[BACK]Return to array.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts / builtin

Diff for /OpenXM/src/asir-doc/parts/builtin/array.texi between version 1.7 and 1.10

version 1.7, 2003/04/20 08:01:28 version 1.10, 2005/02/10 04:59:21
Line 1 
Line 1 
 @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.6 2003/04/19 15:44:58 noro Exp $  @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.9 2003/12/18 10:26:20 ohara Exp $
 \BJP  \BJP
 @node $BG[Ns(B,,, $BAH$_9~$_H!?t(B  @node $BG[Ns(B,,, $BAH$_9~$_H!?t(B
 @section $BG[Ns(B  @section $BG[Ns(B
Line 10 
Line 10 
   
 @menu  @menu
 * newvect::  * newvect::
 * newbytearray::  * ltov::
 * vtol::  * vtol::
   * newbytearray::
 * newmat::  * newmat::
 * size::  * size::
 * det invmat::  * det nd_det invmat::
   
 * qsort::  * qsort::
 @end menu  @end menu
   
Line 144  separated simply by a `blank space', while those of a 
Line 146  separated simply by a `blank space', while those of a 
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item References  \EG @item References
 @fref{newmat}, @fref{size}, @fref{vtol}.  @fref{newmat}, @fref{size}, @fref{ltov}, @fref{vtol}.
 @end table  @end table
   
   \JP @node ltov,,, $BG[Ns(B
   \EG @node ltov,,, Arrays
   @subsection @code{ltov}
   @findex ltov
   
   @table @t
   @item ltov(@var{list})
   \JP :: $B%j%9%H$r%Y%/%H%k$KJQ49$9$k(B.
   \EG :: Converts a list into a vector.
   @end table
   
   @table @var
   @item return
   \JP $B%Y%/%H%k(B
   \EG vector
   @item list
   \JP $B%j%9%H(B
   \EG list
   @end table
   
   @itemize @bullet
   \BJP
   @item
   $B%j%9%H(B @var{list} $B$rF1$8D9$5$N%Y%/%H%k$KJQ49$9$k(B.
   @item
   $B$3$N4X?t$O(B @code{newvect(length(@var{list}), @var{list})} $B$KEy$7$$(B.
   \E
   \BEG
   @item
   Converts a list @var{list} into a vector of same length.
   See also @code{newvect()}.
   \E
   @end itemize
   
   @example
   [3] A=[1,2,3];
   [4] ltov(A);
   [ 1 2 3 ]
   @end example
   
   @table @t
   \JP @item $B;2>H(B
   \EG @item References
   @fref{newvect}, @fref{vtol}.
   @end table
   
 \JP @node vtol,,, $BG[Ns(B  \JP @node vtol,,, $BG[Ns(B
 \EG @node vtol,,, Arrays  \EG @node vtol,,, Arrays
 @subsection @code{vtol}  @subsection @code{vtol}
Line 194  A conversion from a list to a vector is done by @code{
Line 242  A conversion from a list to a vector is done by @code{
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item References  \EG @item References
 @fref{newvect}.  @fref{newvect}, @fref{ltov}.
 @end table  @end table
   
 \JP @node newbytearray,,, $BG[Ns(B  \JP @node newbytearray,,, $BG[Ns(B
Line 337  return to toplevel
Line 385  return to toplevel
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item References  \EG @item References
 @fref{newvect}, @fref{size}, @fref{det invmat}.  @fref{newvect}, @fref{size}, @fref{det nd_det invmat}.
 @end table  @end table
   
 \JP @node size,,, $BG[Ns(B  \JP @node size,,, $BG[Ns(B
Line 371  or a list containing row size and column size of the g
Line 419  or a list containing row size and column size of the g
 @itemize @bullet  @itemize @bullet
 \BJP  \BJP
 @item  @item
 @var{vect} $BKt$O(B, @var{mat} $B$N%5%$%:$r%j%9%H$G=PNO$9$k(B.  @var{vect} $B$ND9$5(B, $B$^$?$O(B @var{mat} $B$NBg$-$5$r%j%9%H$G=PNO$9$k(B.
 @item  @item
 @var{list} $B$N%5%$%:$O(B @code{length()}$B$r(B, $BM-M}<0$K8=$l$kC19`<0$N?t$O(B @code{nmono()} $B$rMQ$$$k(B.  @var{vect} $B$ND9$5$O(B @code{length()} $B$G5a$a$k$3$H$b$G$-$k(B.
   @item
   @var{list} $B$ND9$5$O(B @code{length()}$B$r(B, $BM-M}<0$K8=$l$kC19`<0$N?t$O(B @code{nmono()} $B$rMQ$$$k(B.
 \E  \E
 \BEG  \BEG
 @item  @item
Line 392  in a rational expression.
Line 442  in a rational expression.
 [ 0 0 0 0 ]  [ 0 0 0 0 ]
 [1] size(A);  [1] size(A);
 [4]  [4]
 [2] B = newmat(2,3,[[1,2,3],[4,5,6]]);  [2] length(A);
   4
   [3] B = newmat(2,3,[[1,2,3],[4,5,6]]);
 [ 1 2 3 ]  [ 1 2 3 ]
 [ 4 5 6 ]  [ 4 5 6 ]
 [3] size(B);  [4] size(B);
 [2,3]  [2,3]
 @end example  @end example
   
