[BACK]Return to num.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts / builtin

Diff for /OpenXM/src/asir-doc/parts/builtin/num.texi between version 1.3 and 1.11

version 1.3, 2000/01/13 08:29:57 version 1.11, 2016/03/22 07:25:14
Line 1 
Line 1 
 @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/num.texi,v 1.2 1999/12/21 02:47:34 noro Exp $  @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/num.texi,v 1.10 2003/12/20 20:02:28 ohara Exp $
 \BJP  \BJP
 @node $B?t$N1i;;(B,,, $BAH$_9~$_H!?t(B  @node $B?t$N1i;;(B,,, $BAH$_9~$_H!?t(B
 @section $B?t$N1i;;(B  @section $B?t$N1i;;(B
Line 13 
Line 13 
 * fac::  * fac::
 * igcd igcdcntl::  * igcd igcdcntl::
 * ilcm::  * ilcm::
   * isqrt::
 * inv::  * inv::
 * prime lprime::  * prime lprime::
 * random::  * random::
 * mt_save mt_load::  * mt_save mt_load::
 * nm dn::  * nm dn::
 * conj real imag::  * conj real imag::
 * eval::  * eval deval::
 * pari::  * pari::
 * setprec::  * setprec::
 * setmod::  * setmod::
Line 46 
Line 47 
 @item return  @item return
 \JP $B@0?t(B  \JP $B@0?t(B
 \EG integer  \EG integer
 @item i1,i2  @item i1 i2
 \JP $B@0?t(B  \JP $B@0?t(B
 \EG integer  \EG integer
 @end table  @end table
Line 159  Returns 0 if the argument @var{i} is negative.
Line 160  Returns 0 if the argument @var{i} is negative.
 @item return  @item return
 \JP $B@0?t(B  \JP $B@0?t(B
 \EG integer  \EG integer
 @item i1,i2,i  @item i1 i2 i
 \JP $B@0?t(B  \JP $B@0?t(B
 \EG integer  \EG integer
 @end table  @end table
Line 260  In most cases @code{3} is the fastest, but there are e
Line 261  In most cases @code{3} is the fastest, but there are e
 @item return  @item return
 \JP $B@0?t(B  \JP $B@0?t(B
 \EG integer  \EG integer
 @item i1,i2  @item i1 i2
 \JP $B@0?t(B  \JP $B@0?t(B
 \EG integer  \EG integer
 @end table  @end table
Line 287  If one of argument is equal to 0, the return 0.
Line 288  If one of argument is equal to 0, the return 0.
 @fref{igcd igcdcntl}, @fref{mt_save mt_load}.  @fref{igcd igcdcntl}, @fref{mt_save mt_load}.
 @end table  @end table
   
   \JP @node isqrt,,, $B?t$N1i;;(B
   \EG @node isqrt,,, Numbers
   @subsection @code{isqrt}
   @findex isqrt
   
   @table @t
   @item isqrt(@var{n})
   \JP :: $BJ?J}:,$r1[$($J$$:GBg$N@0?t$r5a$a$k(B.
   \EG :: The integer square root of @var{n}.
   @end table
   
   @table @var
   @item return
   \JP $BHsIi@0?t(B
   \EG non-negative integer
   @item n
   \JP $BHsIi@0?t(B
   \EG non-negative integer
   @end table
   
 \JP @node inv,,, $B?t$N1i;;(B  \JP @node inv,,, $B?t$N1i;;(B
 \EG @node inv,,, Numbers  \EG @node inv,,, Numbers
 @subsection @code{inv}  @subsection @code{inv}
Line 302  If one of argument is equal to 0, the return 0.
Line 323  If one of argument is equal to 0, the return 0.
 @item return  @item return
 \JP $B@0?t(B  \JP $B@0?t(B
 \EG integer  \EG integer
 @item i,m  @item i m
 \JP $B@0?t(B  \JP $B@0?t(B
 \EG integer  \EG integer
 @end table  @end table
Line 419  function
Line 440  function
 @findex random  @findex random
   
