[BACK]Return to poly.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts / builtin

Diff for /OpenXM/src/asir-doc/parts/builtin/poly.texi between version 1.1.1.1 and 1.4

version 1.1.1.1, 1999/12/08 05:47:44 version 1.4, 2003/04/19 15:44:59
Line 1 
Line 1 
   @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/poly.texi,v 1.3 2002/09/03 01:50:59 noro Exp $
   \BJP
 @node $BB?9`<0$*$h$SM-M}<0$N1i;;(B,,, $BAH$_9~$_H!?t(B  @node $BB?9`<0$*$h$SM-M}<0$N1i;;(B,,, $BAH$_9~$_H!?t(B
 @section $BB?9`<0(B, $BM-M}<0$N1i;;(B  @section $BB?9`<0(B, $BM-M}<0$N1i;;(B
   \E
   \BEG
   @node Polynomials and rational expressions,,, Built-in Function
   @section operations with polynomials and rational expressions
   \E
   
 @menu  @menu
 * var::  * var::
Line 24 
Line 31 
 * red::  * red::
 @end menu  @end menu
   
 @node var,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node var,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node var,,, Polynomials and rational expressions
 @subsection @code{var}  @subsection @code{var}
 @findex var  @findex var
   
 @table @t  @table @t
 @item var(@var{rat})  @item var(@var{rat})
 :: @var{rat} $B$N<gJQ?t(B.  \JP :: @var{rat} $B$N<gJQ?t(B.
   \EG :: Main variable (indeterminate) of @var{rat}.
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $BITDj85(B  \JP $BITDj85(B
   \EG indeterminate
 @item rat  @item rat
 $BM-M}<0(B  \JP $BM-M}<0(B
   \EG rational expression
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 $B<gJQ?t$K4X$7$F$O(B, @xref{Asir $B$G;HMQ2DG=$J7?(B}.  $B<gJQ?t$K4X$7$F$O(B, @xref{Asir $B$G;HMQ2DG=$J7?(B}.
 @item  @item
Line 48 
Line 60 
   
 @code{x}, @code{y}, @code{z}, @code{u}, @code{v}, @code{w}, @code{p}, @code{q}, @code{r}, @code{s}, @code{t}, @code{a}, @code{b}, @code{c}, @code{d}, @code{e},  @code{x}, @code{y}, @code{z}, @code{u}, @code{v}, @code{w}, @code{p}, @code{q}, @code{r}, @code{s}, @code{t}, @code{a}, @code{b}, @code{c}, @code{d}, @code{e},
 @code{f}, @code{g}, @code{h}, @code{i}, @code{j}, @code{k}, @code{l}, @code{m}, @code{n}, @code{o},$B0J8e$OJQ?t$N8=$l$?=g(B.  @code{f}, @code{g}, @code{h}, @code{i}, @code{j}, @code{k}, @code{l}, @code{m}, @code{n}, @code{o},$B0J8e$OJQ?t$N8=$l$?=g(B.
   \E
   \BEG
   @item
   See @ref{Types in Asir} for main variable.
   @item
   Indeterminates (variables) are ordered by default as follows.
   
   @code{x}, @code{y}, @code{z}, @code{u}, @code{v}, @code{w}, @code{p}, @code{q},
   @code{r}, @code{s}, @code{t}, @code{a}, @code{b}, @code{c}, @code{d}, @code{e},
   @code{f}, @code{g}, @code{h}, @code{i}, @code{j}, @code{k}, @code{l}, @code{m},
   @code{n}, @code{o}. The other variables will be ordered after the above noted variables
   so that the first comer will be ordered prior to the followers.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 60  abc
Line 85  abc
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{ord}, @fref{vars}.  @fref{ord}, @fref{vars}.
 @end table  @end table
   
 @node vars,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node vars,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node vars,,, Polynomials and rational expressions
 @subsection @code{vars}  @subsection @code{vars}
 @findex vars  @findex vars
   
 @table @t  @table @t
 @item vars(@var{obj})  @item vars(@var{obj})
 :: @var{obj} $B$K4^$^$l$kJQ?t$N%j%9%H(B.  \JP :: @var{obj} $B$K4^$^$l$kJQ?t$N%j%9%H(B.
   \EG :: A list of variables (indeterminates) in an expression @var{obj}.
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $B%j%9%H(B  \JP $B%j%9%H(B
   \EG list
 @item obj  @item obj
 $BG$0U(B  \JP $BG$0U(B
   \EG arbitrary
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 $BM?$($i$l$?<0$K4^$^$l$kJQ?t$N%j%9%H$rJV$9(B.  $BM?$($i$l$?<0$K4^$^$l$kJQ?t$N%j%9%H$rJV$9(B.
 @item  @item
 $BJQ?t=g=x$N9b$$$b$N$+$i=g$KJB$Y$k(B.  $BJQ?t=g=x$N9b$$$b$N$+$i=g$KJB$Y$k(B.
   \E
   \BEG
   @item
   Returns a list of variables (indeterminates) contained in a given expression.
   @item
   Lists variables according to the variable ordering.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 97  abc
Line 135  abc
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{var}, @fref{uc}, @fref{ord}.  @fref{var}, @fref{uc}, @fref{ord}.
 @end table  @end table
   
 @node uc,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node uc,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node uc,,, Polynomials and rational expressions
 @subsection @code{uc}  @subsection @code{uc}
 @findex uc  @findex uc
   
 @table @t  @table @t
 @item uc()  @item uc()
 :: $B?7$?$JITDj85$r@8@.$9$k(B.  \JP :: $BL$Dj78?tK!$N$?$a$NITDj85$r@8@.$9$k(B.
   \EG :: Create a new indeterminate for an undermined coeficient.
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 @code{vtype} $B$,(B 1 $B$NITDj85(B  \JP @code{vtype} $B$,(B 1 $B$NITDj85(B
   \EG indeterminate with its @code{vtype} 1.
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 @code{uc()} $B$r<B9T$9$k$?$S$K(B, @code{_0}, @code{_1}, @code{_2},... $B$H$$$&(B  @code{uc()} $B$r<B9T$9$k$?$S$K(B, @code{_0}, @code{_1}, @code{_2},... $B$H$$$&(B
 $BITDj85$r@8@.$9$k(B.  $BITDj85$r@8@.$9$k(B.
Line 128  abc
Line 171  abc
 @code{strtov()} $B$rMQ$$$k(B.  @code{strtov()} $B$rMQ$$$k(B.
 @item  @item
 @code{uc()} $B$G@8@.$5$l$?ITDj85$NITDj85$H$7$F$N7?(B (@code{vtype}) $B$O(B 1 $B$G$"$k(B.  @code{uc()} $B$G@8@.$5$l$?ITDj85$NITDj85$H$7$F$N7?(B (@code{vtype}) $B$O(B 1 $B$G$"$k(B.
 (@xref{$BITDj85$N7?(B})  (@xref{$BITDj85$N7?(B}.)
   \E
   \BEG
   @item
   At every evaluation of command @code{uc()}, a new indeterminate in
   the sequence of indeterminates @code{_0}, @code{_1}, @code{_2}, @dots{}
   is created successively.
   @item
   Indeterminates created by @code{uc()} cannot be input on the keyboard.
   By this property, you are free, no matter how many indeterminates you
   will create dynamically by a program, from collision of created names
   with indeterminates input from the keyboard or from program files.
   @item
   Functions, @code{rtostr()} and @code{strtov()}, are used to create
   ordinary indeterminates (indeterminates having 0 for their @code{vtype}).
   @item
   Kernel sub-type of indeterminates created by @code{uc()} is 1.
   (@code{vtype(uc())}=1)
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 143  _0^2+2*_1*_0+_1^2
Line 204  _0^2+2*_1*_0+_1^2
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{vtype}, @fref{rtostr}, @fref{strtov}.  @fref{vtype}, @fref{rtostr}, @fref{strtov}.
 @end table  @end table
   
 @node coef,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node coef,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node coef,,, Polynomials and rational expressions
 @subsection @code{coef}  @subsection @code{coef}
 @findex coef  @findex coef
   
