version 1.6, 2003/04/19 15:44:58 |
version 1.9, 2003/12/18 10:26:20 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.5 2002/08/08 05:24:37 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.8 2003/10/19 07:21:57 takayama Exp $ |
\BJP |
\BJP |
@node $BG[Ns(B,,, $BAH$_9~$_H!?t(B |
@node $BG[Ns(B,,, $BAH$_9~$_H!?t(B |
@section $BG[Ns(B |
@section $BG[Ns(B |
|
|
|
|
@menu |
@menu |
* newvect:: |
* newvect:: |
* newbytearray:: |
* ltov:: |
* vtol:: |
* vtol:: |
|
* newbytearray:: |
* newmat:: |
* newmat:: |
* size:: |
* size:: |
* det invmat:: |
* det invmat:: |
Line 144 separated simply by a `blank space', while those of a |
|
Line 145 separated simply by a `blank space', while those of a |
|
@table @t |
@table @t |
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@fref{newmat}, @fref{size}, @fref{vtol}. |
@fref{newmat}, @fref{size}, @fref{ltov}, @fref{vtol}. |
@end table |
@end table |
|
|
|
\JP @node ltov,,, $BG[Ns(B |
|
\EG @node ltov,,, Arrays |
|
@subsection @code{ltov} |
|
@findex ltov |
|
|
|
@table @t |
|
@item ltov(@var{list}) |
|
\JP :: $B%j%9%H$r%Y%/%H%k$KJQ49$9$k(B. |
|
\EG :: Converts a list into a vector. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $B%Y%/%H%k(B |
|
\EG vector |
|
@item list |
|
\JP $B%j%9%H(B |
|
\EG list |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
$B%j%9%H(B @var{list} $B$rF1$8D9$5$N%Y%/%H%k$KJQ49$9$k(B. |
|
@item |
|
$B$3$N4X?t$O(B @code{newvect(length(@var{list}), @var{list})} $B$KEy$7$$(B. |
|
\E |
|
\BEG |
|
@item |
|
Converts a list @var{list} into a vector of same length. |
|
See also @code{newvect()}. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[3] A=[1,2,3]; |
|
[4] ltov(A); |
|
[ 1 2 3 ] |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{newvect}, @fref{vtol}. |
|
@end table |
|
|
\JP @node vtol,,, $BG[Ns(B |
\JP @node vtol,,, $BG[Ns(B |
\EG @node vtol,,, Arrays |
\EG @node vtol,,, Arrays |
@subsection @code{vtol} |
@subsection @code{vtol} |
Line 194 A conversion from a list to a vector is done by @code{ |
|
Line 241 A conversion from a list to a vector is done by @code{ |
|
@table @t |
@table @t |
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@fref{newvect}. |
@fref{newvect}, @fref{ltov}. |
@end table |
@end table |
|
|
\JP @node newbytearray,,, $BG[Ns(B |
\JP @node newbytearray,,, $BG[Ns(B |
Line 371 or a list containing row size and column size of the g |
|
Line 418 or a list containing row size and column size of the g |
|
@itemize @bullet |
@itemize @bullet |
\BJP |
\BJP |
@item |
@item |
@var{vect} $BKt$O(B, @var{mat} $B$N%5%$%:$r%j%9%H$G=PNO$9$k(B. |
@var{vect} $B$ND9$5(B, $B$^$?$O(B @var{mat} $B$NBg$-$5$r%j%9%H$G=PNO$9$k(B. |
@item |
@item |
@var{list} $B$N%5%$%:$O(B @code{length()}$B$r(B, $BM-M}<0$K8=$l$kC19`<0$N?t$O(B @code{nmono()} $B$rMQ$$$k(B. |
@var{vect} $B$ND9$5$O(B @code{length()} $B$G5a$a$k$3$H$b$G$-$k(B. |
|
@item |
|
@var{list} $B$ND9$5$O(B @code{length()}$B$r(B, $BM-M}<0$K8=$l$kC19`<0$N?t$O(B @code{nmono()} $B$rMQ$$$k(B. |
\E |
\E |
\BEG |
\BEG |
@item |
@item |
Line 392 in a rational expression. |
|
Line 441 in a rational expression. |
|
[ 0 0 0 0 ] |
[ 0 0 0 0 ] |
[1] size(A); |
[1] size(A); |
[4] |
[4] |
[2] B = newmat(2,3,[[1,2,3],[4,5,6]]); |
[2] length(A); |
|
4 |
|
[3] B = newmat(2,3,[[1,2,3],[4,5,6]]); |
[ 1 2 3 ] |
[ 1 2 3 ] |
[ 4 5 6 ] |
[ 4 5 6 ] |
[3] size(B); |
[4] size(B); |
[2,3] |
[2,3] |
@end example |
@end example |
|
|
Line 416 in a rational expression. |
|
Line 467 in a rational expression. |
|
\JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B. |
\JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B. |
\EG :: Determinant of @var{mat}. |
\EG :: Determinant of @var{mat}. |
@item invmat(@var{mat}) |
@item invmat(@var{mat}) |
\JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B. |
\JP :: @var{mat} $B$N5U9TNs$r5a$a$k(B. |
\EG :: Inverse matrix of @var{mat}. |
\EG :: Inverse matrix of @var{mat}. |
@end table |
@end table |
|
|
Line 471 is more efficient than the fraction free Gaussian algo |
|
Line 522 is more efficient than the fraction free Gaussian algo |
|
[ 1 u u^2 u^3 u^4 ] |
[ 1 u u^2 u^3 u^4 ] |
[ 1 v v^2 v^3 v^4 ] |
[ 1 v v^2 v^3 v^4 ] |
[95] fctr(det(A)); |
[95] fctr(det(A)); |
[[1,1],[u-v,1],[-z+v,1],[-z+u,1],[-y+u,1],[y-v,1],[-y+z,1],[-x+u,1],[-x+z,1], |
[[1,1],[u-v,1],[-z+v,1],[-z+u,1],[-y+u,1],[y-v,1],[-y+z,1],[-x+u,1], |
[-x+v,1],[-x+y,1]] |
[-x+z,1],[-x+v,1],[-x+y,1]] |
[96] A = newmat(3,3)$ |
[96] A = newmat(3,3)$ |
[97] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W^J; |
[97] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W^J; |
[98] A; |
[98] A; |