 @table @t  @table @t
 @item radom([@var{seed}])  @item random([@var{seed}])
 \JP :: $BMp?t$r@8@.$9$k(B.  \JP :: $BMp?t$r@8@.$9$k(B.
 @end table  @end table
   
Line 482  one can trace a single random number sequence arcoss m
Line 503  one can trace a single random number sequence arcoss m
 @findex lrandom  @findex lrandom
   
 @table @t  @table @t
 @item lradom(@var{bit})  @item lrandom(@var{bit})
 \JP :: $BB?G\D9Mp?t$r@8@.$9$k(B.  \JP :: $BB?G\D9Mp?t$r@8@.$9$k(B.
 \EG :: Generates a long random number.  \EG :: Generates a long random number.
 @end table  @end table
Line 693  These functions works also for polynomials with comple
Line 714  These functions works also for polynomials with comple
 [2,11,(2-11*@@i)]  [2,11,(2-11*@@i)]
 @end example  @end example
   
 \JP @node eval,,, $B?t$N1i;;(B  \JP @node eval deval ,,, $B?t$N1i;;(B
 \EG @node eval,,, Numbers  \EG @node eval deval,,, Numbers
 @subsection @code{eval}  @subsection @code{eval}, @code{deval}
 @findex eval  @findex eval
   @findex deval
 @cindex PARI  @cindex PARI
   
 @table @t  @table @t
 @item eval(@var{obj}[,@var{prec}])  @item eval(@var{obj}[,@var{prec}])
   @item deval(@var{obj})
 \JP :: @var{obj} $B$NCM$NI>2A(B.  \JP :: @var{obj} $B$NCM$NI>2A(B.
 \EG :: Evaluate @var{obj} numerically.  \EG :: Evaluate @var{obj} numerically.
 @end table  @end table
Line 722  These functions works also for polynomials with comple
Line 745  These functions works also for polynomials with comple
 @item  @item
 @var{obj} $B$K4^$^$l$kH!?t$NCM$r2DG=$J8B$jI>2A$9$k(B.  @var{obj} $B$K4^$^$l$kH!?t$NCM$r2DG=$J8B$jI>2A$9$k(B.
 @item  @item
 $B7W;;$O(B @b{PARI} (@xref{pari}) $B$,9T$&(B.  @code{deval} $B$OG\@:EYIbF0>.?t$r7k2L$H$7$F(B
   @code{eval} $B$N>l9g(B, $BM-M}?t$O$=$N$^$^;D$k(B.
 @item  @item
   @code{eval} $B$K$*$$$F$O(B, $B7W;;$O(B @b{MPFR} $B%i%$%V%i%j$,9T$&(B.
   @code{deval} $B$K$*$$$F$O(B, $B7W;;$O(B C $B?t3X%i%$%V%i%j$N4X?t$rMQ$$$F9T$&(B.
   @item
   @code{deval} $B$OJ#AG?t$O07$($J$$(B.
   @item
   @code{eval} $B$K$*$$$F$O(B,
 @var{prec} $B$r;XDj$7$?>l9g(B, $B7W;;$O(B, 10 $B?J(B @var{prec} $B7eDxEY$G9T$o$l$k(B.  @var{prec} $B$r;XDj$7$?>l9g(B, $B7W;;$O(B, 10 $B?J(B @var{prec} $B7eDxEY$G9T$o$l$k(B.
 @var{prec} $B$N;XDj$,$J$$>l9g(B, $B8=:_@_Dj$5$l$F$$$k@:EY$G9T$o$l$k(B.  @var{prec} $B$N;XDj$,$J$$>l9g(B, $B8=:_@_Dj$5$l$F$$$k@:EY$G9T$o$l$k(B.
 (@xref{setprec})  (@xref{setprec}, @xref{setbprec}.)
 @item  @item
 @table @t  @table @t
 @item $B07$($kH!?t$O(B, $B<!$NDL$j(B.  @item $B07$($kH!?t$O(B, $B<!$NDL$j(B.
Line 741  These functions works also for polynomials with comple
Line 771  These functions works also for polynomials with comple
 @code{exp}, @code{log}, @code{pow(a,b) (a^b)}  @code{exp}, @code{log}, @code{pow(a,b) (a^b)}
 @end table  @end table
 @item  @item
 $B0J2<$N5-9f$r?t$H$7$FI>2A$G$-$k(B.  $B0J2<$N5-9f$r?t$H$7$FI>2A$G$-$k(B. $B$?$@$7(B @code{@@i} $B$r07$($k$N$O(B
   @code{eval}, @code{deval} $B$N$_$G$"$k(B.
 @table @t  @table @t
 @item @@i  @item @@i
 $B5u?tC10L(B  $B5u?tC10L(B
Line 756  These functions works also for polynomials with comple
Line 787  These functions works also for polynomials with comple
 Evaluates the value of the functions contained in @var{obj} as far as  Evaluates the value of the functions contained in @var{obj} as far as
 possible.  possible.
 @item  @item
 The computation is done by @b{PARI} (@xref{pari}).  @code{deval} returns
   double float. Rational numbers remain unchanged in results from @code{eval}.
 @item  @item
   In @code{eval} the computation is done
   by @b{MPFR} library. In @code{deval} the computation is
   done by the C math library.
   @item
   @code{deval} cannot handle complex numbers.
   @item
 When @var{prec} is specified, computation will be performed with a  When @var{prec} is specified, computation will be performed with a
 precision of about @var{prec}-digits.  precision of about @var{prec}-digits.
 If @var{prec} is not specified, computation is performed with the  If @var{prec} is not specified, computation is performed with the
 precision set currently. (@xref{setprec})  precision set currently. (@xref{setprec}.)
 @item  @item
 Currently available numerical functions are listed below.  Currently available numerical functions are listed below.
 Note they are only a small part of whole @b{PARI} functions.  
   