 @table @t  @table @t
 @item coef(@var{poly},@var{deg}[,@var{var}])  @item coef(@var{poly},@var{deg}[,@var{var}])
 :: @var{poly} $B$N(B @var{var} ($B>JN,;~$O<gJQ?t(B) $B$K4X$9$k(B @var{deg} $B<!$N78?t(B.  \JP :: @var{poly} $B$N(B @var{var} ($B>JN,;~$O<gJQ?t(B) $B$K4X$9$k(B @var{deg} $B<!$N78?t(B.
   \BEG
   :: The coefficient of a polynomial @var{poly} at degree @var{deg}
   with respect to the variable @var{var} (main variable if unspecified).
   \E
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $BB?9`<0(B  \JP $BB?9`<0(B
   \EG polynomial
 @item poly  @item poly
 $BB?9`<0(B  \JP $BB?9`<0(B
   \EG polynomial
 @item var  @item var
 $BITDj85(B  \JP $BITDj85(B
   \EG indeterminate
 @item deg  @item deg
 $B<+A3?t(B  \JP $B<+A3?t(B
   \EG non-negative integer
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 @var{poly} $B$N(B @var{var} $B$K4X$9$k(B @var{deg} $B<!$N78?t$r=PNO$9$k(B.  @var{poly} $B$N(B @var{var} $B$K4X$9$k(B @var{deg} $B<!$N78?t$r=PNO$9$k(B.
 @item  @item
Line 175  _0^2+2*_1*_0+_1^2
Line 247  _0^2+2*_1*_0+_1^2
 @item  @item
 @var{var} $B$,<gJQ?t$G$J$$;~(B, @var{var} $B$,<gJQ?t$N>l9g$KHf3S$7$F(B  @var{var} $B$,<gJQ?t$G$J$$;~(B, @var{var} $B$,<gJQ?t$N>l9g$KHf3S$7$F(B
 $B8zN($,Mn$A$k(B.  $B8zN($,Mn$A$k(B.
   \E
   \BEG
   @item
   The coefficient of a polynomial @var{poly} at degree @var{deg}
   with respect to the variable @var{var}.
   @item
   The default value for @var{var} is the main variable, i.e.,
   @t{var(@var{poly})}.
   @item
   For multi-variate polynomials, access to coefficients depends on
   the specified indeterminates.  For example, taking coef for the main
   variable is much faster than for other variables.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 187  y^3+3*z*y^2+3*z^2*y+z^3
Line 272  y^3+3*z*y^2+3*z^2*y+z^3
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{var}, @fref{deg mindeg}.  @fref{var}, @fref{deg mindeg}.
 @end table  @end table
   
 @node deg mindeg,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node deg mindeg,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node deg mindeg,,, Polynomials and rational expressions
 @subsection @code{deg}, @code{mindeg}  @subsection @code{deg}, @code{mindeg}
 @findex deg  @findex deg
 @findex mindeg  @findex mindeg
   
 @table @t  @table @t
 @item deg(@var{poly},@var{var})  @item deg(@var{poly},@var{var})
 :: @var{poly} $B$N(B, $BJQ?t(B @var{var} $B$K4X$9$k:G9b<!?t(B.  \JP :: @var{poly} $B$N(B, $BJQ?t(B @var{var} $B$K4X$9$k:G9b<!?t(B.
   \EG :: The degree of a polynomial @var{poly} with respect to variable.
 @item mindeg(@var{poly},@var{var})  @item mindeg(@var{poly},@var{var})
 :: @var{poly} $B$N(B, $BJQ?t(B @var{var} $B$K4X$9$k:GDc<!?t(B.  \JP :: @var{poly} $B$N(B, $BJQ?t(B @var{var} $B$K4X$9$k:GDc<!?t(B.
   \BEG
   :: The least exponent of the terms with non-zero coefficients in
   a polynomial @var{poly} with respect to the variable @var{var}.
   In this manual, this quantity is sometimes referred to the minimum
   degree of a polynomial for short.
   \E
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $B<+A3?t(B  \JP $B<+A3?t(B
   \EG non-negative integer
 @item poly  @item poly
 $BB?9`<0(B  \JP $BB?9`<0(B
   \EG polynomial
 @item var  @item var
 $BITDj85(B  \JP $BITDj85(B
   \EG indeterminate
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 $BM?$($i$l$?B?9`<0$NJQ?t(B @var{var} $B$K4X$9$k:G9b<!?t(B, $B:GDc<!?t$r=PNO$9$k(B.  $BM?$($i$l$?B?9`<0$NJQ?t(B @var{var} $B$K4X$9$k:G9b<!?t(B, $B:GDc<!?t$r=PNO$9$k(B.
 @item  @item
 $BJQ?t(B @var{var} $B$r>JN,$9$k$3$H$O=PMh$J$$(B.  $BJQ?t(B @var{var} $B$r>JN,$9$k$3$H$O=PMh$J$$(B.
   \E
   \BEG
   @item
   The least exponent of the terms with non-zero coefficients in
   a polynomial @var{poly} with respect to the variable @var{var}.
   In this manual, this quantity is sometimes referred to the minimum
   degree of a polynomial for short.
   @item
   Variable @var{var} must be specified.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 228  y^3+3*z*y^2+3*z^2*y+z^3
Line 336  y^3+3*z*y^2+3*z^2*y+z^3
 1  1
 @end example  @end example
   
 @node nmono,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node nmono,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node nmono,,,Polynomials and rational expressions
 @subsection @code{nmono}  @subsection @code{nmono}
 @findex nmono  @findex nmono
   
 @table @t  @table @t
 @item nmono(@var{rat})  @item nmono(@var{rat})
 :: @var{rat} $B$NC19`<0$N9`?t(B.  \JP :: @var{rat} $B$NC19`<0$N9`?t(B.
   \EG :: Number of monomials in rational expression @var{rat}.
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $B<+A3?t(B  \JP $B<+A3?t(B
   \EG non-negative integer
 @item rat  @item rat
 $BM-M}<0(B  \JP $BM-M}<0(B
   \EG rational expression
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 $BB?9`<0$rE83+$7$?>uBV$G$N(B 0 $B$G$J$$78?t$r;}$DC19`<0$N9`?t$r5a$a$k(B.  $BB?9`<0$rE83+$7$?>uBV$G$N(B 0 $B$G$J$$78?t$r;}$DC19`<0$N9`?t$r5a$a$k(B.
 @item  @item
 $BM-M}<0$N>l9g$O(B, $BJ,;R$HJ,Jl$N9`?t$NOB$,JV$5$l$k(B.  $BM-M}<0$N>l9g$O(B, $BJ,;R$HJ,Jl$N9`?t$NOB$,JV$5$l$k(B.
 @item  @item
 $BH!?t7A<0(B (@xref{$BITDj85$N7?(B}) $B$O(B, $B0z?t$,2?$G$"$C$F$bC19`$H$_$J$5$l$k(B. (1 $B8D$NITDj85$HF1$8(B. )  $BH!?t7A<0(B (@ref{$BITDj85$N7?(B}) $B$O(B, $B0z?t$,2?$G$"$C$F$bC19`$H$_$J$5$l$k(B. (1 $B8D$NITDj85$HF1$8(B. )
   \E
   \BEG
   @item
   Number of monomials with non-zero number coefficients in the full
   expanded form of the given polynomial.
   @item
   For a rational expression, the sum of the numbers of monomials
   of the numerator and denominator.
   @item
   A function form is regarded as a single indeterminate no matter how
   complex arguments it has.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 263  y^3+3*z*y^2+3*z^2*y+z^3
Line 388  y^3+3*z*y^2+3*z^2*y+z^3
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{vtype}.  @fref{vtype}.
 @end table  @end table
   
 @node ord,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node ord,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node ord,,, Polynomials and rational expressions
 @subsection @code{ord}  @subsection @code{ord}
 @findex ord  @findex ord
   
