poly |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@item vlist |
@item vlist |
$B%j%9%H(B |
\JP $B%j%9%H(B |
|
\EG list |
@item order |
@item order |
$B?t(B, $B%j%9%H$^$?$O9TNs(B |
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@samp{gr} $B$GDj5A$5$l$F$$$k(B. |
@samp{gr} $B$GDj5A$5$l$F$$$k(B. |
@item |
@item |
Line 1986 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
Line 3560 u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0 |
|
@item |
@item |
$B%0%l%V%J4pDl$O$7$P$7$P78?t$,5pBg$K$J$k$?$a(B, $B<B:]$K$I$N9`$,8=$l$F(B |
$B%0%l%V%J4pDl$O$7$P$7$P78?t$,5pBg$K$J$k$?$a(B, $B<B:]$K$I$N9`$,8=$l$F(B |
$B$$$k$N$+$r8+$k$?$a$J$I$KMQ$$$k(B. |
$B$$$k$N$+$r8+$k$?$a$J$I$KMQ$$$k(B. |
|
\E |
|
\BEG |
|
@item |
|
Defined in the package @samp{gr}. |
|
@item |
|
This returns a list which contains all non-zero monomials in the given |
|
polynomial. The monomials are ordered according to the current |
|
type of term ordering and @var{vlist}. |
|
@item |
|
Since polynomials in a Groebner base often have very large coefficients, |
|
examining a polynomial as it is may sometimes be difficult to perform. |
|
For such a case, this function enables to examine which term is really |
|
exists. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
[233] G=gr(katsura(5),[u5,u4,u3,u2,u1,u0],2)$ |
[233] G=gr(katsura(5),[u5,u4,u3,u2,u1,u0],2)$ |
[234] p_terms(G[0],[u5,u4,u3,u2,u1,u0],2); |
[234] p_terms(G[0],[u5,u4,u3,u2,u1,u0],2); |
[u5,u0^31,u0^30,u0^29,u0^28,u0^27,u0^26,u0^25,u0^24,u0^23,u0^22,u0^21,u0^20, |
[u5,u0^31,u0^30,u0^29,u0^28,u0^27,u0^26,u0^25,u0^24,u0^23,u0^22, |
u0^19,u0^18,u0^17,u0^16,u0^15,u0^14,u0^13,u0^12,u0^11,u0^10,u0^9,u0^8,u0^7, |
u0^21,u0^20,u0^19,u0^18,u0^17,u0^16,u0^15,u0^14,u0^13,u0^12,u0^11, |
u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
u0^10,u0^9,u0^8,u0^7,u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
@end example |
@end example |
|
|
@node gb_comp,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node gb_comp,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node gb_comp,,, Functions for Groebner basis computation |
@subsection @code{gb_comp} |
@subsection @code{gb_comp} |
@findex gb_comp |
@findex gb_comp |
|
|
@table @t |
@table @t |
@item gb_comp(@var{plist1}, @var{plist2}) |
@item gb_comp(@var{plist1}, @var{plist2}) |
:: $BB?9`<0%j%9%H$,(B, $BId9f$r=|$$$F=89g$H$7$FEy$7$$$+$I$&$+D4$Y$k(B. |
\JP :: $BB?9`<0%j%9%H$,(B, $BId9f$r=|$$$F=89g$H$7$FEy$7$$$+$I$&$+D4$Y$k(B. |
|
\EG :: Checks whether two polynomial lists are equal or not as a set |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return 0 $B$^$?$O(B 1 |
\JP @item return 0 $B$^$?$O(B 1 |
@item plist1, plist2 |
\EG @item return 0 or 1 |
|
@item plist1 plist2 |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@var{plist1}, @var{plist2} $B$K$D$$$F(B, $BId9f$r=|$$$F=89g$H$7$FEy$7$$$+$I$&$+(B |
@var{plist1}, @var{plist2} $B$K$D$$$F(B, $BId9f$r=|$$$F=89g$H$7$FEy$7$$$+$I$&$+(B |
$BD4$Y$k(B. |