 @table @t  @table @t
 @code{sin}, @code{cos}, @code{tan},  @code{sin}, @code{cos}, @code{tan},
Line 777  Note they are only a small part of whole @b{PARI} func
Line 814  Note they are only a small part of whole @b{PARI} func
 @code{exp}, @code{log}, @code{pow(a,b) (a^b)}  @code{exp}, @code{log}, @code{pow(a,b) (a^b)}
 @end table  @end table
 @item  @item
 Symbols for special values are as the followings.  Symbols for special values are as the followings. Note that
   @code{@@i} cannot be handled by @code{deval}.
 @table @t  @table @t
 @item @@i  @item @@i
 unit of imaginary number  unit of imaginary number
Line 799  Napier's number (@t{exp}(1))
Line 837  Napier's number (@t{exp}(1))
 0.86602540378443864674620506632  0.86602540378443864674620506632
 [121] eval(sin(@@pi/3)-3^(1/2)/2,50);  [121] eval(sin(@@pi/3)-3^(1/2)/2,50);
 -2.78791084448179148471 E-58  -2.78791084448179148471 E-58
   [122] eval(1/2);
   1/2
   [123] deval(sin(1)^2+cos(1)^2);
   1
 @end example  @end example
   
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item References  \EG @item References
 @fref{ctrl}, @fref{setprec}, @fref{pari}.  @fref{ctrl}, @fref{setprec}, @fref{setbprec}.
 @end table  @end table
   
