version 1.2, 1999/12/21 02:47:34 |
version 1.3, 2003/04/19 15:44:59 |
|
|
@comment $OpenXM$ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/upoly.texi,v 1.2 1999/12/21 02:47:34 noro Exp $ |
\BJP |
\BJP |
@node $B0lJQ?tB?9`<0$N1i;;(B,,, $BAH$_9~$_H!?t(B |
@node $B0lJQ?tB?9`<0$N1i;;(B,,, $BAH$_9~$_H!?t(B |
@section $B0lJQ?tB?9`<0$N1i;;(B |
@section $B0lJQ?tB?9`<0$N1i;;(B |
Line 112 cannot take polynomials over GF(2^n) as their inputs. |
|
Line 112 cannot take polynomials over GF(2^n) as their inputs. |
|
@item |
@item |
@code{umul()}, @code{umul_ff()} produce @var{p1*p2}. |
@code{umul()}, @code{umul_ff()} produce @var{p1*p2}. |
@code{usquare()}, @code{usquare_ff()} produce @var{p1^2}. |
@code{usquare()}, @code{usquare_ff()} produce @var{p1^2}. |
@code{utmul()}, @code{utmul_ff()} produce @var{p1*p2 mod v^(d+1)}, |
@code{utmul()}, @code{utmul_ff()} produce @var{p1*p2 mod} @var{v}^(@var{d}+1), |
where @var{v} is the variable of @var{p1}, @var{p2}. |
where @var{v} is the variable of @var{p1}, @var{p2}. |
@item |
@item |
If the degrees of the inputs are less than or equal to the |
If the degrees of the inputs are less than or equal to the |
Line 315 See the description of each function for details. |
|
Line 315 See the description of each function for details. |
|
@itemize @bullet |
@itemize @bullet |
\BJP |
\BJP |
@item |
@item |
@var{p} $B$NJQ?t$r(B x $B$H$9$k(B. $B$3$N$H$-(B @var{p} = @var{p1}+x^(d+1)@var{p2} |
@var{p} $B$NJQ?t$r(B x $B$H$9$k(B. $B$3$N$H$-(B @var{p} = @var{p1}+x^(@var{d}+1)@var{p2} |
(@var{p1} $B$N<!?t$O(B @var{d} $B0J2<(B) $B$HJ,2r$G$-$k(B. @code{utrunc()} $B$O(B |
(@var{p1} $B$N<!?t$O(B @var{d} $B0J2<(B) $B$HJ,2r$G$-$k(B. @code{utrunc()} $B$O(B |
@var{p1} $B$rJV$7(B, @code{udecomp()} $B$O(B [@var{p1},@var{p2}] $B$rJV$9(B. |
@var{p1} $B$rJV$7(B, @code{udecomp()} $B$O(B [@var{p1},@var{p2}] $B$rJV$9(B. |
@item |
@item |
@var{p} $B$N<!?t$r(B @var{e} $B$H$7(B, @var{i} $B<!$N78?t$r(B @var{p[i]} $B$H$9$l$P(B, |
@var{p} $B$N<!?t$r(B @var{e} $B$H$7(B, @var{i} $B<!$N78?t$r(B @var{p}[@var{i}] $B$H$9$l$P(B, |
@code{ureverse()} $B$O(B @var{p[e]}+@var{p[e-1]}x+... $B$rJV$9(B. |
@code{ureverse()} $B$O(B @var{p}[@var{e}]+@var{p}[@var{e}-1]x+... $B$rJV$9(B. |
\E |
\E |
\BEG |
\BEG |
@item |
@item |
Let @var{x} be the variable of @var{p}. Then @var{p} can be decomposed |
Let @var{x} be the variable of @var{p}. Then @var{p} can be decomposed |
as @var{p} = @var{p1}+x^(d+1)@var{p2}, where the degree of @var{p1} |
as @var{p} = @var{p1}+x^(@var{d}+1)@var{p2}, where the degree of @var{p1} |
is less than or equal to @var{d}. |
is less than or equal to @var{d}. |
Under the decomposition, @code{utrunc()} returns |
Under the decomposition, @code{utrunc()} returns |
@var{p1} and @code{udecomp()} returns [@var{p1},@var{p2}]. |
@var{p1} and @code{udecomp()} returns [@var{p1},@var{p2}]. |
@item |
@item |
Let @var{e} be the degree of @var{p} and @var{p[i]} the coefficient |
Let @var{e} be the degree of @var{p} and @var{p}[@var{i}] the coefficient |
of @var{p} at degree @var{i}. Then |
of @var{p} at degree @var{i}. Then |
@code{ureverse()} returns @var{p[e]}+@var{p[e-1]}x+.... |
@code{ureverse()} returns @var{p}[@var{e}]+@var{p}[@var{e}-1]x+.... |
\E |
\E |
@end itemize |
@end itemize |
|
|
Line 394 of @var{p} at degree @var{i}. Then |
|
Line 394 of @var{p} at degree @var{i}. Then |
|
For a polynomial @var{p} with a non zero constant term, |
For a polynomial @var{p} with a non zero constant term, |
@code{uinv_as_power_series(@var{p},@var{d})} computes |
@code{uinv_as_power_series(@var{p},@var{d})} computes |
a polynomial @var{r} whose degree is at most @var{d} |
a polynomial @var{r} whose degree is at most @var{d} |
such that @var{p*r = 1 mod x^(d+1)}, where @var{x} is the variable |
such that @var{p*r = 1 mod} x^(@var{d}+1), where @var{x} is the variable |
of @var{p}. |
of @var{p}. |
@item |
@item |
Let @var{e} be the degree of @var{p}. |
Let @var{e} be the degree of @var{p}. |
|
|
@item return |
@item return |
\JP $B0lJQ?tB?9`<0(B |
\JP $B0lJQ?tB?9`<0(B |
\EG univariate polynomial |
\EG univariate polynomial |
@item p1,p2,inv |
@item p1 p2 inv |
\JP $B0lJQ?tB?9`<0(B |
\JP $B0lJQ?tB?9`<0(B |
\EG univariate polynomial |
\EG univariate polynomial |
@end table |
@end table |