$BD4$Y$k(B. |
@item |
@item |
$B0[$J$kJ}K!$G5a$a$?%0%l%V%J4pDl$O(B, $B4pDl$N=g=x(B, $BId9f$,0[$J$k>l9g$,$"$j(B, |
$B0[$J$kJ}K!$G5a$a$?%0%l%V%J4pDl$O(B, $B4pDl$N=g=x(B, $BId9f$,0[$J$k>l9g$,$"$j(B, |
$B$=$l$i$,Ey$7$$$+$I$&$+$rD4$Y$k$?$a$KMQ$$$k(B. |
$B$=$l$i$,Ey$7$$$+$I$&$+$rD4$Y$k$?$a$KMQ$$$k(B. |
|
\E |
|
\BEG |
|
@item |
|
This function checks whether @var{plist1} and @var{plist2} are equal or |
|
not as a set . |
|
@item |
|
For the same input and the same term ordering different |
|
functions for Groebner basis computations may produce different outputs |
|
as lists. This function compares such lists whether they are equal |
|
as a generating set of an ideal. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 2029 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
Line 3632 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
1 |
1 |
@end example |
@end example |
|
|
@node katsura hkatsura cyclic hcyclic,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node katsura hkatsura cyclic hcyclic,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node katsura hkatsura cyclic hcyclic,,, Functions for Groebner basis computation |
@subsection @code{katsura}, @code{hkatsura}, @code{cyclic}, @code{hcyclic} |
@subsection @code{katsura}, @code{hkatsura}, @code{cyclic}, @code{hcyclic} |
@findex katsura |
@findex katsura |
@findex hkatsura |
@findex hkatsura |
Line 2041 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
Line 3645 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
@item hkatsura(@var{n}) |
@item hkatsura(@var{n}) |
@item cyclic(@var{n}) |
@item cyclic(@var{n}) |
@item hcyclic(@var{n}) |
@item hcyclic(@var{n}) |
:: $BB?9`<0%j%9%H$N@8@.(B |
\JP :: $BB?9`<0%j%9%H$N@8@.(B |
|
\EG :: Generates a polynomial list of standard benchmark. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B%j%9%H(B |
\JP $B%j%9%H(B |
|
\EG list |
@item n |
@item n |
$B@0?t(B |
\JP $B@0?t(B |
|
\EG integer |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
|
\BJP |
@item |
@item |
@code{katsura()} $B$O(B @samp{katsura}, @code{cyclic()} $B$O(B @samp{cyclic} |
@code{katsura()} $B$O(B @samp{katsura}, @code{cyclic()} $B$O(B @samp{cyclic} |
$B$GDj5A$5$l$F$$$k(B. |
$B$GDj5A$5$l$F$$$k(B. |
Line 2061 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
Line 3669 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
@item |
@item |
@code{cyclic} $B$O(B @code{Arnborg}, @code{Lazard}, @code{Davenport} $B$J$I$N(B |
@code{cyclic} $B$O(B @code{Arnborg}, @code{Lazard}, @code{Davenport} $B$J$I$N(B |
$BL>$G8F$P$l$k$3$H$b$"$k(B. |
$BL>$G8F$P$l$k$3$H$b$"$k(B. |
|
\E |
|
\BEG |
|
@item |
|
Function @code{katsura()} is defined in @samp{katsura}, and |
|
function @code{cyclic()} in @samp{cyclic}. |
|
@item |
|
These functions generate a series of polynomial sets, respectively, |
|
which are often used for testing and bench marking: |
|
@code{katsura}, @code{cyclic} and their homogenized versions. |
|
@item |