 @table @t  @table @t
 @item ord([@var{varlist}])  @item ord([@var{varlist}])
 :: $BJQ?t=g=x$N@_Dj(B  \JP :: $BJQ?t=g=x$N@_Dj(B
   \EG :: It sets the ordering of indeterminates (variables).
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $BJQ?t$N%j%9%H(B  \JP $BJQ?t$N%j%9%H(B
   \EG list of indeterminates
 @item varlist  @item varlist
 $BJQ?t$N%j%9%H(B  \JP $BJQ?t$N%j%9%H(B
   \EG list of indeterminates
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 $B0z?t$,$"$k$H$-(B, $B0z?t$NJQ?t%j%9%H$r@hF,$K=P$7(B, $B;D$j$NJQ?t$,$=$N8e$K(B  $B0z?t$,$"$k$H$-(B, $B0z?t$NJQ?t%j%9%H$r@hF,$K=P$7(B, $B;D$j$NJQ?t$,$=$N8e$K(B
 $BB3$/$h$&$KJQ?t=g=x$r@_Dj$9$k(B. $B0z?t$N$"$k$J$7$K4X$o$i$:(B, @code{ord()}  $BB3$/$h$&$KJQ?t=g=x$r@_Dj$9$k(B. $B0z?t$N$"$k$J$7$K4X$o$i$:(B, @code{ord()}
Line 296  y^3+3*z*y^2+3*z^2*y+z^3
Line 427  y^3+3*z*y^2+3*z^2*y+z^3
 $B$"$k$$$O(B, $B?7$?$JJQ?t$,8=$l$?;~E@$K9T$o$l$k(B  $B$"$k$$$O(B, $B?7$?$JJQ?t$,8=$l$?;~E@$K9T$o$l$k(B
 $B$Y$-$G$"$k(B. $B0[$J$kJQ?t=g=x$N$b$H$G@8@.$5$l$?<0$I$&$7$N1i;;(B  $B$Y$-$G$"$k(B. $B0[$J$kJQ?t=g=x$N$b$H$G@8@.$5$l$?<0$I$&$7$N1i;;(B
 $B$,9T$o$l$?>l9g(B, $BM=4|$;$L7k2L$,@8$:$k$3$H$b$"$jF@$k(B.  $B$,9T$o$l$?>l9g(B, $BM=4|$;$L7k2L$,@8$:$k$3$H$b$"$jF@$k(B.
   \E
   \BEG
   @item
   When an argument is given,
   this function rearranges the ordering of variables (indeterminates)
   so that the indeterminates in the argument @var{varlist} precede
   and the other indeterminates follow in the system's variable ordering.
   Regardless of the existence of an argument, it always returns the
   final variable ordering.
   
   @item
   Note that no change will be made to the variable ordering of internal
   forms of objects which already exists in the system, no matter what
   reordering you specify.  Therefore, the reordering should be limited to
   the time just after starting @b{Asir}, or to the time when one has
   decided himself to start a totally new computation which has no relation
   with the previous results.
   Note that unexpected results may be obtained from operations between
   objects which are created under different variable ordering.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 311  _w,_p,_q,_r,_s,_t,_a,_b,_c,_d,_e,_f,_g,_h,_i,_j,_k,_l,
Line 462  _w,_p,_q,_r,_s,_t,_a,_b,_c,_d,_e,_f,_g,_h,_i,_j,_k,_l,
 cosh(_x),sinh(_x),tanh(_x),(_x^2+1)^(-1/2),(_x^2-1)^(-1/2)]  cosh(_x),sinh(_x),tanh(_x),(_x^2+1)^(-1/2),(_x^2-1)^(-1/2)]
 @end example  @end example
   
 @node sdiv sdivm srem sremm sqr sqrm,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node sdiv sdivm srem sremm sqr sqrm,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node sdiv sdivm srem sremm sqr sqrm,,, Polynomials and rational expressions
 @subsection @code{sdiv}, @code{sdivm}, @code{srem}, @code{sremm}, @code{sqr}, @code{sqrm}  @subsection @code{sdiv}, @code{sdivm}, @code{srem}, @code{sremm}, @code{sqr}, @code{sqrm}
 @findex sdiv  @findex sdiv
 @findex sdivm  @findex sdivm
Line 323  cosh(_x),sinh(_x),tanh(_x),(_x^2+1)^(-1/2),(_x^2-1)^(-
Line 475  cosh(_x),sinh(_x),tanh(_x),(_x^2+1)^(-1/2),(_x^2-1)^(-
 @table @t  @table @t
 @item sdiv(@var{poly1},@var{poly2}[,@var{v}])  @item sdiv(@var{poly1},@var{poly2}[,@var{v}])
 @itemx sdivm(@var{poly1},@var{poly2},@var{mod}[,@var{v}])  @itemx sdivm(@var{poly1},@var{poly2},@var{mod}[,@var{v}])
 :: @var{poly1} $B$r(B @var{poly2} $B$G3d$k=|;;$,:G8e$^$G<B9T$G$-$k>l9g$K>&$r5a$a$k(B.  \JP :: @var{poly1} $B$r(B @var{poly2} $B$G3d$k=|;;$,:G8e$^$G<B9T$G$-$k>l9g$K>&$r5a$a$k(B.
   \BEG
   :: Quotient of @var{poly1} divided by @var{poly2} provided that the
   division can be performed within polynomial arithmetic over the
   rationals.
   \E
 @item srem(@var{poly1},@var{poly2}[,@var{v}])  @item srem(@var{poly1},@var{poly2}[,@var{v}])
 @item sremm(@var{poly1},@var{poly2},@var{mod}[,@var{v}])  @item sremm(@var{poly1},@var{poly2},@var{mod}[,@var{v}])
 :: @var{poly1} $B$r(B @var{poly2} $B$G3d$k=|;;$,:G8e$^$G<B9T$G$-$k>l9g$K>jM>$r5a$a$k(B.  \JP :: @var{poly1} $B$r(B @var{poly2} $B$G3d$k=|;;$,:G8e$^$G<B9T$G$-$k>l9g$K>jM>$r5a$a$k(B.
   \BEG
   :: Remainder of @var{poly1} divided by @var{poly2} provided that the
   division can be performed within polynomial arithmetic over the
   rationals.
   \E
 @item sqr(@var{poly1},@var{poly2}[,@var{v}])  @item sqr(@var{poly1},@var{poly2}[,@var{v}])
 @item sqrm(@var{poly1},@var{poly2},@var{mod}[,@var{v}])  @item sqrm(@var{poly1},@var{poly2},@var{mod}[,@var{v}])
   \BJP
 :: @var{poly1} $B$r(B @var{poly2} $B$G3d$k=|;;$,:G8e$^$G<B9T$G$-$k>l9g$K>&(B, $B>jM>$r(B  :: @var{poly1} $B$r(B @var{poly2} $B$G3d$k=|;;$,:G8e$^$G<B9T$G$-$k>l9g$K>&(B, $B>jM>$r(B
 $B5a$a$k(B.  $B5a$a$k(B.
   \E
   \BEG
   :: Quotient and remainder of @var{poly1} divided by @var{poly2} provided
   that the division can be performed within polynomial arithmetic over
   the rationals.
   \E
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 @code{sdiv()}, @code{sdivm()}, @code{srem()}, @code{sremm()} : $BB?9`<0(B, @code{sqr()}, @code{sqrm()} : @code{[$B>&(B,$B>jM>(B]} $B$J$k%j%9%H(B  \JP @code{sdiv()}, @code{sdivm()}, @code{srem()}, @code{sremm()} : $BB?9`<0(B, @code{sqr()}, @code{sqrm()} : @code{[$B>&(B,$B>jM>(B]} $B$J$k%j%9%H(B
   \EG @code{sdiv()}, @code{sdivm()}, @code{srem()}, @code{sremm()} : polynomial @code{sqr()}, @code{sqrm()} : a list @code{[quotient,remainder]}
 @item poly1 poly2  @item poly1 poly2
 $BB?9`<0(B  \JP $BB?9`<0(B
   \EG polynomial
 @item v  @item v
 $BITDj85(B  \JP $BITDj85(B
   \EG indeterminate
 @item mod  @item mod
 $BAG?t(B  \JP $BAG?t(B
   \EG prime
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 @var{poly1} $B$r(B @var{poly2} $B$N<gJQ?t(B @t{var}(@var{poly2})  @var{poly1} $B$r(B @var{poly2} $B$N<gJQ?t(B @t{var}(@var{poly2})
 ( $B0z?t(B @var{v} $B$,$"$k>l9g$K$O(B @var{v}) $B$K4X$9$kB?9`<0$H8+$F(B,  ( $B0z?t(B @var{v} $B$,$"$k>l9g$K$O(B @var{v}) $B$K4X$9$kB?9`<0$H8+$F(B,
Line 368  cosh(_x),sinh(_x),tanh(_x),(_x^2+1)^(-1/2),(_x^2-1)^(-
Line 542  cosh(_x),sinh(_x),tanh(_x),(_x^2+1)^(-1/2),(_x^2-1)^(-
 $B@0?t=|;;$N>&(B, $B>jM>$O(B @code{idiv}, @code{irem} $B$rMQ$$$k(B.  $B@0?t=|;;$N>&(B, $B>jM>$O(B @code{idiv}, @code{irem} $B$rMQ$$$k(B.
 @item  @item
 $B78?t$KBP$9$k>jM>1i;;$O(B @code{%} $B$rMQ$$$k(B.  $B78?t$KBP$9$k>jM>1i;;$O(B @code{%} $B$rMQ$$$k(B.
   \E
   \BEG
   @item
   Regarding @var{poly1} as an uni-variate polynomial in the main variable
   of @var{poly2},
   i.e. @t{var(@var{poly2})} (@var{v} if specified), @code{sdiv()} and
   @code{srem()} compute
   the polynomial quotient and remainder of @var{poly1} divided by @var{poly2}.
   @item @code{sdivm()}, @code{sremm()}, @code{sqrm()} execute the same
   operation over GF(@var{mod}).
   @item
   Division operation of polynomials is performed by the following steps:
   (1) obtain the quotient of leading coefficients; let it be Q;
   (2) remove the leading term of @var{poly1} by subtracting, from
   @var{poly1}, the product of Q with some powers of main variable
   and @var{poly2}; obtain a new @var{poly1};
   (3) repeat the above step until the degree of @var{poly1} become smaller
   than that of @var{poly2}.
   For fulfillment, by operating in polynomials, of this procedure, the
   divisions at step (1) in every repetition must be an exact division of
   polynomials.  This is the true meaning of what we say
   ``division can be performed within polynomial arithmetic
   over the rationals.''
   @item
   There are typical cases where the division is possible:
   leading coefficient of @var{poly2} is a rational number;
   @var{poly2} is a factor of @var{poly1}.
   @item
   Use @code{sqr()} to get both the quotient and remainder at once.
   @item
   Use @code{idiv()}, @code{irem()} for integer quotient.
   @item
   For remainder operation on all integer coefficients, use @code{%}.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 391  return to toplevel
Line 599  return to toplevel
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{idiv irem}, @fref{%}.  @fref{idiv irem}, @fref{%}.
 @end table  @end table
   
