[BACK]Return to array.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts / builtin

Diff for /OpenXM/src/asir-doc/parts/builtin/array.texi between version 1.6 and 1.9

version 1.6, 2003/04/19 15:44:58 version 1.9, 2003/12/18 10:26:20
Line 1 
Line 1 
 @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.5 2002/08/08 05:24:37 noro Exp $  @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.8 2003/10/19 07:21:57 takayama Exp $
 \BJP  \BJP
 @node $BG[Ns(B,,, $BAH$_9~$_H!?t(B  @node $BG[Ns(B,,, $BAH$_9~$_H!?t(B
 @section $BG[Ns(B  @section $BG[Ns(B
Line 10 
Line 10 
   
 @menu  @menu
 * newvect::  * newvect::
 * newbytearray::  * ltov::
 * vtol::  * vtol::
   * newbytearray::
 * newmat::  * newmat::
 * size::  * size::
 * det invmat::  * det invmat::
Line 144  separated simply by a `blank space', while those of a 
Line 145  separated simply by a `blank space', while those of a 
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item References  \EG @item References
 @fref{newmat}, @fref{size}, @fref{vtol}.  @fref{newmat}, @fref{size}, @fref{ltov}, @fref{vtol}.
 @end table  @end table
   
   \JP @node ltov,,, $BG[Ns(B
   \EG @node ltov,,, Arrays
   @subsection @code{ltov}
   @findex ltov
   
   @table @t
   @item ltov(@var{list})
   \JP :: $B%j%9%H$r%Y%/%H%k$KJQ49$9$k(B.
   \EG :: Converts a list into a vector.
   @end table
   
   @table @var
   @item return
   \JP $B%Y%/%H%k(B
   \EG vector
   @item list
   \JP $B%j%9%H(B
   \EG list
   @end table
   
   @itemize @bullet
   \BJP
   @item
   $B%j%9%H(B @var{list} $B$rF1$8D9$5$N%Y%/%H%k$KJQ49$9$k(B.
   @item
   $B$3$N4X?t$O(B @code{newvect(length(@var{list}), @var{list})} $B$KEy$7$$(B.
   \E
   \BEG
   @item
   Converts a list @var{list} into a vector of same length.
   See also @code{newvect()}.
   \E
   @end itemize
   
   @example
   [3] A=[1,2,3];
   [4] ltov(A);
   [ 1 2 3 ]
   @end example
   
   @table @t
   \JP @item $B;2>H(B
   \EG @item References
   @fref{newvect}, @fref{vtol}.
   @end table
   
 \JP @node vtol,,, $BG[Ns(B  \JP @node vtol,,, $BG[Ns(B
 \EG @node vtol,,, Arrays  \EG @node vtol,,, Arrays
 @subsection @code{vtol}  @subsection @code{vtol}
Line 194  A conversion from a list to a vector is done by @code{
Line 241  A conversion from a list to a vector is done by @code{
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item References  \EG @item References
 @fref{newvect}.  @fref{newvect}, @fref{ltov}.
 @end table  @end table
   
 \JP @node newbytearray,,, $BG[Ns(B  \JP @node newbytearray,,, $BG[Ns(B
Line 371  or a list containing row size and column size of the g
Line 418  or a list containing row size and column size of the g
 @itemize @bullet  @itemize @bullet
 \BJP  \BJP
 @item  @item
 @var{vect} $BKt$O(B, @var{mat} $B$N%5%$%:$r%j%9%H$G=PNO$9$k(B.  @var{vect} $B$ND9$5(B, $B$^$?$O(B @var{mat} $B$NBg$-$5$r%j%9%H$G=PNO$9$k(B.
 @item  @item
 @var{list} $B$N%5%$%:$O(B @code{length()}$B$r(B, $BM-M}<0$K8=$l$kC19`<0$N?t$O(B @code{nmono()} $B$rMQ$$$k(B.  @var{vect} $B$ND9$5$O(B @code{length()} $B$G5a$a$k$3$H$b$G$-$k(B.
   @item
   @var{list} $B$ND9$5$O(B @code{length()}$B$r(B, $BM-M}<0$K8=$l$kC19`<0$N?t$O(B @code{nmono()} $B$rMQ$$$k(B.
 \E  \E
 \BEG  \BEG
 @item  @item
Line 392  in a rational expression.
Line 441  in a rational expression.
 [ 0 0 0 0 ]  [ 0 0 0 0 ]
 [1] size(A);  [1] size(A);
 [4]  [4]
 [2] B = newmat(2,3,[[1,2,3],[4,5,6]]);  [2] length(A);
   4
   [3] B = newmat(2,3,[[1,2,3],[4,5,6]]);
 [ 1 2 3 ]  [ 1 2 3 ]
 [ 4 5 6 ]  [ 4 5 6 ]
 [3] size(B);  [4] size(B);
 [2,3]  [2,3]
 @end example  @end example
   
Line 416  in a rational expression.
Line 467  in a rational expression.
 \JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B.  \JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B.
 \EG :: Determinant of @var{mat}.  \EG :: Determinant of @var{mat}.
 @item invmat(@var{mat})  @item invmat(@var{mat})
 \JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B.  \JP :: @var{mat} $B$N5U9TNs$r5a$a$k(B.
 \EG :: Inverse matrix of @var{mat}.  \EG :: Inverse matrix of @var{mat}.
 @end table  @end table
   
Line 471  is more efficient than the fraction free Gaussian algo
Line 522  is more efficient than the fraction free Gaussian algo
 [ 1 u u^2 u^3 u^4 ]  [ 1 u u^2 u^3 u^4 ]
 [ 1 v v^2 v^3 v^4 ]  [ 1 v v^2 v^3 v^4 ]
 [95] fctr(det(A));  [95] fctr(det(A));
 [[1,1],[u-v,1],[-z+v,1],[-z+u,1],[-y+u,1],[y-v,1],[-y+z,1],[-x+u,1],[-x+z,1],  [[1,1],[u-v,1],[-z+v,1],[-z+u,1],[-y+u,1],[y-v,1],[-y+z,1],[-x+u,1],
 [-x+v,1],[-x+y,1]]  [-x+z,1],[-x+v,1],[-x+y,1]]
 [96] A = newmat(3,3)$  [96] A = newmat(3,3)$
 [97] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W^J;  [97] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W^J;
 [98] A;  [98] A;

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.9

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>