 \JP @node pari,,, $B?t$N1i;;(B  \JP @node pari,,, $B?t$N1i;;(B
Line 847  Napier's number (@t{exp}(1))
Line 889  Napier's number (@t{exp}(1))
 $BH!?tCM$NI>2A$r9bB.$K9T$&$3$H$,$G$-$k(B. @b{PARI} $B$OB>$N%W%m%0%i%`$+$i(B  $BH!?tCM$NI>2A$r9bB.$K9T$&$3$H$,$G$-$k(B. @b{PARI} $B$OB>$N%W%m%0%i%`$+$i(B
 $B%5%V%k!<%A%s%i%$%V%i%j$H$7$FMQ$$$k$3$H$,$G$-(B, $B$^$?(B, @samp{gp} $B$H$$$&(B  $B%5%V%k!<%A%s%i%$%V%i%j$H$7$FMQ$$$k$3$H$,$G$-(B, $B$^$?(B, @samp{gp} $B$H$$$&(B
 @b{PARI}$B%i%$%V%i%j$N%$%s%?%U%'!<%9$K$h$j(B UNIX $B$N%"%W%j%1!<%7%g%s$H$7$F(B  @b{PARI}$B%i%$%V%i%j$N%$%s%?%U%'!<%9$K$h$j(B UNIX $B$N%"%W%j%1!<%7%g%s$H$7$F(B
 $BMxMQ$9$k$3$H$b$G$-$k(B. $B8=:_$N%P!<%8%g%s$O(B @b{2.0.17beta} $B$G$$$/$D$+$N(B ftp  $BMxMQ$9$k$3$H$b$G$-$k(B.
 site ($B$?$H$($P(B @code{ftp://megrez.ceremab.u-bordeaux.fr/pub/pari})  
 $B$+$i(B anonymous ftp $B$G$-$k(B.  
 @item  @item
 $B:G8e$N0z?t(B @var{prec} $B$G7W;;@:EY$r;XDj$G$-$k(B.  $B:G8e$N0z?t(B @var{prec} $B$G7W;;@:EY$r;XDj$G$-$k(B.
 @var{prec} $B$r>JN,$7$?>l9g(B @code{setprec()} $B$G;XDj$7$?@:EY$H$J$k(B.  @var{prec} $B$r>JN,$7$?>l9g(B @code{setprec()} $B$G;XDj$7$?@:EY$H$J$k(B.
Line 871  function evaluations as well as arithmetic operations 
Line 911  function evaluations as well as arithmetic operations 
 speed.  It can also be used from other external programs as a library.  speed.  It can also be used from other external programs as a library.
 It provides a language interface named @samp{gp} to its library, which  It provides a language interface named @samp{gp} to its library, which
 enables a user to use @b{PARI} as a calculator which runs on UNIX.  enables a user to use @b{PARI} as a calculator which runs on UNIX.
 The current version is @b{2.0.17beta}.  It can be obtained by several ftp  
 sites. (For example, @code{ftp://megrez.ceremab.u-bordeaux.fr/pub/pari}.)  
 @item  @item
 The last argument (optional) @var{int} specifies the precision in digits  The last argument (optional) @var{int} specifies the precision in digits
 for bigfloat operation.  for bigfloat operation.
Line 961  For details of individual functions, refer to the @b{P
Line 999  For details of individual functions, refer to the @b{P
 @code{lngamma},  @code{lngamma},
 @code{logagm},  @code{logagm},
 @code{mat},  @code{mat},
 @code{matinvr},  
 @code{matrixqz2},  @code{matrixqz2},
 @code{matrixqz3},  @code{matrixqz3},
 @code{matsize},  @code{matsize},
Line 1020  For details of individual functions, refer to the @b{P
Line 1057  For details of individual functions, refer to the @b{P
   