 @node tdiv,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node tdiv,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node tdiv,,, Polynomials and rational expressions
 @subsection @code{tdiv}  @subsection @code{tdiv}
 @findex tdiv  @findex tdiv
   
 @table @t  @table @t
 @item tdiv(@var{poly1},@var{poly2})  @item tdiv(@var{poly1},@var{poly2})
 :: @var{poly1} $B$,(B @var{poly2} $B$G3d$j@Z$l$k$+$I$&$+D4$Y$k(B.  \JP :: @var{poly1} $B$,(B @var{poly2} $B$G3d$j@Z$l$k$+$I$&$+D4$Y$k(B.
   \EG :: Tests whether @var{poly2} divides @var{poly1}.
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $B3d$j@Z$l$k$J$i$P>&(B, $B3d$j@Z$l$J$1$l$P(B 0  \JP $B3d$j@Z$l$k$J$i$P>&(B, $B3d$j@Z$l$J$1$l$P(B 0
   \EG Quotient if @var{poly2} divides @var{poly1}, 0 otherwise.
 @item poly1 poly2  @item poly1 poly2
 $BB?9`<0(B  \JP $BB?9`<0(B
   \EG polynomial
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 @var{poly2} $B$,(B @var{poly1} $B$rB?9`<0$H$7$F3d$j@Z$k$+$I$&$+D4$Y$k(B.  @var{poly2} $B$,(B @var{poly1} $B$rB?9`<0$H$7$F3d$j@Z$k$+$I$&$+D4$Y$k(B.
 @item  @item
 $B$"$kB?9`<0$,4{Ls0x;R$G$"$k$3$H$O$o$+$C$F$$$k$,(B, $B$=$N=EJ#EY$,$o$+$i$J$$(B  $B$"$kB?9`<0$,4{Ls0x;R$G$"$k$3$H$O$o$+$C$F$$$k$,(B, $B$=$N=EJ#EY$,$o$+$i$J$$(B
 $B>l9g$K(B, @code{tdiv()} $B$r7+$jJV$78F$V$3$H$K$h$j=EJ#EY$,$o$+$k(B.  $B>l9g$K(B, @code{tdiv()} $B$r7+$jJV$78F$V$3$H$K$h$j=EJ#EY$,$o$+$k(B.
   \E
   \BEG
   @item
   Tests whether @var{poly2} divides @var{poly1} in polynomial ring.
   @item
   One application of this function: Consider the case where a polynomial
   is certainly an irreducible factor of the other polynomial, but
   the multiplicity of the factor is unknown.  Application of @code{tdiv()}
   to the polynomials repeatedly yields the multiplicity.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 432  x^8+(2*y+2*z)*x^7+(-2*y^2-4*z*y-2*z^2)*x^6+(-6*y^3-18*
Line 656  x^8+(2*y+2*z)*x^7+(-2*y^2-4*z*y-2*z^2)*x^6+(-6*y^3-18*
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{sdiv sdivm srem sremm sqr sqrm}.  @fref{sdiv sdivm srem sremm sqr sqrm}.
 @end table  @end table
   
 @node %,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node %,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node %,,, Polynomials and rational expressions
 @subsection @code{%}  @subsection @code{%}
 @findex %  @findex %
   
 @table @t  @table @t
 @item @var{poly} % @var{m}  @item @var{poly} % @var{m}
 :: $B@0?t$K$h$k>jM>(B  \JP :: $B@0?t$K$h$k>jM>(B
   \EG :: integer remainder to all integer coefficients of the polynomial.
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $B@0?t$^$?$OB?9`<0(B  \JP $B@0?t$^$?$OB?9`<0(B
   \EG integer or polynomial
 @item poly  @item poly
 $B@0?t$^$?$O@0?t78?tB?9`<0(B  \JP $B@0?t$^$?$O@0?t78?tB?9`<0(B
   \EG integer or polynomial with integer coefficients
 @item m  @item m
 $B@0?t(B  \JP $B@0?t(B
   \EG intger
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 @var{poly} $B$N3F78?t$r(B @var{m} $B$G3d$C$?>jM>$GCV$-49$($?B?9`<0$rJV$9(B.  @var{poly} $B$N3F78?t$r(B @var{m} $B$G3d$C$?>jM>$GCV$-49$($?B?9`<0$rJV$9(B.
 @item  @item
Line 464  x^8+(2*y+2*z)*x^7+(-2*y^2-4*z*y-2*z^2)*x^6+(-6*y^3-18*
Line 695  x^8+(2*y+2*z)*x^7+(-2*y^2-4*z*y-2*z^2)*x^6+(-6*y^3-18*
 @code{irem()} $B$HF1MM$KMQ$$$k$3$H$,$G$-$k(B.  @code{irem()} $B$HF1MM$KMQ$$$k$3$H$,$G$-$k(B.
 @item  @item
 @var{poly} $B$N78?t(B, @var{m} $B$H$b@0?t$G$"$kI,MW$,$"$k$,(B, $B%A%'%C%/$O9T$J$o$l$J$$(B.  @var{poly} $B$N78?t(B, @var{m} $B$H$b@0?t$G$"$kI,MW$,$"$k$,(B, $B%A%'%C%/$O9T$J$o$l$J$$(B.
   \E
   \BEG
   @item
   Returns a polynomial whose coefficients are remainders of the
   coefficients of the input polynomial divided by @var{m}.
   @item
   The resulting coefficients are all normalized to non-negative integers.
   @item
   An integer is allowed for @var{poly}.  This can be used for an
   alternative for @code{irem()} except that the result is normalized to
   a non-negative integer.
   @item
   Coefficients of @var{poly} and @var{m} must all be integers, though the
   type checking is not done.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 478  x^5+2*x^4+x^3+x^2+2*x+1
Line 724  x^5+2*x^4+x^3+x^2+2*x+1
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{idiv irem}.  @fref{idiv irem}.
 @end table  @end table
   