Line 405  in a rational expression.
Line 457  in a rational expression.
 @fref{car cdr cons append reverse length}, @fref{nmono}.  @fref{car cdr cons append reverse length}, @fref{nmono}.
 @end table  @end table
   
 \JP @node det invmat,,, $BG[Ns(B  \JP @node det nd_det invmat,,, $BG[Ns(B
 \EG @node det invmat,,, Arrays  \EG @node det nd_det invmat,,, Arrays
 @subsection @code{det},@code{invmat}  @subsection @code{det},@code{invmat}
 @findex det  @findex det
 @findex invmat  @findex invmat
   
 @table @t  @table @t
 @item det(@var{mat}[,@var{mod}])  @item det(@var{mat}[,@var{mod}])
   @itemx nd_det(@var{mat}[,@var{mod}])
 \JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B.  \JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B.
 \EG :: Determinant of @var{mat}.  \EG :: Determinant of @var{mat}.
 @item invmat(@var{mat})  @item invmat(@var{mat})
 \JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B.  \JP :: @var{mat} $B$N5U9TNs$r5a$a$k(B.
 \EG :: Inverse matrix of @var{mat}.  \EG :: Inverse matrix of @var{mat}.
 @end table  @end table
   
Line 435  in a rational expression.
Line 488  in a rational expression.
 @itemize @bullet  @itemize @bullet
 \BJP  \BJP
 @item  @item
 @code{det} $B$O9TNs(B @var{mat} $B$N9TNs<0$r5a$a$k(B.  @code{det} $B$*$h$S(B @code{nd_det} $B$O9TNs(B @var{mat} $B$N9TNs<0$r5a$a$k(B.
 @code{invmat} $B$O9TNs(B @var{mat} $B$N5U9TNs$r5a$a$k(B. $B5U9TNs$O(B @code{[$BJ,Jl(B, $BJ,;R(B]}  @code{invmat} $B$O9TNs(B @var{mat} $B$N5U9TNs$r5a$a$k(B. $B5U9TNs$O(B @code{[$BJ,Jl(B, $BJ,;R(B]}
 $B$N7A$GJV$5$l(B, @code{$BJ,Jl(B}$B$,9TNs(B, @code{$BJ,Jl(B/$BJ,;R(B} $B$,5U9TNs$H$J$k(B.  $B$N7A$GJV$5$l(B, @code{$BJ,Jl(B}$B$,9TNs(B, @code{$BJ,Jl(B/$BJ,;R(B} $B$,5U9TNs$H$J$k(B.
 @item  @item
Line 443  in a rational expression.
Line 496  in a rational expression.
 @item  @item
 $BJ,?t$J$7$N%,%&%9>C5nK!$K$h$C$F$$$k$?$a(B, $BB?JQ?tB?9`<0$r@.J,$H$9$k(B  $BJ,?t$J$7$N%,%&%9>C5nK!$K$h$C$F$$$k$?$a(B, $BB?JQ?tB?9`<0$r@.J,$H$9$k(B
 $B9TNs$KBP$7$F$O>.9TNs<0E83+$K$h$kJ}K!$N$[$&$,8zN($,$h$$>l9g$b$"$k(B.  $B9TNs$KBP$7$F$O>.9TNs<0E83+$K$h$kJ}K!$N$[$&$,8zN($,$h$$>l9g$b$"$k(B.
   @item
   @code{nd_det} $B$OM-M}?t$^$?$OM-8BBN>e$NB?9`<09TNs$N9TNs<0(B
   $B7W;;@lMQ$G$"$k(B. $B%"%k%4%j%:%`$O$d$O$jJ,?t$J$7$N%,%&%9>C5nK!$@$,(B,
   $B%G!<%?9=B$$*$h$S>h=|;;$N9)IW$K$h$j(B, $B0lHL$K(B @code{det} $B$h$j9bB.$K(B
   $B7W;;$G$-$k(B.
 \E  \E
 \BEG  \BEG
 @item  @item
 @code{det} computes the determinant of matrix @var{mat}.  @code{det} and @code{nd_det} compute the determinant of matrix @var{mat}.
 @code{invmat} computes the inverse matrix of matrix @var{mat}.  @code{invmat} computes the inverse matrix of matrix @var{mat}.
 @code{invmat} returns a list @code{[num,den]}, where @code{num}  @code{invmat} returns a list @code{[num,den]}, where @code{num}
 is a matrix and @code{num/den} represents the inverse matrix.  is a matrix and @code{num/den} represents the inverse matrix.
Line 456  The computation is done over GF(@var{mod}) if @var{mod
Line 514  The computation is done over GF(@var{mod}) if @var{mod
 The fraction free Gaussian algorithm is employed.  For matrices with  The fraction free Gaussian algorithm is employed.  For matrices with
 multi-variate polynomial entries, minor expansion algorithm sometimes  multi-variate polynomial entries, minor expansion algorithm sometimes
 is more efficient than the fraction free Gaussian algorithm.  is more efficient than the fraction free Gaussian algorithm.
   @item
   @code{nd_det} can be used for computing the determinant of a matrix with
   polynomial entries over the rationals or finite fields. The algorithm
   is an improved vesion of the fraction free Gaussian algorithm
   and it computes the determinant faster than @code{det}.
 \E  \E
 @end itemize  @end itemize
   

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.10

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>