|
Polynomial set @code{cyclic} is sometimes called by other name: |
|
@code{Arnborg}, @code{Lazard}, and @code{Davenport}. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 2068 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
Line 3689 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
[79] load("cyclic")$ |
[79] load("cyclic")$ |
[89] katsura(5); |
[89] katsura(5); |
[u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1, |
[u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1, |
2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3-u2+u1^2, |
2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3 |
2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1, |
-u2+u1^2,2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1, |
u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2] |
u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2] |
[90] hkatsura(5); |
[90] hkatsura(5); |
[-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5, |
[-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5, |
Line 2092 u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2] |
|
Line 3713 u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2] |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item References |
@fref{dp_dtop}. |
@fref{dp_dtop}. |
|
@end table |
|
|
|
\JP @node primadec primedec,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node primadec primedec,,, Functions for Groebner basis computation |
|
@subsection @code{primadec}, @code{primedec} |
|
@findex primadec |
|
@findex primedec |
|
|
|
@table @t |
|
@item primadec(@var{plist},@var{vlist}) |
|
@item primedec(@var{plist},@var{vlist}) |
|
\JP :: $B%$%G%"%k$NJ,2r(B |
|
\EG :: Computes decompositions of ideals. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
@itemx plist |
|
\JP $BB?9`<0%j%9%H(B |
|
\EG list of polynomials |
|
@item vlist |
|
\JP $BJQ?t%j%9%H(B |
|
\EG list of variables |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
@code{primadec()}, @code{primedec} $B$O(B @samp{primdec} $B$GDj5A$5$l$F$$$k(B. |
|
@item |
|
@code{primadec()}, @code{primedec()} $B$O$=$l$>$lM-M}?tBN>e$G$N%$%G%"%k$N(B |
|
$B=`AGJ,2r(B, $B:,4p$NAG%$%G%"%kJ,2r$r9T$&(B. |
|
@item |
|
$B0z?t$OB?9`<0%j%9%H$*$h$SJQ?t%j%9%H$G$"$k(B. $BB?9`<0$OM-M}?t78?t$N$_$,5v$5$l$k(B. |
|
@item |
|
@code{primadec} $B$O(B @code{[$B=`AG@.J,(B, $BIUB0AG%$%G%"%k(B]} $B$N%j%9%H$rJV$9(B. |
|
@item |
|
@code{primadec} $B$O(B $BAG0x;R$N%j%9%H$rJV$9(B. |
|
@item |
|
$B7k2L$K$*$$$F(B, $BB?9`<0%j%9%H$H$7$FI=<($5$l$F$$$k3F%$%G%"%k$OA4$F(B |
|
$B%0%l%V%J4pDl$G$"$k(B. $BBP1~$9$k9`=g=x$O(B, $B$=$l$>$l(B |
|
$BJQ?t(B @code{PRIMAORD}, @code{PRIMEORD} $B$K3JG<$5$l$F$$$k(B. |
|
@item |
|
@code{primadec} $B$O(B @code{[Shimoyama,Yokoyama]} $B$N=`AGJ,2r%"%k%4%j%:%`(B |
|
$B$r<BAu$7$F$$$k(B. |
|
@item |
|
$B$b$7AG0x;R$N$_$r5a$a$?$$$J$i(B, @code{primedec} $B$r;H$&J}$,$h$$(B. |
|
$B$3$l$O(B, $BF~NO%$%G%"%k$,:,4p%$%G%"%k$G$J$$>l9g$K(B, @code{primadec} |
|
