version 1.7, 2003/04/20 08:01:28 |
version 1.10, 2005/02/10 04:59:21 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.6 2003/04/19 15:44:58 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.9 2003/12/18 10:26:20 ohara Exp $ |
\BJP |
\BJP |
@node $BG[Ns(B,,, $BAH$_9~$_H!?t(B |
@node $BG[Ns(B,,, $BAH$_9~$_H!?t(B |
@section $BG[Ns(B |
@section $BG[Ns(B |
|
|
|
|
@menu |
@menu |
* newvect:: |
* newvect:: |
* newbytearray:: |
* ltov:: |
* vtol:: |
* vtol:: |
|
* newbytearray:: |
* newmat:: |
* newmat:: |
* size:: |
* size:: |
* det invmat:: |
* det nd_det invmat:: |
|
|
* qsort:: |
* qsort:: |
@end menu |
@end menu |
|
|
Line 144 separated simply by a `blank space', while those of a |
|
Line 146 separated simply by a `blank space', while those of a |
|
@table @t |
@table @t |
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@fref{newmat}, @fref{size}, @fref{vtol}. |
@fref{newmat}, @fref{size}, @fref{ltov}, @fref{vtol}. |
@end table |
@end table |
|
|
|
\JP @node ltov,,, $BG[Ns(B |
|
\EG @node ltov,,, Arrays |
|
@subsection @code{ltov} |
|
@findex ltov |
|
|
|
@table @t |
|
@item ltov(@var{list}) |
|
\JP :: $B%j%9%H$r%Y%/%H%k$KJQ49$9$k(B. |
|
\EG :: Converts a list into a vector. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $B%Y%/%H%k(B |
|
\EG vector |
|
@item list |
|
\JP $B%j%9%H(B |
|
\EG list |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
$B%j%9%H(B @var{list} $B$rF1$8D9$5$N%Y%/%H%k$KJQ49$9$k(B. |
|
@item |
|
$B$3$N4X?t$O(B @code{newvect(length(@var{list}), @var{list})} $B$KEy$7$$(B. |
|
\E |
|
\BEG |
|
@item |
|
Converts a list @var{list} into a vector of same length. |
|
See also @code{newvect()}. |
|
\E |
|
@end itemize |
|
|
|
@example |
|
[3] A=[1,2,3]; |
|
[4] ltov(A); |
|
[ 1 2 3 ] |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{newvect}, @fref{vtol}. |
|
@end table |
|
|
\JP @node vtol,,, $BG[Ns(B |
\JP @node vtol,,, $BG[Ns(B |
\EG @node vtol,,, Arrays |
\EG @node vtol,,, Arrays |
@subsection @code{vtol} |
@subsection @code{vtol} |
Line 194 A conversion from a list to a vector is done by @code{ |
|
Line 242 A conversion from a list to a vector is done by @code{ |
|
@table @t |
@table @t |
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@fref{newvect}. |
@fref{newvect}, @fref{ltov}. |
@end table |
@end table |
|
|
\JP @node newbytearray,,, $BG[Ns(B |
\JP @node newbytearray,,, $BG[Ns(B |
Line 337 return to toplevel |
|
Line 385 return to toplevel |
|
@table @t |
@table @t |
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@fref{newvect}, @fref{size}, @fref{det invmat}. |
@fref{newvect}, @fref{size}, @fref{det nd_det invmat}. |
@end table |
@end table |
|
|
\JP @node size,,, $BG[Ns(B |
\JP @node size,,, $BG[Ns(B |
Line 371 or a list containing row size and column size of the g |
|
Line 419 or a list containing row size and column size of the g |
|
@itemize @bullet |
@itemize @bullet |
\BJP |
\BJP |
@item |
@item |
@var{vect} $BKt$O(B, @var{mat} $B$N%5%$%:$r%j%9%H$G=PNO$9$k(B. |
@var{vect} $B$ND9$5(B, $B$^$?$O(B @var{mat} $B$NBg$-$5$r%j%9%H$G=PNO$9$k(B. |
@item |
@item |
@var{list} $B$N%5%$%:$O(B @code{length()}$B$r(B, $BM-M}<0$K8=$l$kC19`<0$N?t$O(B @code{nmono()} $B$rMQ$$$k(B. |
@var{vect} $B$ND9$5$O(B @code{length()} $B$G5a$a$k$3$H$b$G$-$k(B. |
|
@item |
|
@var{list} $B$ND9$5$O(B @code{length()}$B$r(B, $BM-M}<0$K8=$l$kC19`<0$N?t$O(B @code{nmono()} $B$rMQ$$$k(B. |
\E |
\E |
\BEG |
\BEG |
@item |
@item |
Line 392 in a rational expression. |
|
Line 442 in a rational expression. |
|
[ 0 0 0 0 ] |
[ 0 0 0 0 ] |
[1] size(A); |
[1] size(A); |
[4] |
[4] |
[2] B = newmat(2,3,[[1,2,3],[4,5,6]]); |
[2] length(A); |
|
4 |
|
[3] B = newmat(2,3,[[1,2,3],[4,5,6]]); |
[ 1 2 3 ] |
[ 1 2 3 ] |
[ 4 5 6 ] |
[ 4 5 6 ] |
[3] size(B); |
[4] size(B); |
[2,3] |
[2,3] |
@end example |
@end example |
|
|
Line 405 in a rational expression. |