 @node subst psubst,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node subst psubst,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node subst psubst,,, Polynomials and rational expressions
 @subsection @code{subst}, @code{psubst}  @subsection @code{subst}, @code{psubst}
 @findex subst  @findex subst
 @findex psubst  @findex psubst
Line 490  x^5+2*x^4+x^3+x^2+2*x+1
Line 738  x^5+2*x^4+x^3+x^2+2*x+1
 @table @t  @table @t
 @item subst(@var{rat}[,@var{varn},@var{ratn}]*)  @item subst(@var{rat}[,@var{varn},@var{ratn}]*)
 @item psubst(@var{rat}[,@var{var},@var{rat}]*)  @item psubst(@var{rat}[,@var{var},@var{rat}]*)
   \BJP
 :: @var{rat} $B$N(B @var{varn} $B$K(B @var{ratn} $B$rBeF~(B  :: @var{rat} $B$N(B @var{varn} $B$K(B @var{ratn} $B$rBeF~(B
 (@var{n=1,2},... $B$G:8$+$i1&$K=g<!BeF~$9$k(B).  (@var{n}=1,2,... $B$G:8$+$i1&$K=g<!BeF~$9$k(B).
   \E
   \BEG
   :: Substitute @var{ratn} for @var{varn} in expression @var{rat}.
   (@var{n}=1,2,@dots{}.
   Substitution will be done successively from left to right
   if arguments are repeated.)
   \E
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $BM-M}<0(B  \JP $BM-M}<0(B
 @item rat,ratn  \EG rational expression
 $BM-M}<0(B  @item rat ratn
   \JP $BM-M}<0(B
   \EG rational expression
 @item varn  @item varn
 $BITDj85(B  \JP $BITDj85(B
   \EG indeterminate
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 $BM-M}<0$NFCDj$NITDj85$K(B, $BDj?t$"$k$$$OB?9`<0(B, $BM-M}<0$J$I$rBeF~$9$k$N$KMQ$$$k(B.  $BM-M}<0$NFCDj$NITDj85$K(B, $BDj?t$"$k$$$OB?9`<0(B, $BM-M}<0$J$I$rBeF~$9$k$N$KMQ$$$k(B.
 @item  @item
Line 523  x^5+2*x^4+x^3+x^2+2*x+1
Line 783  x^5+2*x^4+x^3+x^2+2*x+1
 $B$J$k$Y$/J,Jl(B, $BJ,;R$,Bg$-$/$J$i$J$$$h$&$KG[N8$9$k$3$H$b$7$P$7$PI,MW$H$J$k(B.  $B$J$k$Y$/J,Jl(B, $BJ,;R$,Bg$-$/$J$i$J$$$h$&$KG[N8$9$k$3$H$b$7$P$7$PI,MW$H$J$k(B.
 @item  @item
 $BJ,?t$rBeF~$9$k>l9g$bF1MM$G$"$k(B.  $BJ,?t$rBeF~$9$k>l9g$bF1MM$G$"$k(B.
   \E
   \BEG
   @item
   Substitutes rational expressions for specified kernels in a rational
   expression.
   @item
   @t{subst}(@var{rat},@var{var1},@var{rat1},@var{var2},@var{rat2},@dots{})
   has the same effect as
   @t{subst}(@t{subst}(@var{rat},@var{var1},@var{rat1}),@var{var2},@var{rat2},@dots{}).
   @item
   Note that repeated substitution is done from left to right successively.
   You may get different result by changing the specification order.
   @item
   Ordinary @code{subst()} performs
   substitution at all levels of a scalar algebraic expression creeping
   into arguments of function forms recursively.
   Function @code{psubst()} regards such a function form as an independent
   indeterminate, and does not attempt to apply substitution to its
   arguments.  (The name comes after Partial SUBSTitution.)
   @item
   Since @b{Asir} does not reduce common divisors of a rational expression
   automatically, substitution of a rational expression to an expression
   may cause unexpected increase of computation time.
   Thus, it is often necessary to write a special function to meet the
   individual problem so that the denominator and the numerator do not
   become too large.
   @item
   The same applies to substitution by rational numbers.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 544  sint(t)*t
Line 833  sint(t)*t
 sin(x)*t  sin(x)*t
 @end example  @end example
   
 @node diff,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node diff,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node diff,,, Polynomials and rational expressions
 @subsection @code{diff}  @subsection @code{diff}
 @findex diff  @findex diff
   
 @table @t  @table @t
 @item diff(@var{rat}[,@var{varn}]*)  @item diff(@var{rat}[,@var{varn}]*)
 @item diff(@var{rat},@var{varlist})  @item diff(@var{rat},@var{varlist})
 :: @var{rat} $B$r(B @var{varn} $B$"$k$$$O(B @var{varlist} $B$NCf$NJQ?t$G=g<!HyJ,$9$k(B.  \JP :: @var{rat} $B$r(B @var{varn} $B$"$k$$$O(B @var{varlist} $B$NCf$NJQ?t$G=g<!HyJ,$9$k(B.
   \BEG
   :: Differentiate @var{rat} successively by @var{var}'s for the first
   form, or by variables in @var{varlist} for the second form.
   \E
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $B<0(B  \JP $B<0(B
   \EG expression
 @item rat  @item rat
 $BM-M}<0(B ($B=iEyH!?t$r4^$s$G$b$h$$(B)  \JP $BM-M}<0(B ($B=iEyH!?t$r4^$s$G$b$h$$(B)
   \EG rational expression which contains elementary functions.
 @item varn  @item varn
 $BITDj85(B  \JP $BITDj85(B
   \EG indeterminate
 @item varlist  @item varlist
 $BITDj85$N%j%9%H(B  \JP $BITDj85$N%j%9%H(B
   \EG list of indeterminates
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 $BM?$($i$l$?=iEyH!?t$r(B @var{varn} $B$"$k$$$O(B @var{varlist} $B$NCf$NJQ?t$G(B  $BM?$($i$l$?=iEyH!?t$r(B @var{varn} $B$"$k$$$O(B @var{varlist} $B$NCf$NJQ?t$G(B
 $B=g<!HyJ,$9$k(B.  $B=g<!HyJ,$9$k(B.
 @item  @item
 $B:8B&$NITDj85$h$j(B, $B=g$KHyJ,$7$F$$$/(B. $B$D$^$j(B, @t{diff}(@var{rat},@t{x,y}) $B$O(B,  $B:8B&$NITDj85$h$j(B, $B=g$KHyJ,$7$F$$$/(B. $B$D$^$j(B, @t{diff}(@var{rat},@t{x,y}) $B$O(B,
 @t{diff}(@t{diff}(@var{rat},@t{x}),@t{y}) $B$HF1$8$G$"$k(B.  @t{diff}(@t{diff}(@var{rat},@t{x}),@t{y}) $B$HF1$8$G$"$k(B.
   \E
   \BEG
   @item
   Differentiate @var{rat} successively by @var{var}'s for the first
   form, or by variables in @var{varlist} for the second form.
   @item
   differentiation is performed by the specified indeterminates (variables)
   from left to right.
   @t{diff}(@var{rat},@t{x,y}) is the same as
   @t{diff}(@t{diff}(@var{rat},@t{x}),@t{y}).
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 585  sin(x)*t
Line 895  sin(x)*t
 sin(x)  sin(x)
 @end example  @end example
   
 @node res,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node res,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node res,,, Polynomials and rational expressions
 @subsection @code{res}  @subsection @code{res}
 @findex res  @findex res
   