$B$N7W;;$KM>J,$J%3%9%H$,I,MW$H$J$k>l9g$,$"$k$+$i$G$"$k(B. |
|
\E |
|
\BEG |
|
@item |
|
Function @code{primadec()} and @code{primedec} are defined in @samp{primdec}. |
|
@item |
|
@code{primadec()}, @code{primedec()} are the function for primary |
|
ideal decomposition and prime decomposition of the radical over the |
|
rationals respectively. |
|
@item |
|
The arguments are a list of polynomials and a list of variables. |
|
These functions accept ideals with rational function coefficients only. |
|
@item |
|
@code{primadec} returns the list of pair lists consisting a primary component |
|
and its associated prime. |
|
@item |
|
@code{primedec} returns the list of prime components. |
|
@item |
|
Each component is a Groebner basis and the corresponding term order |
|
is indicated by the global variables @code{PRIMAORD}, @code{PRIMEORD} |
|
respectively. |
|
@item |
|
@code{primadec} implements the primary decompostion algorithm |
|
in @code{[Shimoyama,Yokoyama]}. |
|
@item |
|
If one only wants to know the prime components of an ideal, then |
|
use @code{primedec} because @code{primadec} may need additional costs |
|
if an input ideal is not radical. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[84] load("primdec")$ |
|
[102] primedec([p*q*x-q^2*y^2+q^2*y,-p^2*x^2+p^2*x+p*q*y, |
|
(q^3*y^4-2*q^3*y^3+q^3*y^2)*x-q^3*y^4+q^3*y^3, |
|
-q^3*y^4+2*q^3*y^3+(-q^3+p*q^2)*y^2],[p,q,x,y]); |
|
[[y,x],[y,p],[x,q],[q,p],[x-1,q],[y-1,p],[(y-1)*x-y,q*y^2-2*q*y-p+q]] |
|
[103] primadec([x,z*y,w*y^2,w^2*y-z^3,y^3],[x,y,z,w]); |
|
[[[x,z*y,y^2,w^2*y-z^3],[z,y,x]],[[w,x,z*y,z^3,y^3],[w,z,y,x]]] |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{fctr sqfr}, |
|
\JP @fref{$B9`=g=x$N@_Dj(B}. |
|
\EG @fref{Setting term orderings}. |
|
@end table |
|
|
|
\JP @node primedec_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node primedec_mod,,, Functions for Groebner basis computation |
|
@subsection @code{primedec_mod} |
|
@findex primedec_mod |
|
|
|
@table @t |
|
@item primedec_mod(@var{plist},@var{vlist},@var{ord},@var{mod},@var{strategy}) |
|
\JP :: $B%$%G%"%k$NJ,2r(B |
|
\EG :: Computes decompositions of ideals over small finite fields. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
@itemx plist |
|
\JP $BB?9`<0%j%9%H(B |
|
\EG list of polynomials |
|
@item vlist |
|
\JP $BJQ?t%j%9%H(B |
|
\EG list of variables |
|
@item ord |
|
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
|
@item mod |
|
\JP $B@5@0?t(B |
|
\EG positive integer |
|
@item strategy |
|
\JP $B@0?t(B |
|
\EG integer |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
@code{primedec_mod()} $B$O(B @samp{primdec_mod} |
|
$B$GDj5A$5$l$F$$$k(B. @code{[Yokoyama]} $B$NAG%$%G%"%kJ,2r%"%k%4%j%:%`(B |
|
$B$r<BAu$7$F$$$k(B. |
|
@item |
|
@code{primedec_mod()} $B$OM-8BBN>e$G$N%$%G%"%k$N(B |
|
$B:,4p$NAG%$%G%"%kJ,2r$r9T$$(B, $BAG%$%G%"%k$N%j%9%H$rJV$9(B. |
|
@item |
|
@code{primedec_mod()} $B$O(B, GF(@var{mod}) $B>e$G$NJ,2r$rM?$($k(B. |