 \BJP  \BJP
 @item  @item
 @b{Asir} $B$GMQ$$$F$$$k$N$O(B @b{PARI} $B$N$[$s$N0lIt$N5!G=$G$"$k$,(B, $B:#8e(B  @b{Asir} $B$GMQ$$$F$$$k$N$O(B @b{PARI} $B$N$[$s$N0lIt$N5!G=$G$"$k(B.
 $B$h$jB?$/$N5!G=$,MxMQ$G$-$k$h$&2~NI$9$kM=Dj$G$"$k(B.  
 \E  \E
 \BEG  \BEG
 @item  @item
 @b{Asir} currently uses only a very small subset of @b{PARI}.  @b{Asir} currently uses only a very small subset of @b{PARI}.
 We will improve @b{Asir} so that it can provide more functions of  
 @b{PARI}.  
 \E  \E
 @end itemize  @end itemize
   
Line 1049  We will improve @b{Asir} so that it can provide more f
Line 1083  We will improve @b{Asir} so that it can provide more f
 @fref{setprec}.  @fref{setprec}.
 @end table  @end table
   
 \JP @node setprec,,, $B?t$N1i;;(B  \JP @node setbprec setprec,,, $B?t$N1i;;(B
 \EG @node setprec,,, Numbers  \EG @node setbprec setprec,,, Numbers
 @subsection @code{setprec}  @subsection @code{setbprec}, @code{setprec}
   @findex setbprec
 @findex setprec  @findex setprec
 @cindex PARI  
   
 @table @t  @table @t
 @item setprec([@var{n}])  @item setbprec([@var{n}])
 \JP :: @b{bigfloat} $B$N7e?t$r(B @var{n} $B7e$K@_Dj$9$k(B.  @itemx setprec([@var{n}])
 \EG :: Sets the precision for @b{bigfloat} operations to @var{n} digits.  \JP :: @b{setbprec}, @b{setprec} $B$O(B @b{bigfloat} $B$N@:EY$r$=$l$>$l(B 2 $B?J(B, 10$B?J(B @var{n} $B7e$K@_Dj$9$k(B.
   \EG :: @b{setbprec}, @b{setprec} set the precision for @b{bigfloat} operations to @var{n} bits, @var{n} digits respectively.
 @end table  @end table
   
 @table @var  @table @var
Line 1076  We will improve @b{Asir} so that it can provide more f
Line 1111  We will improve @b{Asir} so that it can provide more f
 $B0z?t$,$"$k>l9g(B, @b{bigfloat} $B$N7e?t$r(B @var{n} $B7e$K@_Dj$9$k(B.  $B0z?t$,$"$k>l9g(B, @b{bigfloat} $B$N7e?t$r(B @var{n} $B7e$K@_Dj$9$k(B.
 $B0z?t$N$"$k$J$7$K$+$+$o$i$:(B, $B0JA0$K@_Dj$5$l$F$$$?CM$rJV$9(B.  $B0z?t$N$"$k$J$7$K$+$+$o$i$:(B, $B0JA0$K@_Dj$5$l$F$$$?CM$rJV$9(B.
 @item  @item
 @b{bigfloat} $B$N7W;;$O(B @b{PARI} (@xref{pari}) $B$K$h$C$F9T$o$l$k(B.  @b{bigfloat} $B$N7W;;$O(B @b{MPFR} $B%i%$%V%i%j$K$h$C$F9T$o$l$k(B.
 @item  @item
 @b{bigfloat} $B$G$N7W;;$KBP$7M-8z$G$"$k(B.  @b{bigfloat} $B$G$N7W;;$KBP$7M-8z$G$"$k(B.
 @b{bigfloat} $B$N(B flag $B$r(B on $B$K$9$kJ}K!$O(B, @code{ctrl} $B$r;2>H(B.  @b{bigfloat} $B$N(B flag $B$r(B on $B$K$9$kJ}K!$O(B, @code{ctrl} $B$r;2>H(B.
Line 1086  We will improve @b{Asir} so that it can provide more f
Line 1121  We will improve @b{Asir} so that it can provide more f
 \E  \E
 \BEG  \BEG
 @item  @item
 When an argument is given, it  When an argument @var{n} is given, these functions
 sets the precision for @b{bigfloat} operations to @var{n} digits.  set the precision for @b{bigfloat} operations to @var{n} bits or @var{n} digits.
 The return value is always the previous precision in digits regardless of  The return value is always the previous precision regardless of
 the existence of an argument.  the existence of an argument.
   
