version 1.2, 1999/12/21 02:47:33 |
version 1.7, 2003/04/20 08:01:28 |
|
|
@comment $OpenXM$ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.6 2003/04/19 15:44:58 noro Exp $ |
\BJP |
\BJP |
@node $BG[Ns(B,,, $BAH$_9~$_H!?t(B |
@node $BG[Ns(B,,, $BAH$_9~$_H!?t(B |
@section $BG[Ns(B |
@section $BG[Ns(B |
|
|
|
|
@menu |
@menu |
* newvect:: |
* newvect:: |
|
* newbytearray:: |
* vtol:: |
* vtol:: |
* newmat:: |
* newmat:: |
* size:: |
* size:: |
* det:: |
* det invmat:: |
* qsort:: |
* qsort:: |
@end menu |
@end menu |
|
|
Line 143 separated simply by a `blank space', while those of a |
|
Line 144 separated simply by a `blank space', while those of a |
|
@table @t |
@table @t |
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@fref{newmat}, @fref{size}. |
@fref{newmat}, @fref{size}, @fref{vtol}. |
@end table |
@end table |
|
|
\JP @node vtol,,, $BG[Ns(B |
\JP @node vtol,,, $BG[Ns(B |
Line 196 A conversion from a list to a vector is done by @code{ |
|
Line 197 A conversion from a list to a vector is done by @code{ |
|
@fref{newvect}. |
@fref{newvect}. |
@end table |
@end table |
|
|
|
\JP @node newbytearray,,, $BG[Ns(B |
|
\EG @node newbytearray,,, Arrays |
|
@subsection @code{newbytearray} |
|
@findex newbytearray |
|
|
|
@table @t |
|
@item newbytearray(@var{len},[@var{listorstring}]) |
|
\JP :: $BD9$5(B @var{len} $B$N(B byte array $B$r@8@.$9$k(B. |
|
\EG :: Creates a new byte array. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
byte array |
|
@item len |
|
\JP $B<+A3?t(B |
|
\EG non-negative integer |
|
@item listorstring |
|
\JP $B%j%9%H$^$?$OJ8;zNs(B |
|
\EG list or string |
|
@end table |
|
|
|
@itemize @bullet |
|
@item |
|
\JP @code{newvect} $B$HF1MM$K$7$F(B byte array $B$r@8@.$9$k(B. |
|
\EG This function generates a byte array. The specification is |
|
similar to that of @code{newvect}. |
|
@item |
|
\JP $BJ8;zNs$G=i4|CM$r;XDj$9$k$3$H$b2DG=$G$"$k(B. |
|
\EG The initial value can be specified by a character string. |
|
@item |
|
\JP byte array $B$NMWAG$N%"%/%;%9$OG[Ns$HF1MM$G$"$k(B. |
|
\EG One can access elements of a byte array just as an array. |
|
@end itemize |
|
|
|
@example |
|
[182] A=newbytearray(3); |
|
|00 00 00| |
|
[183] A=newbytearray(3,[1,2,3]); |
|
|01 02 03| |
|
[184] A=newbytearray(3,"abc"); |
|
|61 62 63| |
|
[185] A[0]; |
|
97 |
|
[186] A[1]=123; |
|
123 |
|
[187] A; |
|
|61 7b 63| |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{newvect}. |
|
@end table |
|
|
\JP @node newmat,,, $BG[Ns(B |
\JP @node newmat,,, $BG[Ns(B |
\EG @node newmat,,, Arrays |
\EG @node newmat,,, Arrays |
@subsection @code{newmat} |
@subsection @code{newmat} |
@findex newmat |
@findex newmat |
|
|
@table @t |
@table @t |
@item newmat(@var{row},@var{col} [,@var{[[a,b,}...@var{],[c,d,}...@var{],}...@var{]}]) |
@item newmat(@var{row},@var{col} [,[[@var{a},@var{b},...],[@var{c},@var{d},...],...]]) |
\JP :: @var{row} $B9T(B @var{col} $BNs$N9TNs$r@8@.$9$k(B. |
\JP :: @var{row} $B9T(B @var{col} $BNs$N9TNs$r@8@.$9$k(B. |
\EG :: Creates a new matrix with @var{row} rows and @var{col} columns. |
\EG :: Creates a new matrix with @var{row} rows and @var{col} columns. |
@end table |
@end table |
Line 211 A conversion from a list to a vector is done by @code{ |
|
Line 268 A conversion from a list to a vector is done by @code{ |
|
@item return |
@item return |
\JP $B9TNs(B |
\JP $B9TNs(B |
\EG matrix |
\EG matrix |
@item row,col |
@item row col |
\JP $B<+A3?t(B |
\JP $B<+A3?t(B |
\EG non-negative integer |
\EG non-negative integer |
@item a,b,c,d |
@item a b c d |
\JP $BG$0U(B |
\JP $BG$0U(B |
\EG arbitrary |
\EG arbitrary |
@end table |
@end table |
Line 280 return to toplevel |
|
Line 337 return to toplevel |
|
@table @t |
@table @t |
