version 1.9, 2003/12/18 10:26:20 |
version 1.10, 2005/02/10 04:59:21 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.8 2003/10/19 07:21:57 takayama Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.9 2003/12/18 10:26:20 ohara Exp $ |
\BJP |
\BJP |
@node $BG[Ns(B,,, $BAH$_9~$_H!?t(B |
@node $BG[Ns(B,,, $BAH$_9~$_H!?t(B |
@section $BG[Ns(B |
@section $BG[Ns(B |
|
|
* newbytearray:: |
* newbytearray:: |
* newmat:: |
* newmat:: |
* size:: |
* size:: |
* det invmat:: |
* det nd_det invmat:: |
|
|
* qsort:: |
* qsort:: |
@end menu |
@end menu |
|
|
Line 384 return to toplevel |
|
Line 385 return to toplevel |
|
@table @t |
@table @t |
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@fref{newvect}, @fref{size}, @fref{det invmat}. |
@fref{newvect}, @fref{size}, @fref{det nd_det invmat}. |
@end table |
@end table |
|
|
\JP @node size,,, $BG[Ns(B |
\JP @node size,,, $BG[Ns(B |
Line 456 in a rational expression. |
|
Line 457 in a rational expression. |
|
@fref{car cdr cons append reverse length}, @fref{nmono}. |
@fref{car cdr cons append reverse length}, @fref{nmono}. |
@end table |
@end table |
|
|
\JP @node det invmat,,, $BG[Ns(B |
\JP @node det nd_det invmat,,, $BG[Ns(B |
\EG @node det invmat,,, Arrays |
\EG @node det nd_det invmat,,, Arrays |
@subsection @code{det},@code{invmat} |
@subsection @code{det},@code{invmat} |
@findex det |
@findex det |
@findex invmat |
@findex invmat |
|
|
@table @t |
@table @t |
@item det(@var{mat}[,@var{mod}]) |
@item det(@var{mat}[,@var{mod}]) |
|
@itemx nd_det(@var{mat}[,@var{mod}]) |
\JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B. |
\JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B. |
\EG :: Determinant of @var{mat}. |
\EG :: Determinant of @var{mat}. |
@item invmat(@var{mat}) |
@item invmat(@var{mat}) |
Line 486 in a rational expression. |
|
Line 488 in a rational expression. |
|
@itemize @bullet |
@itemize @bullet |
\BJP |
\BJP |
@item |
@item |
@code{det} $B$O9TNs(B @var{mat} $B$N9TNs<0$r5a$a$k(B. |
@code{det} $B$*$h$S(B @code{nd_det} $B$O9TNs(B @var{mat} $B$N9TNs<0$r5a$a$k(B. |
@code{invmat} $B$O9TNs(B @var{mat} $B$N5U9TNs$r5a$a$k(B. $B5U9TNs$O(B @code{[$BJ,Jl(B, $BJ,;R(B]} |
@code{invmat} $B$O9TNs(B @var{mat} $B$N5U9TNs$r5a$a$k(B. $B5U9TNs$O(B @code{[$BJ,Jl(B, $BJ,;R(B]} |
$B$N7A$GJV$5$l(B, @code{$BJ,Jl(B}$B$,9TNs(B, @code{$BJ,Jl(B/$BJ,;R(B} $B$,5U9TNs$H$J$k(B. |
$B$N7A$GJV$5$l(B, @code{$BJ,Jl(B}$B$,9TNs(B, @code{$BJ,Jl(B/$BJ,;R(B} $B$,5U9TNs$H$J$k(B. |
@item |
@item |
Line 494 in a rational expression. |
|
Line 496 in a rational expression. |
|
@item |
@item |
$BJ,?t$J$7$N%,%&%9>C5nK!$K$h$C$F$$$k$?$a(B, $BB?JQ?tB?9`<0$r@.J,$H$9$k(B |
$BJ,?t$J$7$N%,%&%9>C5nK!$K$h$C$F$$$k$?$a(B, $BB?JQ?tB?9`<0$r@.J,$H$9$k(B |
$B9TNs$KBP$7$F$O>.9TNs<0E83+$K$h$kJ}K!$N$[$&$,8zN($,$h$$>l9g$b$"$k(B. |
$B9TNs$KBP$7$F$O>.9TNs<0E83+$K$h$kJ}K!$N$[$&$,8zN($,$h$$>l9g$b$"$k(B. |
|
@item |
|
@code{nd_det} $B$OM-M}?t$^$?$OM-8BBN>e$NB?9`<09TNs$N9TNs<0(B |
|
$B7W;;@lMQ$G$"$k(B. $B%"%k%4%j%:%`$O$d$O$jJ,?t$J$7$N%,%&%9>C5nK!$@$,(B, |
|
$B%G!<%?9=B$$*$h$S>h=|;;$N9)IW$K$h$j(B, $B0lHL$K(B @code{det} $B$h$j9bB.$K(B |
|
$B7W;;$G$-$k(B. |
\E |
\E |
\BEG |
\BEG |
@item |
@item |
@code{det} computes the determinant of matrix @var{mat}. |
@code{det} and @code{nd_det} compute the determinant of matrix @var{mat}. |
@code{invmat} computes the inverse matrix of matrix @var{mat}. |
@code{invmat} computes the inverse matrix of matrix @var{mat}. |
@code{invmat} returns a list @code{[num,den]}, where @code{num} |
@code{invmat} returns a list @code{[num,den]}, where @code{num} |
is a matrix and @code{num/den} represents the inverse matrix. |
is a matrix and @code{num/den} represents the inverse matrix. |
Line 507 The computation is done over GF(@var{mod}) if @var{mod |
|
Line 514 The computation is done over GF(@var{mod}) if @var{mod |
|
The fraction free Gaussian algorithm is employed. For matrices with |
The fraction free Gaussian algorithm is employed. For matrices with |
multi-variate polynomial entries, minor expansion algorithm sometimes |
multi-variate polynomial entries, minor expansion algorithm sometimes |
is more efficient than the fraction free Gaussian algorithm. |
is more efficient than the fraction free Gaussian algorithm. |
|
@item |
|
@code{nd_det} can be used for computing the determinant of a matrix with |
|
polynomial entries over the rationals or finite fields. The algorithm |
|
is an improved vesion of the fraction free Gaussian algorithm |
|
and it computes the determinant faster than @code{det}. |
\E |
\E |
@end itemize |
@end itemize |
|
|