 @table @t  @table @t
 @item res(@var{var},@var{poly1},@var{poly2}[,@var{mod}])  @item res(@var{var},@var{poly1},@var{poly2}[,@var{mod}])
 :: @var{var} $B$K4X$9$k(B @var{poly1} $B$H(B @var{poly2} $B$N=*7k<0(B.  \JP :: @var{var} $B$K4X$9$k(B @var{poly1} $B$H(B @var{poly2} $B$N=*7k<0(B.
   \EG :: Resultant of @var{poly1} and @var{poly2} with respect to @var{var}.
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $BB?9`<0(B  \JP $BB?9`<0(B
   \EG polynomial
 @item var  @item var
 $BITDj85(B  \JP $BITDj85(B
 @item poly1,poly2  \EG indeterminate
 $BB?9`<0(B  @item poly1 poly2
   \JP $BB?9`<0(B
   \EG polynomial
 @item mod  @item mod
 $BAG?t(B  \JP $BAG?t(B
   \EG prime
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 $BFs$D$NB?9`<0(B @var{poly1} $B$H(B @var{poly2} $B$N(B, $BJQ?t(B @var{var} $B$K4X$9$k(B  $BFs$D$NB?9`<0(B @var{poly1} $B$H(B @var{poly2} $B$N(B, $BJQ?t(B @var{var} $B$K4X$9$k(B
 $B=*7k<0$r5a$a$k(B.  $B=*7k<0$r5a$a$k(B.
Line 613  sin(x)
Line 930  sin(x)
 $BItJ,=*7k<0%"%k%4%j%:%`$K$h$k(B.  $BItJ,=*7k<0%"%k%4%j%:%`$K$h$k(B.
 @item  @item
 $B0z?t(B @var{mod} $B$,$"$k;~(B, GF(@var{mod}) $B>e$G$N7W;;$r9T$&(B.  $B0z?t(B @var{mod} $B$,$"$k;~(B, GF(@var{mod}) $B>e$G$N7W;;$r9T$&(B.
   \E
   \BEG
   @item
   Resultant of two polynomials @var{poly1} and @var{poly2}
   with respect to @var{var}.
   @item
   Sub-resultant algorithm is used to compute the resultant.
   @item
   The computation is done over GF(@var{mod}) if @var{mod} is specified.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 620  sin(x)
Line 947  sin(x)
 -x^3-x^2-y^3  -x^3-x^2-y^3
 @end example  @end example
   
 @node fctr sqfr,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node fctr sqfr,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node fctr sqfr,,, Polynomials and rational expressions
 @subsection @code{fctr}, @code{sqfr}  @subsection @code{fctr}, @code{sqfr}
 @findex fctr  @findex fctr
 @findex sqfr  @findex sqfr
   
 @table @t  @table @t
 @item fctr(@var{poly})  @item fctr(@var{poly})
 :: @var{poly} $B$r4{Ls0x;R$KJ,2r$9$k(B.  \JP :: @var{poly} $B$r4{Ls0x;R$KJ,2r$9$k(B.
   \EG :: Factorize polynomial @var{poly} over the rationals.
 @item sqfr(@var{poly})  @item sqfr(@var{poly})
 :: @var{poly} $B$rL5J?J}J,2r$9$k(B.  \JP :: @var{poly} $B$rL5J?J}J,2r$9$k(B.
   \EG :: Gets a square-free factorization of polynomial @var{poly}.
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $B%j%9%H(B  \JP $B%j%9%H(B
   \EG list
 @item poly  @item poly
 $BM-M}?t78?t$NB?9`<0(B  \JP $BM-M}?t78?t$NB?9`<0(B
   \EG polynomial with rational coefficients
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 $BM-M}?t78?t$NB?9`<0(B @var{poly} $B$r0x?tJ,2r$9$k(B. @code{fctr()} $B$O4{Ls0x;RJ,2r(B,  $BM-M}?t78?t$NB?9`<0(B @var{poly} $B$r0x?tJ,2r$9$k(B. @code{fctr()} $B$O4{Ls0x;RJ,2r(B,
 @code{sqfr()} $B$OL5J?J}0x;RJ,2r(B.  @code{sqfr()} $B$OL5J?J}0x;RJ,2r(B.
Line 650  sin(x)
Line 983  sin(x)
 @item  @item
 @b{$B?t78?t(B} $B$O(B, (@var{poly}/@b{$B?t78?t(B}) $B$,(B, $B@0?t78?t$G(B, $B78?t$N(B GCD $B$,(B 1 $B$H$J$k(B  @b{$B?t78?t(B} $B$O(B, (@var{poly}/@b{$B?t78?t(B}) $B$,(B, $B@0?t78?t$G(B, $B78?t$N(B GCD $B$,(B 1 $B$H$J$k(B
 $B$h$&$JB?9`<0$K$J$k$h$&$KA*$P$l$F$$$k(B. (@code{ptozp()} $B;2>H(B)  $B$h$&$JB?9`<0$K$J$k$h$&$KA*$P$l$F$$$k(B. (@code{ptozp()} $B;2>H(B)
   \E
   \BEG
   @item
   Factorizes polynomial @var{poly} over the rationals.
   @code{fctr()} for irreducible factorization;
   @code{sqfr()} for square-free factorization.
   @item
   The result is represented by a list, whose elements are a pair
   represented as
   
   [[@b{num},1],[@b{factor},@b{multiplicity}],...].
   @item
   Products of all @b{factor}^@b{multiplicity} and @b{num} is equal to
   @var{poly}.
   @item
   The number @b{num} is determined so that (@var{poly}/@b{num}) is an
   integral polynomial and its content (GCD of all coefficients) is 1.
   (@xref{ptozp}.)
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 670  x^5+x^4-2*y^2*x^3-2*y^2*x^2+y^4*x+y^4
Line 1022  x^5+x^4-2*y^2*x^3-2*y^2*x^2+y^4*x+y^4
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{ufctrhint}.  @fref{ufctrhint}.
 @end table  @end table
   
 @node ufctrhint,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node ufctrhint,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node ufctrhint,,, Polynomials and rational expressions
 @subsection @code{ufctrhint}  @subsection @code{ufctrhint}
 @findex ufctrhint  @findex ufctrhint
   
 @table @t  @table @t
 @item ufctrhint(@var{poly},@var{hint})  @item ufctrhint(@var{poly},@var{hint})
 :: $B<!?t>pJs$rMQ$$$?(B 1 $BJQ?tB?9`<0$N0x?tJ,2r(B  \JP :: $B<!?t>pJs$rMQ$$$?(B 1 $BJQ?tB?9`<0$N0x?tJ,2r(B
   \BEG
   :: Factorizes uni-variate polynomial @var{poly} over the rational number
   field when the degrees of its factors are known to be some integer
   multiples of @var{hint}.
   \E
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $B%j%9%H(B  \JP $B%j%9%H(B
   \EG list
 @item poly  @item poly
 $BM-M}?t78?t$N(B 1 $BJQ?tB?9`<0(B  \JP $BM-M}?t78?t$N(B 1 $BJQ?tB?9`<0(B
   \EG uni-variate polynomial with rational coefficients
 @item hint  @item hint
 $B<+A3?t(B  \JP $B<+A3?t(B
   \EG non-negative integer
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 $B3F4{Ls0x;R$N<!?t$,(B @var{hint} $B$NG\?t$G$"$k$3$H$,$o$+$C$F$$$k>l9g$K(B  $B3F4{Ls0x;R$N<!?t$,(B @var{hint} $B$NG\?t$G$"$k$3$H$,$o$+$C$F$$$k>l9g$K(B
 @var{poly} $B$N4{Ls0x;RJ,2r$r(B @code{fctr()} $B$h$j8zN(NI$/9T$&(B.  @var{poly} $B$N4{Ls0x;RJ,2r$r(B @code{fctr()} $B$h$j8zN(NI$/9T$&(B.
 @var{poly} $B$,(B, @var{d} $B<!$N3HBgBN>e$K$*$1$k(B  @var{poly} $B$,(B, @var{d} $B<!$N3HBgBN>e$K$*$1$k(B
 $B$"$kB?9`<0$N%N%k%`(B (@xref{$BBe?tE*?t$K4X$9$k1i;;(B}) $B$GL5J?J}$G$"$k>l9g(B,  $B$"$kB?9`<0$N%N%k%`(B (@ref{$BBe?tE*?t$K4X$9$k1i;;(B}) $B$GL5J?J}$G$"$k>l9g(B,
 $B3F4{Ls0x;R$N<!?t$O(B @var{d} $B$NG\?t$H$J$k(B. $B$3$N$h$&$J>l9g$K(B  $B3F4{Ls0x;R$N<!?t$O(B @var{d} $B$NG\?t$H$J$k(B. $B$3$N$h$&$J>l9g$K(B
 $BMQ$$$i$l$k(B.  $BMQ$$$i$l$k(B.
   \E
   \BEG
   @item
   By any reason, if the degree of all the irreducible factors of @var{poly}
   is known to be some multiples of @var{hint}, factors can be computed
   more efficiently by the knowledge than @code{fctr()}.
   @item
   When @var{hint} is 1, @code{ufctrhint()} is the same as @code{fctr()} for
   uni-variate polynomials.
   An typical application where @code{ufctrhint()} is effective:
   Consider the case where @var{poly} is a norm (@ref{Algebraic numbers})
   of a certain polynomial over an extension field with its extension
   degree @var{d}, and it is square free;  Then, every irreducible factor
   has a degree that is a multiple of @var{d}.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 740  t^9-15*t^6-87*t^3-125
Line 1118  t^9-15*t^6-87*t^3-125
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{fctr sqfr}.  @fref{fctr sqfr}.
 @end table  @end table
   