|
$B7k2L$N3F@.J,$N@8@.85$O(B, $B@0?t78?tB?9`<0$G$"$k(B. |
|
@item |
|
$B7k2L$K$*$$$F(B, $BB?9`<0%j%9%H$H$7$FI=<($5$l$F$$$k3F%$%G%"%k$OA4$F(B |
|
[@var{vlist},@var{ord}] $B$G;XDj$5$l$k9`=g=x$K4X$9$k%0%l%V%J4pDl$G$"$k(B. |
|
@item |
|
@var{strategy} $B$,(B 0 $B$G$J$$$H$-(B, incremental $B$K(B component $B$N6&DL(B |
|
$BItJ,$r7W;;$9$k$3$H$K$h$k(B early termination $B$r9T$&(B. $B0lHL$K(B, |
|
$B%$%G%"%k$N<!85$,9b$$>l9g$KM-8z$@$,(B, 0 $B<!85$N>l9g$J$I(B, $B<!85$,>.$5$$(B |
|
$B>l9g$K$O(B overhead $B$,Bg$-$$>l9g$,$"$k(B. |
|
@item |
|
$B7W;;ESCf$GFbIt>pJs$r8+$?$$>l9g$K$O!"(B |
|
$BA0$b$C$F(B @code{dp_gr_print(2)} $B$r<B9T$7$F$*$1$P$h$$(B. |
|
\E |
|
\BEG |
|
@item |
|
Function @code{primedec_mod()} |
|
is defined in @samp{primdec_mod} and implements the prime decomposition |
|
algorithm in @code{[Yokoyama]}. |
|
@item |
|
@code{primedec_mod()} |
|
is the function for prime ideal decomposition |
|
of the radical of a polynomial ideal over small finite field, |
|
and they return a list of prime ideals, which are associated primes |
|
of the input ideal. |
|
@item |
|
@code{primedec_mod()} gives the decomposition over GF(@var{mod}). |
|
The generators of each resulting component consists of integral polynomials. |
|
@item |
|
Each resulting component is a Groebner basis with respect to |
|
a term order specified by [@var{vlist},@var{ord}]. |
|
@item |
|
If @var{strategy} is non zero, then the early termination strategy |
|
is tried by computing the intersection of obtained components |
|
incrementally. In general, this strategy is useful when the krull |
|
dimension of the ideal is high, but it may add some overhead |
|
if the dimension is small. |
|
@item |
|
If you want to see internal information during the computation, |
|
execute @code{dp_gr_print(2)} in advance. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[0] load("primdec_mod")$ |
|
[246] PP444=[x^8+x^2+t,y^8+y^2+t,z^8+z^2+t]$ |
|
[247] primedec_mod(PP444,[x,y,z,t],0,2,1); |
|
[[y+z,x+z,z^8+z^2+t],[x+y,y^2+y+z^2+z+1,z^8+z^2+t], |
|
[y+z+1,x+z+1,z^8+z^2+t],[x+z,y^2+y+z^2+z+1,z^8+z^2+t], |
|
[y+z,x^2+x+z^2+z+1,z^8+z^2+t],[y+z+1,x^2+x+z^2+z+1,z^8+z^2+t], |
|
[x+z+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z+1,x+z,z^8+z^2+t], |
|
[x+y+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z,x+z+1,z^8+z^2+t]] |
|
[248] |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{modfctr}, |
|
@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main}, |
|
\JP @fref{$B9`=g=x$N@_Dj(B}. |
|
\EG @fref{Setting term orderings}, |
|
@fref{dp_gr_flags dp_gr_print}. |
|
@end table |
|
|
|
\JP @node bfunction bfct generic_bfct,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node bfunction bfct generic_bfct,,, Functions for Groebner basis computation |
|
@subsection @code{bfunction}, @code{bfct}, @code{generic_bfct} |
|
@findex bfunction |
|
@findex bfct |
|
@findex generic_bfct |
|
|
|
@table @t |
|
@item bfunction(@var{f}) |
|
