version 1.5, 2002/08/08 05:24:37 |
version 1.7, 2003/04/20 08:01:28 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.4 2000/11/13 00:16:36 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.6 2003/04/19 15:44:58 noro Exp $ |
\BJP |
\BJP |
@node $BG[Ns(B,,, $BAH$_9~$_H!?t(B |
@node $BG[Ns(B,,, $BAH$_9~$_H!?t(B |
@section $BG[Ns(B |
@section $BG[Ns(B |
Line 259 similar to that of @code{newvect}. |
|
Line 259 similar to that of @code{newvect}. |
|
@findex newmat |
@findex newmat |
|
|
@table @t |
@table @t |
@item newmat(@var{row},@var{col} [,@var{[[a,b,}...@var{],[c,d,}...@var{],}...@var{]}]) |
@item newmat(@var{row},@var{col} [,[[@var{a},@var{b},...],[@var{c},@var{d},...],...]]) |
\JP :: @var{row} $B9T(B @var{col} $BNs$N9TNs$r@8@.$9$k(B. |
\JP :: @var{row} $B9T(B @var{col} $BNs$N9TNs$r@8@.$9$k(B. |
\EG :: Creates a new matrix with @var{row} rows and @var{col} columns. |
\EG :: Creates a new matrix with @var{row} rows and @var{col} columns. |
@end table |
@end table |
Line 268 similar to that of @code{newvect}. |
|
Line 268 similar to that of @code{newvect}. |
|
@item return |
@item return |
\JP $B9TNs(B |
\JP $B9TNs(B |
\EG matrix |
\EG matrix |
@item row,col |
@item row col |
\JP $B<+A3?t(B |
\JP $B<+A3?t(B |
\EG non-negative integer |
\EG non-negative integer |
@item a,b,c,d |
@item a b c d |
\JP $BG$0U(B |
\JP $BG$0U(B |
\EG arbitrary |
\EG arbitrary |
@end table |
@end table |
Line 471 is more efficient than the fraction free Gaussian algo |
|
Line 471 is more efficient than the fraction free Gaussian algo |
|
[ 1 u u^2 u^3 u^4 ] |
[ 1 u u^2 u^3 u^4 ] |
[ 1 v v^2 v^3 v^4 ] |
[ 1 v v^2 v^3 v^4 ] |
[95] fctr(det(A)); |
[95] fctr(det(A)); |
[[1,1],[u-v,1],[-z+v,1],[-z+u,1],[-y+u,1],[y-v,1],[-y+z,1],[-x+u,1],[-x+z,1], |
[[1,1],[u-v,1],[-z+v,1],[-z+u,1],[-y+u,1],[y-v,1],[-y+z,1],[-x+u,1], |
[-x+v,1],[-x+y,1]] |
[-x+z,1],[-x+v,1],[-x+y,1]] |
[96] A = newmat(3,3)$ |
[96] A = newmat(3,3)$ |
[97] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W^J; |
[97] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W^J; |
[98] A; |
[98] A; |