| version 1.3, 1999/12/21 02:47:30 |
version 1.4, 1999/12/24 04:38:04 |
|
|
| @comment $OpenXM$ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/appendix.texi,v 1.3 1999/12/21 02:47:30 noro Exp $ |
| \BJP |
\BJP |
| @node $BIUO?(B,,, Top |
@node $BIUO?(B,,, Top |
| @appendix $BIUO?(B |
@appendix $BIUO?(B |
| Line 512 result and then summing them up all. |
|
| Line 512 result and then summing them up all. |
|
| @item primdec |
@item primdec |
| \BJP |
\BJP |
| $BB?9`<0%$%G%"%k$N=`AG%$%G%"%kJ,2r$H$=$N:,4p$NAG%$%G%"%kJ,2r(B |
$BB?9`<0%$%G%"%k$N=`AG%$%G%"%kJ,2r$H$=$N:,4p$NAG%$%G%"%kJ,2r(B |
| (@code{[Shimoyama,Yokoyama]} $B;2>H(B). |
(@pxref{primadec primedec}). |
| $B=`AG%$%G%"%kJ,2r$O(B @code{primadec()}, $BAG%$%G%"%kJ,2r$O(B, @code{primedec()} |
|
| $B$H$$$&4X?t$G(B, $BMQ0U$5$l$F$$$k(B. $B0z?t$O(B, $BB?9`<0%j%9%H$HJQ?t$G$"$k(B. |
|
| $BM-M}<078?t$NB?9`<0%$%G%"%k$d(B, 0$B<!85$G$J$$%$%G%"%k$b07$($k(B. |
|
| @code{primadec} $B$O(B, $B=`AG@.J,$H$=$NAG@.J,$N%Z%"%j%9%H$N%j%9%H$rJV$9(B. |
|
| @code{primedec} $B$O(B, $BAG@.J,$N%j%9%H$rJV$9(B. |
|
| $B$=$N7k2L$O$$$:$l$b%0%l%V%J4pDl$K$J$C$F$$$k$,(B, $B$=$N(B |
|
| $BJQ?t=g=x$O(B, $B$=$l$>$lBg0hJQ?t(B @code{PRIMAORD}, @code{PRIMEORD} |
|
| $B$NCM(B 0,1 $B$"$k$$$O(B 2 $B$K$h$C$F7h$^$k(B. |
|
| \E |
\E |
| \BEG |
\BEG |
| Primary ideal decomposition of polynomial ideals and prime compotision |
Primary ideal decomposition of polynomial ideals and prime compotision |
| of radicals |
of radicals (@pxref{primadec primedec}). |
| (Refer to @code{[Shimoyama,Yokoyama]}). |
|
| @code{primadec()}, @code{primedec()} are the function for primary |
|
| ideal decomposition and prime decomposition of the radical respectively. |
|
| The arguments are a list of polynomials and a list of variables. |
|
| These functions accept ideals with rational function coefficients |
|
| and non zero-dimenstional ideals. |
|
| @code{primadec} returns the list of pair lists consisting a primary component |
|
| and its associated prime. |
|
| @code{primedec} returns the list of prime components. |
|
| Each component is a Groebner basis and the corresponding term order |
|
| is indicated by the global variables @code{PRIMAORD}, @code{PRIMEORD} |
|
| respectively. |
|
| \E |
\E |
| @example |
|
| [84] load("primdec")$ |
|
| [102] primedec([p*q*x-q^2*y^2+q^2*y,-p^2*x^2+p^2*x+p*q*y, |
|
| (q^3*y^4-2*q^3*y^3+q^3*y^2)*x-q^3*y^4+q^3*y^3, |
|
| -q^3*y^4+2*q^3*y^3+(-q^3+p*q^2)*y^2],[p,q,x,y]); |
|
| [[y,x],[y,p],[x,q],[q,p],[x-1,q],[y-1,p],[(y-1)*x-y,q*y^2-2*q*y-p+q]] |
|
| [103] primadec([x,z*y,w*y^2,w^2*y-z^3,y^3],[x,y,z,w]); |
|
| [[[x,z*y,y^2,w^2*y-z^3],[z,y,x]],[[w,x,z*y,z^3,y^3],[w,z,y,x]]] |
|
| @end example |
|
| @end table |
@end table |
| |
|
| \BJP |
\BJP |