@item bfct(@var{f}) |
|
@item generic_bfct(@var{plist},@var{vlist},@var{dvlist},@var{weight}) |
|
\JP :: b $B4X?t$N7W;;(B |
|
\EG :: Computes the global b function of a polynomial or an ideal |
|
@end table |
|
@table @var |
|
@item return |
|
@itemx f |
|
\JP $BB?9`<0(B |
|
\EG polynomial |
|
@item plist |
|
\JP $BB?9`<0%j%9%H(B |
|
\EG list of polynomials |
|
@item vlist dvlist |
|
\JP $BJQ?t%j%9%H(B |
|
\EG list of variables |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item @samp{bfct} $B$GDj5A$5$l$F$$$k(B. |
|
@item @code{bfunction(@var{f})}, @code{bfct(@var{f})} $B$OB?9`<0(B @var{f} $B$N(B global b $B4X?t(B @code{b(s)} $B$r(B |
|
$B7W;;$9$k(B. @code{b(s)} $B$O(B, Weyl $BBe?t(B @code{D} $B>e$N0lJQ?tB?9`<04D(B @code{D[s]} |
|
$B$N85(B @code{P(x,s)} $B$,B8:_$7$F(B, @code{P(x,s)f^(s+1)=b(s)f^s} $B$rK~$?$9$h$&$J(B |
|
$BB?9`<0(B @code{b(s)} $B$NCf$G(B, $B<!?t$,:G$bDc$$$b$N$G$"$k(B. |
|
@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} |
|
$B$O(B, @var{plist} $B$G@8@.$5$l$k(B @code{D} $B$N:8%$%G%"%k(B @code{I} $B$N(B, |
|
$B%&%'%$%H(B @var{weight} $B$K4X$9$k(B global b $B4X?t$r7W;;$9$k(B. |
|
@var{vlist} $B$O(B @code{x}-$BJQ?t(B, @var{vlist} $B$OBP1~$9$k(B @code{D}-$BJQ?t(B |
|
$B$r=g$KJB$Y$k(B. |
|
@item @code{bfunction} $B$H(B @code{bfct} $B$G$OMQ$$$F$$$k%"%k%4%j%:%`$,(B |
|
$B0[$J$k(B. $B$I$A$i$,9bB.2=$OF~NO$K$h$k(B. |
|
@item $B>\:Y$K$D$$$F$O(B, [Saito,Sturmfels,Takayama] $B$r8+$h(B. |
|
\E |
|
\BEG |
|
@item These functions are defined in @samp{bfct}. |
|
@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} compute the global b-function @code{b(s)} of |
|
a polynomial @var{f}. |
|
@code{b(s)} is a polynomial of the minimal degree |
|
such that there exists @code{P(x,s)} in D[s], which is a polynomial |
|
ring over Weyl algebra @code{D}, and @code{P(x,s)f^(s+1)=b(s)f^s} holds. |
|
@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} |
|
computes the global b-function of a left ideal @code{I} in @code{D} |
|
generated by @var{plist}, with respect to @var{weight}. |
|
@var{vlist} is the list of @code{x}-variables, |
|
@var{vlist} is the list of corresponding @code{D}-variables. |
|
@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} implement |
|
different algorithms and the efficiency depends on inputs. |
|
@item See [Saito,Sturmfels,Takayama] for the details. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[0] load("bfct")$ |
|
[216] bfunction(x^3+y^3+z^3+x^2*y^2*z^2+x*y*z); |
|
-9*s^5-63*s^4-173*s^3-233*s^2-154*s-40 |
|
[217] fctr(@@); |
|
[[-1,1],[s+2,1],[3*s+4,1],[3*s+5,1],[s+1,2]] |
|
[218] F = [4*x^3*dt+y*z*dt+dx,x*z*dt+4*y^3*dt+dy, |
|
x*y*dt+5*z^4*dt+dz,-x^4-z*y*x-y^4-z^5+t]$ |
|
[219] generic_bfct(F,[t,z,y,x],[dt,dz,dy,dx],[1,0,0,0]); |
|
20000*s^10-70000*s^9+101750*s^8-79375*s^7+35768*s^6-9277*s^5 |
|
+1278*s^4-72*s^3 |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
\JP @fref{Weyl $BBe?t(B}. |
|
\EG @fref{Weyl algebra}. |
@end table |
@end table |
|
|