[BACK]Return to poly.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts / builtin

Diff for /OpenXM/src/asir-doc/parts/builtin/poly.texi between version 1.7 and 1.8

version 1.7, 2003/12/23 10:41:10 version 1.8, 2004/05/15 08:25:12
Line 1 
Line 1 
 @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/poly.texi,v 1.6 2003/11/27 15:56:08 ohara Exp $  @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/poly.texi,v 1.7 2003/12/23 10:41:10 ohara Exp $
 \BJP  \BJP
 @node $BB?9`<0$*$h$SM-M}<0$N1i;;(B,,, $BAH$_9~$_H!?t(B  @node $BB?9`<0$*$h$SM-M}<0$N1i;;(B,,, $BAH$_9~$_H!?t(B
 @section $BB?9`<0(B, $BM-M}<0$N1i;;(B  @section $BB?9`<0(B, $BM-M}<0$N1i;;(B
Line 1293  an integral polynomial such that GCD of all its coeffi
Line 1293  an integral polynomial such that GCD of all its coeffi
 $BJ,;RB?9`<0$N78?t$OM-M}?t$N$^$^$G$"$j(B, $BM-M}<0$NJ,;R$r5a$a$k(B  $BJ,;RB?9`<0$N78?t$OM-M}?t$N$^$^$G$"$j(B, $BM-M}<0$NJ,;R$r5a$a$k(B
 @code{nm()} $B$G$O(B, $BJ,?t78?tB?9`<0$O(B, $BJ,?t78?t$N$^$^$N7A$G=PNO$5$l$k$?$a(B,  @code{nm()} $B$G$O(B, $BJ,?t78?tB?9`<0$O(B, $BJ,?t78?t$N$^$^$N7A$G=PNO$5$l$k$?$a(B,
 $BD>$A$K@0?t78?tB?9`<0$rF@$k;v$O=PMh$J$$(B.  $BD>$A$K@0?t78?tB?9`<0$rF@$k;v$O=PMh$J$$(B.
   @item $B%*%W%7%g%s(B factor $B$,@_Dj$5$l$?>l9g$NLa$jCM$O%j%9%H(B [g,c] $B$G$"$k(B.
   $B$3$3$G(B c $B$OM-M}?t$G$"$j(B, g $B$,%*%W%7%g%s$N$J$$>l9g$NLa$jCM$G$"$j(B,
    @var{poly} = c*g $B$H$J$k(B.
 \E  \E
 \BEG  \BEG
 @item  @item
Line 1310  You cannot obtain an integral polynomial by direct use
Line 1313  You cannot obtain an integral polynomial by direct use
 @code{nm()}.  The function @code{nm()} returns the numerator of its  @code{nm()}.  The function @code{nm()} returns the numerator of its
 argument, and a polynomial with rational coefficients is  argument, and a polynomial with rational coefficients is
 the numerator of itself and will be returned as it is.  the numerator of itself and will be returned as it is.
   @item When the option factor is set, the return value is a list [g,c].
   Here, c is a rational number, g is an integral polynomial
   and @var{poly} = c*g holds.
 \E  \E
 @end itemize  @end itemize
   

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.8

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>