 @node modfctr,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node modfctr,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node modfctr,,, Polynomials and rational expressions
 @subsection @code{modfctr}  @subsection @code{modfctr}
 @findex modfctr  @findex modfctr
   
 @table @t  @table @t
 @item modfctr(@var{poly},@var{mod})  @item modfctr(@var{poly},@var{mod})
 :: $BM-8BBN>e$G$N(B 1 $BJQ?tB?9`<0$N0x?tJ,2r(B  \JP :: $BM-8BBN>e$G$N(B 1 $BJQ?tB?9`<0$N0x?tJ,2r(B
   \EG :: Univariate factorizer over small finite fields
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $B%j%9%H(B  \JP $B%j%9%H(B
   \EG list
 @item poly  @item poly
 $B@0?t78?t$N(B 1 $BJQ?tB?9`<0(B  \JP $B@0?t78?t$N(B 1 $BJQ?tB?9`<0(B
   \EG univariate polynomial with integer coefficients
 @item mod  @item mod
 $B<+A3?t(B  \JP $B<+A3?t(B
   \EG non-negative integer
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 2^31 $BL$K~$N<+A3?t(B @var{mod} $B$rI8?t$H$9$kAGBN>e$G0lJQ?tB?9`<0(B  2^31 $BL$K~$N<+A3?t(B @var{mod} $B$rI8?t$H$9$kAGBN>e$G0lJQ?tB?9`<0(B
 @var{poly} $B$r4{Ls0x;R$KJ,2r$9$k(B.  @var{poly} $B$r4{Ls0x;R$KJ,2r$9$k(B.
Line 770  t^9-15*t^6-87*t^3-125
Line 1155  t^9-15*t^6-87*t^3-125
 $B7k2L$O(B [[@b{$B?t78?t(B},1],[@b{$B0x;R(B},@b{$B=EJ#EY(B}],...] $B$J$k%j%9%H(B.  $B7k2L$O(B [[@b{$B?t78?t(B},1],[@b{$B0x;R(B},@b{$B=EJ#EY(B}],...] $B$J$k%j%9%H(B.
 @item  @item
 @b{$B?t78?t(B} $B$H(B $BA4$F$N(B @b{$B0x;R(B}^@b{$B=EJ#EY(B} $B$N@Q$,(B @var{poly} $B$HEy$7$$(B.  @b{$B?t78?t(B} $B$H(B $BA4$F$N(B @b{$B0x;R(B}^@b{$B=EJ#EY(B} $B$N@Q$,(B @var{poly} $B$HEy$7$$(B.
   @item
   $BBg$-$J0L?t$r;}$DM-8BBN>e$N0x?tJ,2r$K$O(B @code{fctr_ff} $B$rMQ$$$k(B.
   (@ref{$BM-8BBN$K4X$9$k1i;;(B},@pxref{fctr_ff}).
   \E
   \BEG
   @item
   This function factorizes a univarate polynomial @var{poly} over
   the finite prime field of characteristic @var{mod}, where
   @var{mod} must be smaller than 2^31.
   @item
   The result is represented by a list, whose elements are a pair
   represented as
   
   [[@b{num},1],[@b{factor},@b{multiplicity}],...].
   @item
   Products of all @b{factor}^@b{multiplicity} and @b{num} is equal to
   @var{poly}.
   @item
   To factorize polynomials over large finite fields, use
   @code{fctr_ff} (@pxref{Finite fields},@ref{fctr_ff}).
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 780  t^9-15*t^6-87*t^3-125
Line 1186  t^9-15*t^6-87*t^3-125
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{fctr sqfr}.  @fref{fctr sqfr}.
 @end table  @end table
   
 @node ptozp,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node ptozp,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node ptozp,,, Polynomials and rational expressions
 @subsection @code{ptozp}  @subsection @code{ptozp}
 @findex ptozp  @findex ptozp
   
 @table @t  @table @t
 @item ptozp(@var{poly})  @item ptozp(@var{poly})
 :: @var{poly} $B$rM-M}?tG\$7$F@0?t78?tB?9`<0$K$9$k(B.  \JP :: @var{poly} $B$rM-M}?tG\$7$F@0?t78?tB?9`<0$K$9$k(B.
   \BEG
   :: Converts a polynomial @var{poly} with rational coefficients into
   an integral polynomial such that GCD of all its coefficients is 1.
   \E
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $BB?9`<0(B  \JP $BB?9`<0(B
   \EG polynomial
 @item poly  @item poly
 $BB?9`<0(B  \JP $BB?9`<0(B
   \EG polynomial
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 $BM?$($i$l$?B?9`<0(B @var{poly} $B$KE,Ev$JM-M}?t$r3]$1$F(B, $B@0?t78?t$+$D(B  $BM?$($i$l$?B?9`<0(B @var{poly} $B$KE,Ev$JM-M}?t$r3]$1$F(B, $B@0?t78?t$+$D(B
 $B78?t$N(B GCD $B$,(B 1 $B$K$J$k$h$&$K$9$k(B.  $B78?t$N(B GCD $B$,(B 1 $B$K$J$k$h$&$K$9$k(B.
Line 812  t^9-15*t^6-87*t^3-125
Line 1227  t^9-15*t^6-87*t^3-125
 $BJ,;RB?9`<0$N78?t$OM-M}?t$N$^$^$G$"$j(B, $BM-M}<0$NJ,;R$r5a$a$k(B  $BJ,;RB?9`<0$N78?t$OM-M}?t$N$^$^$G$"$j(B, $BM-M}<0$NJ,;R$r5a$a$k(B
 @code{nm()} $B$G$O(B, $BJ,?t78?tB?9`<0$O(B, $BJ,?t78?t$N$^$^$N7A$G=PNO$5$l$k$?$a(B,  @code{nm()} $B$G$O(B, $BJ,?t78?tB?9`<0$O(B, $BJ,?t78?t$N$^$^$N7A$G=PNO$5$l$k$?$a(B,
 $BD>$A$K@0?t78?tB?9`<0$rF@$k;v$O=PMh$J$$(B.  $BD>$A$K@0?t78?tB?9`<0$rF@$k;v$O=PMh$J$$(B.
   \E
   \BEG
   @item
   Converts the given polynomial by multiplying some rational number
   into an integral polynomial such that GCD of all its coefficients is 1.
   @item
   In general, operations on polynomials can be
   performed faster for integer coefficients than for rational number
   coefficients.  Therefore, this function is conveniently used to improve
   efficiency.
   @item
   Function @code{red} does not convert rational coefficients of the
   numerator.
   You cannot obtain an integral polynomial by direct use of the function
   @code{nm()}.  The function @code{nm()} returns the numerator of its
   argument, and a polynomial with rational coefficients is
   the numerator of itself and will be returned as it is.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 822  t^9-15*t^6-87*t^3-125
Line 1255  t^9-15*t^6-87*t^3-125
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{nm dn}.  @fref{nm dn}.
 @end table  @end table
   
 @node prim cont,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node prim cont,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node prim cont,,, Polynomials and rational expressions
 @subsection @code{prim}, @code{cont}  @subsection @code{prim}, @code{cont}
 @findex prim  @findex prim
   
 @table @t  @table @t
 @item prim(@var{poly}[,@var{v}])  @item prim(@var{poly}[,@var{v}])
 :: @var{poly} $B$N86;OE*ItJ,(B (primitive part).  \JP :: @var{poly} $B$N86;OE*ItJ,(B (primitive part).
   \EG :: Primitive part of @var{poly}.
 @item cont(@var{poly}[,@var{v}])  @item cont(@var{poly}[,@var{v}])
 :: @var{poly} $B$NMFNL(B (content).  \JP :: @var{poly} $B$NMFNL(B (content).
   \EG :: Content of @var{poly}.
 @end table  @end table
   