 @item  @item
 @b{Bigfloat} operations are done by @b{PARI}. (@xref{pari})  @b{Bigfloat} operations are done by @b{MPFR} library.
 @item  @item
 This is effective for computations in @b{bigfloat}.  This is effective for computations in @b{bigfloat}.
 Refer to @code{ctrl()} for turning on the `@b{bigfloat} flag.'  Refer to @code{ctrl()} for turning on the `@b{bigfloat} flag.'
Line 1105  Therefore, it is safe to specify a larger value.
Line 1140  Therefore, it is safe to specify a larger value.
   
 @example  @example
 [1] setprec();  [1] setprec();
 9  15
 [2] setprec(100);  [2] setprec(100);
 9  15
 [3] setprec(100);  [3] setprec(100);
 96  99
   [4] setbprec();
   332
 @end example  @end example
   
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 @fref{ctrl}, @fref{eval}, @fref{pari}.  @fref{ctrl}, @fref{eval deval}.
 @end table  @end table
   
   \JP @node setround,,, $B?t$N1i;;(B
   \EG @node setround,,, Numbers
   @subsection @code{setround}
   @findex setround
   
   @table @t
   @item setround([@var{mode}])
   \JP :: @b{bigfloat} $B$N4]$a%b!<%I$r(B @var{mode} $B$K@_Dj$9$k(B.
   \EG :: Sets the rounding mode @var{mode}.
   @end table
   
   @table @var
   @item return
   \JP $B@0?t(B
   \EG integer
   @item mode
   \JP $B@0?t(B
   \EG integer
   @end table
   
   @itemize @bullet
   \BJP
   @item
   $B0z?t$,$"$k>l9g(B, @b{bigfloat} $B$N4]$a%b!<%I$r(B @var{mode} $B$K@_Dj$9$k(B.
   $B0z?t$N$"$k$J$7$K$+$+$o$i$:(B, $B0JA0$K@_Dj$5$l$F$$$?CM$rJV$9(B.
   $B4]$a%b!<%I$N0UL#$O<!$N$H$*$j(B.
   @table @code
   @item 0
   Round to nearest
   @item 1
   Round toward 0
   @item 2
   Round toward +infinity
   @item 3
   Round toward -infinity
   @end table
   @item
   @b{bigfloat} $B$G$N7W;;$KBP$7M-8z$G$"$k(B.
   @b{bigfloat} $B$N(B flag $B$r(B on $B$K$9$kJ}K!$O(B, @code{ctrl} $B$r;2>H(B.
   \E
   \BEG
   @item
   When an argument @var{mode} is given, these functions
   set the rounding mode for @b{bigfloat} operations to @var{mode}.
   The return value is always the previous rounding mode regardless of
   the existence of an argument.
   The meanings of rounding modes are as follows
   @table @code
   @item 0
   Round to nearest
   @item 1
   Round toward 0
   @item 2
   Round toward +infinity
   @item 3
   Round toward -infinity
   @end table
   
   @item
   This is effective for computations in @b{bigfloat}.
   Refer to @code{ctrl()} for turning on the `@b{bigfloat} flag.'
   \E
   @end itemize
   
   @example
   [1] setprec();
   15
   [2] setprec(100);
   15
   [3] setprec(100);
   99
   [4] setbprec();
   332
   @end example
   
   @table @t
   \JP @item $B;2>H(B
   @fref{ctrl}, @fref{eval deval}.
   @end table
   
   
 \JP @node setmod,,, $B?t$N1i;;(B  \JP @node setmod,,, $B?t$N1i;;(B
 \EG @node setmod,,, Numbers  \EG @node setmod,,, Numbers

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.11

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>