[BACK]Return to array.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts / builtin

Diff for /OpenXM/src/asir-doc/parts/builtin/array.texi between version 1.9 and 1.10

version 1.9, 2003/12/18 10:26:20 version 1.10, 2005/02/10 04:59:21
Line 1 
Line 1 
 @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.8 2003/10/19 07:21:57 takayama Exp $  @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.9 2003/12/18 10:26:20 ohara Exp $
 \BJP  \BJP
 @node $BG[Ns(B,,, $BAH$_9~$_H!?t(B  @node $BG[Ns(B,,, $BAH$_9~$_H!?t(B
 @section $BG[Ns(B  @section $BG[Ns(B
Line 15 
Line 15 
 * newbytearray::  * newbytearray::
 * newmat::  * newmat::
 * size::  * size::
 * det invmat::  * det nd_det invmat::
   
 * qsort::  * qsort::
 @end menu  @end menu
   
Line 384  return to toplevel
Line 385  return to toplevel
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item References  \EG @item References
 @fref{newvect}, @fref{size}, @fref{det invmat}.  @fref{newvect}, @fref{size}, @fref{det nd_det invmat}.
 @end table  @end table
   
 \JP @node size,,, $BG[Ns(B  \JP @node size,,, $BG[Ns(B
Line 456  in a rational expression.
Line 457  in a rational expression.
 @fref{car cdr cons append reverse length}, @fref{nmono}.  @fref{car cdr cons append reverse length}, @fref{nmono}.
 @end table  @end table
   
 \JP @node det invmat,,, $BG[Ns(B  \JP @node det nd_det invmat,,, $BG[Ns(B
 \EG @node det invmat,,, Arrays  \EG @node det nd_det invmat,,, Arrays
 @subsection @code{det},@code{invmat}  @subsection @code{det},@code{invmat}
 @findex det  @findex det
 @findex invmat  @findex invmat
   
 @table @t  @table @t
 @item det(@var{mat}[,@var{mod}])  @item det(@var{mat}[,@var{mod}])
   @itemx nd_det(@var{mat}[,@var{mod}])
 \JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B.  \JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B.
 \EG :: Determinant of @var{mat}.  \EG :: Determinant of @var{mat}.
 @item invmat(@var{mat})  @item invmat(@var{mat})
Line 486  in a rational expression.
Line 488  in a rational expression.
 @itemize @bullet  @itemize @bullet
 \BJP  \BJP
 @item  @item
 @code{det} $B$O9TNs(B @var{mat} $B$N9TNs<0$r5a$a$k(B.  @code{det} $B$*$h$S(B @code{nd_det} $B$O9TNs(B @var{mat} $B$N9TNs<0$r5a$a$k(B.
 @code{invmat} $B$O9TNs(B @var{mat} $B$N5U9TNs$r5a$a$k(B. $B5U9TNs$O(B @code{[$BJ,Jl(B, $BJ,;R(B]}  @code{invmat} $B$O9TNs(B @var{mat} $B$N5U9TNs$r5a$a$k(B. $B5U9TNs$O(B @code{[$BJ,Jl(B, $BJ,;R(B]}
 $B$N7A$GJV$5$l(B, @code{$BJ,Jl(B}$B$,9TNs(B, @code{$BJ,Jl(B/$BJ,;R(B} $B$,5U9TNs$H$J$k(B.  $B$N7A$GJV$5$l(B, @code{$BJ,Jl(B}$B$,9TNs(B, @code{$BJ,Jl(B/$BJ,;R(B} $B$,5U9TNs$H$J$k(B.
 @item  @item
Line 494  in a rational expression.
Line 496  in a rational expression.
 @item  @item
 $BJ,?t$J$7$N%,%&%9>C5nK!$K$h$C$F$$$k$?$a(B, $BB?JQ?tB?9`<0$r@.J,$H$9$k(B  $BJ,?t$J$7$N%,%&%9>C5nK!$K$h$C$F$$$k$?$a(B, $BB?JQ?tB?9`<0$r@.J,$H$9$k(B
 $B9TNs$KBP$7$F$O>.9TNs<0E83+$K$h$kJ}K!$N$[$&$,8zN($,$h$$>l9g$b$"$k(B.  $B9TNs$KBP$7$F$O>.9TNs<0E83+$K$h$kJ}K!$N$[$&$,8zN($,$h$$>l9g$b$"$k(B.
   @item
   @code{nd_det} $B$OM-M}?t$^$?$OM-8BBN>e$NB?9`<09TNs$N9TNs<0(B
   $B7W;;@lMQ$G$"$k(B. $B%"%k%4%j%:%`$O$d$O$jJ,?t$J$7$N%,%&%9>C5nK!$@$,(B,
   $B%G!<%?9=B$$*$h$S>h=|;;$N9)IW$K$h$j(B, $B0lHL$K(B @code{det} $B$h$j9bB.$K(B
   $B7W;;$G$-$k(B.
 \E  \E
 \BEG  \BEG
 @item  @item
 @code{det} computes the determinant of matrix @var{mat}.  @code{det} and @code{nd_det} compute the determinant of matrix @var{mat}.
 @code{invmat} computes the inverse matrix of matrix @var{mat}.  @code{invmat} computes the inverse matrix of matrix @var{mat}.
 @code{invmat} returns a list @code{[num,den]}, where @code{num}  @code{invmat} returns a list @code{[num,den]}, where @code{num}
 is a matrix and @code{num/den} represents the inverse matrix.  is a matrix and @code{num/den} represents the inverse matrix.
Line 507  The computation is done over GF(@var{mod}) if @var{mod
Line 514  The computation is done over GF(@var{mod}) if @var{mod
 The fraction free Gaussian algorithm is employed.  For matrices with  The fraction free Gaussian algorithm is employed.  For matrices with
 multi-variate polynomial entries, minor expansion algorithm sometimes  multi-variate polynomial entries, minor expansion algorithm sometimes
 is more efficient than the fraction free Gaussian algorithm.  is more efficient than the fraction free Gaussian algorithm.
   @item
   @code{nd_det} can be used for computing the determinant of a matrix with
   polynomial entries over the rationals or finite fields. The algorithm
   is an improved vesion of the fraction free Gaussian algorithm
   and it computes the determinant faster than @code{det}.
 \E  \E
 @end itemize  @end itemize
   

Legend:
Removed from v.1.9  
changed lines
  Added in v.1.10

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>