 @table @var  @table @var
 @item return poly  @item return poly
 $BM-M}?t78?tB?9`<0(B  \JP $BM-M}?t78?tB?9`<0(B
   \EG polynomial over the rationals
 @item v  @item v
 $BITDj85(B  \JP $BITDj85(B
   \EG indeterminate
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 @var{poly} $B$N<gJQ?t(B ($B0z?t(B @var{v} $B$,$"$k>l9g$K$O(B @var{v})  @var{poly} $B$N<gJQ?t(B ($B0z?t(B @var{v} $B$,$"$k>l9g$K$O(B @var{v})
 $B$K4X$9$k86;OE*ItJ,(B, $BMFNL$r5a$a$k(B.  $B$K4X$9$k86;OE*ItJ,(B, $BMFNL$r5a$a$k(B.
   \E
   \BEG
   @item
   The primitive part and the content of a polynomial @var{poly}
   with respect to its main variable (@var{v} if specified).
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 862  y-z
Line 1308  y-z
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{var}, @fref{ord}.  @fref{var}, @fref{ord}.
 @end table  @end table
   
 @node gcd gcdz,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node gcd gcdz,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node gcd gcdz,,, Polynomials and rational expressions
 @subsection @code{gcd}, @code{gcdz}  @subsection @code{gcd}, @code{gcdz}
 @findex gcd  @findex gcd
   
 @table @t  @table @t
 @item gcd(@var{poly1},@var{poly2}[,@var{mod}])  @item gcd(@var{poly1},@var{poly2}[,@var{mod}])
 @item gcdz(@var{poly1},@var{poly2})  @item gcdz(@var{poly1},@var{poly2})
 :: @var{poly1} $B$H(B @var{poly2} $B$N(B gcd.  \JP :: @var{poly1} $B$H(B @var{poly2} $B$N(B gcd.
   \EG :: The polynomial greatest common divisor of @var{poly1} and @var{poly2}.
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $BB?9`<0(B  \JP $BB?9`<0(B
 @item poly1,poly2  \EG polynomial
 $BB?9`<0(B  @item poly1 poly2
   \JP $BB?9`<0(B
   \EG polynomial
 @item mod  @item mod
 $BAG?t(B  \JP $BAG?t(B
   \EG prime
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 $BFs$D$NB?9`<0$N:GBg8xLs<0(B (GCD) $B$r5a$a$k(B.  $BFs$D$NB?9`<0$N:GBg8xLs<0(B (GCD) $B$r5a$a$k(B.
 @item  @item
Line 902  y-z
Line 1355  y-z
 @code{gcd()}, @code{gcdz()} Extended Zassenhaus $B%"%k%4%j%:%`$K$h$k(B.  @code{gcd()}, @code{gcdz()} Extended Zassenhaus $B%"%k%4%j%:%`$K$h$k(B.
 $BM-8BBN>e$N(B GCD $B$O(B PRS $B%"%k%4%j%:%`$K$h$C$F$$$k$?$a(B, $BBg$-$JLdBj(B,  $BM-8BBN>e$N(B GCD $B$O(B PRS $B%"%k%4%j%:%`$K$h$C$F$$$k$?$a(B, $BBg$-$JLdBj(B,
 GCD $B$,(B 1 $B$N>l9g$J$I$K$*$$$F8zN($,0-$$(B.  GCD $B$,(B 1 $B$N>l9g$J$I$K$*$$$F8zN($,0-$$(B.
   \E
   \BEG
   @item
   Functions @code{gcd()} and @code{gcdz()} return the greatest common divisor
   (GCD) of the given two polynomials.
   @item
   Function @code{gcd()} returns an integral polynomial GCD over the
   rational number field.  The coefficients are normalized such that
   their GCD is 1.  It returns 1 in case that the given polynomials are
   mutually prime.
   @item
   Function @code{gcdz()} works for arguments of integral polynomials,
   and returns a polynomial GCD over the integer ring, that is,
   it returns @code{gcd()} multiplied by the contents of all coefficients
   of the two input polynomials.
   @item
   @code{gcd()} computes the GCD over GF(@var{mod}) if @var{mod} is specified.
   @item
   Polynomial GCD is computed by an improved algorithm based
   on Extended Zassenhaus algorithm.
   @item
   GCD over a finite field is computed by PRS algorithm and it may not be
   efficient for large inputs and co-prime inputs.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 916  x^3+y*x^2+y^2*x+y^3
Line 1393  x^3+y*x^2+y^2*x+y^3
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{igcd igcdcntl}.  @fref{igcd igcdcntl}.
 @end table  @end table
   
 @node red,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B  \JP @node red,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
   \EG @node red,,, Polynomials and rational expressions
 @subsection @code{red}  @subsection @code{red}
 @findex red  @findex red
   
 @table @t  @table @t
 @item red(@var{rat})  @item red(@var{rat})
 :: @var{rat} $B$rLsJ,$7$?$b$N(B.  \JP :: @var{rat} $B$rLsJ,$7$?$b$N(B.
   \EG :: Reduced form of @var{rat} by canceling common divisors.
 @end table  @end table
   
 @table @var  @table @var
 @item return  @item return
 $BM-M}<0(B  \JP $BM-M}<0(B
   \EG rational expression
 @item rat  @item rat
 $BM-M}<0(B  \JP $BM-M}<0(B
   \EG rational expression
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
   \BJP
 @item  @item
 @b{Asir} $B$OM-M}?t$NLsJ,$r>o$K<+F0E*$K9T$&(B.  @b{Asir} $B$OM-M}?t$NLsJ,$r>o$K<+F0E*$K9T$&(B.
 $B$7$+$7(B, $BM-M}<0$K$D$$$F$ODLJ,$O9T$&$,(B,  $B$7$+$7(B, $BM-M}<0$K$D$$$F$ODLJ,$O9T$&$,(B,
Line 953  GCD $B$OBgJQ=E$$1i;;$J$N$G(B, $BB>$NJ}K!$G=|$1$k6&D
Line 1436  GCD $B$OBgJQ=E$$1i;;$J$N$G(B, $BB>$NJ}K!$G=|$1$k6&D
 $BK>$^$7$$(B. $B$^$?(B, $BJ,Jl(B, $BJ,;R$,Bg$-$/$J$C$F$+$i$N$3$NH!?t$N8F$S=P$7$O(B,  $BK>$^$7$$(B. $B$^$?(B, $BJ,Jl(B, $BJ,;R$,Bg$-$/$J$C$F$+$i$N$3$NH!?t$N8F$S=P$7$O(B,
 $BHs>o$K;~4V$,3]$+$k>l9g$,B?$$(B. $BM-M}<01i;;$r9T$&>l9g$O(B, $B$"$kDxEY(B  $BHs>o$K;~4V$,3]$+$k>l9g$,B?$$(B. $BM-M}<01i;;$r9T$&>l9g$O(B, $B$"$kDxEY(B
 $BIQHK$K(B, $BLsJ,$r9T$&I,MW$,$"$k(B.  $BIQHK$K(B, $BLsJ,$r9T$&I,MW$,$"$k(B.
   \E
   \BEG
   @item
   @b{Asir} automatically performs cancellation of common divisors of rational numb
   ers.
   But, without an explicit command, it does not cancel common polynomial divisors
   of rational expressions.
   (Reduction of rational expressions to a common denominator will be always done.)
   Use command @t{red()} to perform this cancellation.
   @item
   Cancel the common divisors of the numerator and the denominator of
   a rational expression @var{rat} by computing their GCD.
   @item
   The denominator polynomial of the result is an integral polynomial
   which has no common divisors in its coefficients,
   while the numerator may have rational coefficients.
   @item
   Since GCD computation is a very hard operation, it is desirable to
   detect and remove by any means common divisors as far as possible.
   Furthermore, a call to this function after swelling of the denominator
   and the numerator shall usually take a very long time.  Therefore,
   often, to some extent, reduction of common divisors is inevitable for
   operations of rational expressions.
   \E
 @end itemize  @end itemize
   
 @example  @example
Line 969  x^2+(-y-z)*x+y^2-z*y+z^2
Line 1476  x^2+(-y-z)*x+y^2-z*y+z^2
 @end example  @end example
   
 @table @t  @table @t
 @item $B;2>H(B  \JP @item $B;2>H(B
   \EG @item References
 @fref{nm dn}, @fref{gcd gcdz}, @fref{ptozp}.  @fref{nm dn}, @fref{gcd gcdz}, @fref{ptozp}.
 @end table  @end table
   

Legend:
Removed from v.1.1.1.1  
changed lines
  Added in v.1.4

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>