|
Line 457 in a rational expression. |
|
@fref{car cdr cons append reverse length}, @fref{nmono}. |
@fref{car cdr cons append reverse length}, @fref{nmono}. |
@end table |
@end table |
|
|
\JP @node det invmat,,, $BG[Ns(B |
\JP @node det nd_det invmat,,, $BG[Ns(B |
\EG @node det invmat,,, Arrays |
\EG @node det nd_det invmat,,, Arrays |
@subsection @code{det},@code{invmat} |
@subsection @code{det},@code{invmat} |
@findex det |
@findex det |
@findex invmat |
@findex invmat |
|
|
@table @t |
@table @t |
@item det(@var{mat}[,@var{mod}]) |
@item det(@var{mat}[,@var{mod}]) |
|
@itemx nd_det(@var{mat}[,@var{mod}]) |
\JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B. |
\JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B. |
\EG :: Determinant of @var{mat}. |
\EG :: Determinant of @var{mat}. |
@item invmat(@var{mat}) |
@item invmat(@var{mat}) |
\JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B. |
\JP :: @var{mat} $B$N5U9TNs$r5a$a$k(B. |
\EG :: Inverse matrix of @var{mat}. |
\EG :: Inverse matrix of @var{mat}. |
@end table |
@end table |
|
|
Line 435 in a rational expression. |
|
Line 488 in a rational expression. |
|
@itemize @bullet |
@itemize @bullet |
\BJP |
\BJP |
@item |
@item |
@code{det} $B$O9TNs(B @var{mat} $B$N9TNs<0$r5a$a$k(B. |
@code{det} $B$*$h$S(B @code{nd_det} $B$O9TNs(B @var{mat} $B$N9TNs<0$r5a$a$k(B. |
@code{invmat} $B$O9TNs(B @var{mat} $B$N5U9TNs$r5a$a$k(B. $B5U9TNs$O(B @code{[$BJ,Jl(B, $BJ,;R(B]} |
@code{invmat} $B$O9TNs(B @var{mat} $B$N5U9TNs$r5a$a$k(B. $B5U9TNs$O(B @code{[$BJ,Jl(B, $BJ,;R(B]} |
$B$N7A$GJV$5$l(B, @code{$BJ,Jl(B}$B$,9TNs(B, @code{$BJ,Jl(B/$BJ,;R(B} $B$,5U9TNs$H$J$k(B. |
$B$N7A$GJV$5$l(B, @code{$BJ,Jl(B}$B$,9TNs(B, @code{$BJ,Jl(B/$BJ,;R(B} $B$,5U9TNs$H$J$k(B. |
@item |
@item |
Line 443 in a rational expression. |
|
Line 496 in a rational expression. |
|
@item |
@item |
$BJ,?t$J$7$N%,%&%9>C5nK!$K$h$C$F$$$k$?$a(B, $BB?JQ?tB?9`<0$r@.J,$H$9$k(B |
$BJ,?t$J$7$N%,%&%9>C5nK!$K$h$C$F$$$k$?$a(B, $BB?JQ?tB?9`<0$r@.J,$H$9$k(B |
$B9TNs$KBP$7$F$O>.9TNs<0E83+$K$h$kJ}K!$N$[$&$,8zN($,$h$$>l9g$b$"$k(B. |
$B9TNs$KBP$7$F$O>.9TNs<0E83+$K$h$kJ}K!$N$[$&$,8zN($,$h$$>l9g$b$"$k(B. |
|
@item |
|
@code{nd_det} $B$OM-M}?t$^$?$OM-8BBN>e$NB?9`<09TNs$N9TNs<0(B |
|
$B7W;;@lMQ$G$"$k(B. $B%"%k%4%j%:%`$O$d$O$jJ,?t$J$7$N%,%&%9>C5nK!$@$,(B, |
|
$B%G!<%?9=B$$*$h$S>h=|;;$N9)IW$K$h$j(B, $B0lHL$K(B @code{det} $B$h$j9bB.$K(B |
|
$B7W;;$G$-$k(B. |
\E |
\E |
\BEG |
\BEG |
@item |
@item |
@code{det} computes the determinant of matrix @var{mat}. |
@code{det} and @code{nd_det} compute the determinant of matrix @var{mat}. |
@code{invmat} computes the inverse matrix of matrix @var{mat}. |
@code{invmat} computes the inverse matrix of matrix @var{mat}. |
@code{invmat} returns a list @code{[num,den]}, where @code{num} |
@code{invmat} returns a list @code{[num,den]}, where @code{num} |
is a matrix and @code{num/den} represents the inverse matrix. |
is a matrix and @code{num/den} represents the inverse matrix. |
Line 456 The computation is done over GF(@var{mod}) if @var{mod |
|
Line 514 The computation is done over GF(@var{mod}) if @var{mod |
|
The fraction free Gaussian algorithm is employed. For matrices with |
The fraction free Gaussian algorithm is employed. For matrices with |
multi-variate polynomial entries, minor expansion algorithm sometimes |
multi-variate polynomial entries, minor expansion algorithm sometimes |
is more efficient than the fraction free Gaussian algorithm. |
is more efficient than the fraction free Gaussian algorithm. |
|
@item |
|
@code{nd_det} can be used for computing the determinant of a matrix with |
|
polynomial entries over the rationals or finite fields. The algorithm |
|
is an improved vesion of the fraction free Gaussian algorithm |
|
and it computes the determinant faster than @code{det}. |
\E |
\E |
@end itemize |
@end itemize |
|
|