version 1.5, 2003/04/20 08:01:29 |
version 1.7, 2003/12/23 10:41:10 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/poly.texi,v 1.4 2003/04/19 15:44:59 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/poly.texi,v 1.6 2003/11/27 15:56:08 ohara Exp $ |
\BJP |
\BJP |
@node $BB?9`<0$*$h$SM-M}<0$N1i;;(B,,, $BAH$_9~$_H!?t(B |
@node $BB?9`<0$*$h$SM-M}<0$N1i;;(B,,, $BAH$_9~$_H!?t(B |
@section $BB?9`<0(B, $BM-M}<0$N1i;;(B |
@section $BB?9`<0(B, $BM-M}<0$N1i;;(B |
|
|
* %:: |
* %:: |
* subst psubst:: |
* subst psubst:: |
* diff:: |
* diff:: |
|
* ediff:: |
* res:: |
* res:: |
* fctr sqfr:: |
* fctr sqfr:: |
* modfctr:: |
* modfctr:: |
Line 787 if arguments are repeated.) |
|
Line 788 if arguments are repeated.) |
|
$B$J$k$Y$/J,Jl(B, $BJ,;R$,Bg$-$/$J$i$J$$$h$&$KG[N8$9$k$3$H$b$7$P$7$PI,MW$H$J$k(B. |
$B$J$k$Y$/J,Jl(B, $BJ,;R$,Bg$-$/$J$i$J$$$h$&$KG[N8$9$k$3$H$b$7$P$7$PI,MW$H$J$k(B. |
@item |
@item |
$BJ,?t$rBeF~$9$k>l9g$bF1MM$G$"$k(B. |
$BJ,?t$rBeF~$9$k>l9g$bF1MM$G$"$k(B. |
|
@item |
|
@code{subst}$B$N0z?t(B@var{rat}$B$,%j%9%H(B,$BG[Ns(B,$B9TNs(B,$B$"$k$$$OJ,;6I=8=B?9`<0$G(B |
|
$B$"$C$?>l9g$K$O(B, $B$=$l$>$l$NMWAG$^$?$O78?t$KBP$7$F:F5"E*$K(B@code{subst}$B$r(B |
|
$B9T$&(B. |
\E |
\E |
\BEG |
\BEG |
@item |
@item |
Line 897 from left to right. |
|
Line 902 from left to right. |
|
(sin(log(x)+1)-cos(log(x)+1))/(sin(log(x)+1)^2) |
(sin(log(x)+1)-cos(log(x)+1))/(sin(log(x)+1)^2) |
[3] diff(sin(x),[x,x,x,x]); |
[3] diff(sin(x),[x,x,x,x]); |
sin(x) |
sin(x) |
|
@end example |
|
|
|
\JP @node ediff,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B |
|
\EG @node ediff,,, Polynomials and rational expressions |
|
@subsection @code{ediff} |
|
@findex ediff |
|
|
|
@table @t |
|
@item ediff(@var{poly}[,@var{varn}]*) |
|
@item ediff(@var{poly},@var{varlist}) |
|
\JP :: @var{poly} $B$r(B @var{varn} $B$"$k$$$O(B @var{varlist} $B$NCf$NJQ?t$G=g<!%*%$%i!<HyJ,$9$k(B. |
|
\BEG |
|
:: Differentiate @var{poly} successively by Euler operators of @var{var}'s for the first |
|
form, or by Euler operators of variables in @var{varlist} for the second form. |
|
\E |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $BB?9`<0(B |
|
\EG polynomial |
|
@item poly |
|
\JP $BB?9`<0(B |
|
\EG polynomial |
|
@item varn |
|
\JP $BITDj85(B |
|
\EG indeterminate |
|
@item varlist |
|
\JP $BITDj85$N%j%9%H(B |
|
\EG list of indeterminates |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
$B:8B&$NITDj85$h$j(B, $B=g$K%*%$%i!<HyJ,$7$F$$$/(B. $B$D$^$j(B, @t{ediff}(@var{poly},@t{x,y}) $B$O(B, |
|
@t{ediff}(@t{ediff}(@var{poly},@t{x}),@t{y}) $B$HF1$8$G$"$k(B. |
|
\E |
|
\BEG |
|
@item |
|
differentiation is performed by the specified indeterminates (variables) |
|
from left to right. |
|
@t{ediff}(@var{poly},@t{x,y}) is the same as |
|
@t{ediff}(@t{ediff}(@var{poly},@t{x}),@t{y}). |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[0] ediff((x+2*y)^2,x); |
|
2*x^2+4*y*x |
|
[1] ediff((x+2*y)^2,x,y); |
|
4*y*x |
@end example |
@end example |
|
|
\JP @node res,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B |
\JP @node res,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B |