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@fref{newvect}, @fref{size}, @fref{det}. |
@fref{newvect}, @fref{size}, @fref{det invmat}. |
@end table |
@end table |
|
|
\JP @node size,,, $BG[Ns(B |
\JP @node size,,, $BG[Ns(B |
Line 348 in a rational expression. |
|
Line 405 in a rational expression. |
|
@fref{car cdr cons append reverse length}, @fref{nmono}. |
@fref{car cdr cons append reverse length}, @fref{nmono}. |
@end table |
@end table |
|
|
\JP @node det,,, $BG[Ns(B |
\JP @node det invmat,,, $BG[Ns(B |
\EG @node det,,, Arrays |
\EG @node det invmat,,, Arrays |
@subsection @code{det} |
@subsection @code{det},@code{invmat} |
@findex det |
@findex det |
|
@findex invmat |
|
|
@table @t |
@table @t |
@item det(@var{mat}[,@var{mod}]) |
@item det(@var{mat}[,@var{mod}]) |
\JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B. |
\JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B. |
\EG :: Determinant of @var{mat}. |
\EG :: Determinant of @var{mat}. |
|
@item invmat(@var{mat}) |
|
\JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B. |
|
\EG :: Inverse matrix of @var{mat}. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
\JP $B<0(B |
\JP @code{det}: $B<0(B, @code{invmat}: $B%j%9%H(B |
\EG expression |
\EG @code{det}: expression, @code{invmat}: list |
@item mat |
@item mat |
\JP $B9TNs(B |
\JP $B9TNs(B |
\EG matrix |
\EG matrix |
Line 374 in a rational expression. |
|
Line 435 in a rational expression. |
|
@itemize @bullet |
@itemize @bullet |
\BJP |
\BJP |
@item |
@item |
$B9TNs(B @var{mat} $B$N9TNs<0$r5a$a$k(B. |
@code{det} $B$O9TNs(B @var{mat} $B$N9TNs<0$r5a$a$k(B. |
|
@code{invmat} $B$O9TNs(B @var{mat} $B$N5U9TNs$r5a$a$k(B. $B5U9TNs$O(B @code{[$BJ,Jl(B, $BJ,;R(B]} |
|
$B$N7A$GJV$5$l(B, @code{$BJ,Jl(B}$B$,9TNs(B, @code{$BJ,Jl(B/$BJ,;R(B} $B$,5U9TNs$H$J$k(B. |
@item |
@item |
$B0z?t(B @var{mod} $B$,$"$k;~(B, GF(@var{mod}) $B>e$G$N9TNs<0$r5a$a$k(B. |
$B0z?t(B @var{mod} $B$,$"$k;~(B, GF(@var{mod}) $B>e$G$N9TNs<0$r5a$a$k(B. |
@item |
@item |
Line 383 in a rational expression. |
|
Line 446 in a rational expression. |
|
\E |
\E |
\BEG |
\BEG |
@item |
@item |
Determinant of matrix @var{mat}. |
@code{det} computes the determinant of matrix @var{mat}. |
|
@code{invmat} computes the inverse matrix of matrix @var{mat}. |
|
@code{invmat} returns a list @code{[num,den]}, where @code{num} |
|
is a matrix and @code{num/den} represents the inverse matrix. |
@item |
@item |
The computation is done over GF(@var{mod}) if @var{mod} is specitied. |
The computation is done over GF(@var{mod}) if @var{mod} is specitied. |
@item |
@item |
Line 405 is more efficient than the fraction free Gaussian algo |
|
Line 471 is more efficient than the fraction free Gaussian algo |
|
[ 1 u u^2 u^3 u^4 ] |
[ 1 u u^2 u^3 u^4 ] |
[ 1 v v^2 v^3 v^4 ] |
[ 1 v v^2 v^3 v^4 ] |
[95] fctr(det(A)); |
[95] fctr(det(A)); |
[[1,1],[u-v,1],[-z+v,1],[-z+u,1],[-y+u,1],[y-v,1],[-y+z,1],[-x+u,1],[-x+z,1], |
[[1,1],[u-v,1],[-z+v,1],[-z+u,1],[-y+u,1],[y-v,1],[-y+z,1],[-x+u,1], |
[-x+v,1],[-x+y,1]] |
[-x+z,1],[-x+v,1],[-x+y,1]] |
|
[96] A = newmat(3,3)$ |
|
[97] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W^J; |
|
[98] A; |
|
[ 1 x x^2 ] |
|
[ 1 y y^2 ] |
|
[ 1 z z^2 ] |
|
[99] invmat(A); |
|
[[ -z*y^2+z^2*y z*x^2-z^2*x -y*x^2+y^2*x ] |
|
[ y^2-z^2 -x^2+z^2 x^2-y^2 ] |
|
[ -y+z x-z -x+y ],(-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y] |
|
[100] A*B[0]; |
|
[ (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y 0 0 ] |
|
[ 0 (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y 0 ] |
|
[ 0 0 (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y ] |
|
[101] map(red,A*B[0]/B[1]); |
|
[ 1 0 0 ] |
|
[ 0 1 0 ] |
|
[ 0 0 1 ] |
@end example |
@end example |
|
|
@table @t |
@table @t |