| version 1.4, 2000/03/17 02:17:03 |
version 1.6, 2003/04/19 15:44:55 |
|
|
| @comment $OpenXM: OpenXM/src/asir-doc/parts/algnum.texi,v 1.3 2000/03/10 07:18:40 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/algnum.texi,v 1.5 2000/09/23 07:53:24 noro Exp $ |
| \BJP |
\BJP |
| @node $BBe?tE*?t$K4X$9$k1i;;(B,,, Top |
@node $BBe?tE*?t$K4X$9$k1i;;(B,,, Top |
| @chapter $BBe?tE*?t$K4X$9$k1i;;(B |
@chapter $BBe?tE*?t$K4X$9$k1i;;(B |
| Line 1083 substitutes a @b{root} for the associated indeterminat |
|
| Line 1083 substitutes a @b{root} for the associated indeterminat |
|
| @item return |
@item return |
| \JP $BB?9`<0(B |
\JP $BB?9`<0(B |
| \EG polynomial |
\EG polynomial |
| @item poly1, poly2 |
@item poly1 poly2 |
| \JP $BB?9`<0(B |
\JP $BB?9`<0(B |
| \EG polynomial |
\EG polynomial |
| @end table |
@end table |
|
|
| \E |
\E |
| @item |
@item |
| \BJP |
\BJP |
| @code{sp_noalg} $B$G$O(B, @var{poly} $B$K4^$^$l$kBe?tE*?t(B @var{ai} $B$rITDj85(B @var{vi} |
@code{af(F,AL)} $B$K$*$$$F(B, @code{AL} $B$OBe?tE*?t$N%j%9%H$G$"$j(B, $BM-M}?tBN$N(B |
| $B$GCV$-49$($k(B. @code{defpolylist} $B$O(B, @var{[[vn,dn(vn,...,v1)],...,[v1,d(v1)]]} |
$BBe?t3HBg$rI=$9(B. @code{AL=[An,...,A1]} $B$H=q$/$H$-(B, $B3F(B @code{Ak} $B$O(B, $B$=$l$h$j(B |
| $B$J$k%j%9%H$G$"$k(B. $B$3$3$G(B @var{di(vi,...,v1)} $B$O(B @var{ai} $B$NDj5AB?9`<0$K$*$$$F(B |
$B1&$K$"$kBe?tE*?t$r78?t$H$7$?(B, $B%b%K%C%/$JDj5AB?9`<0$GDj5A$5$l$F$$$J$1$l$P(B |
| |
$B$J$i$J$$(B. |
| |
\E |
| |
\BEG |
| |
In @code{af(F,AL)}, @code{AL} denotes a list of @code{roots} and it |
| |
represents an algebraic number field. In @code{AL=[An,...,A1]} each |
| |
@code{Ak} should be defined as a root of a defining polynomial |
| |
whose coefficients are in @code{Q(A(k+1),...,An)}. |
| |
\E |
| |
|
| |
@example |
| |
[1] A1 = newalg(x^2+1); |
| |
[2] A2 = newalg(x^2+A1); |
| |
[3] A3 = newalg(x^2+A2*x+A1); |
| |
[4] af(x^2+A2*x+A1,[A2,A1]); |
| |
[[x^2+(#1)*x+(#0),1]] |
| |
@end example |
| |
|
| |
\BJP |
| |
@code{af_noalg} $B$G$O(B, @var{poly} $B$K4^$^$l$kBe?tE*?t(B @var{ai} $B$rITDj85(B @var{vi} |
| |
$B$GCV$-49$($k(B. @code{defpolylist} $B$O(B, [[vn,dn(vn,...,v1)],...,[v1,d(v1)]] |
| |
$B$J$k%j%9%H$G$"$k(B. $B$3$3$G(B @var{di}(vi,...,v1) $B$O(B @var{ai} $B$NDj5AB?9`<0$K$*$$$F(B |
| $BBe?tE*?t$rA4$F(B @var{vj} $B$KCV$-49$($?$b$N$G$"$k(B. |
$BBe?tE*?t$rA4$F(B @var{vj} $B$KCV$-49$($?$b$N$G$"$k(B. |
| \E |
\E |
| \BEG |
\BEG |
| To call @code{sp_noalg}, one should replace each algebraic number |
To call @code{sp_noalg}, one should replace each algebraic number |
| @var{ai} in @var{poly} with an indeterminate @var{vi}. @code{defpolylist} |
@var{ai} in @var{poly} with an indeterminate @var{vi}. @code{defpolylist} |
| is a list @var{[[vn,dn(vn,...,v1)],...,[v1,d(v1)]]}. In this expression |
is a list [[vn,dn(vn,...,v1)],...,[v1,d(v1)]]. In this expression |
| @var{di(vi,...,v1)} is a defining polynomial of @var{ai} represented |
@var{di}(vi,...,v1) is a defining polynomial of @var{ai} represented |
| as a multivariate polynomial. |
as a multivariate polynomial. |
| \E |
\E |
| |
|
| |
@example |
| |
[1] af_noalg(x^2+a2*x+a1,[[a2,a2^2+a1],[a1,a1^2+1]]); |
| |
[[x^2+a2*x+a1,1]] |
| |
@end example |
| |
|
| @item |
@item |
| \BJP |
\BJP |
| $B7k2L$O(B, $BDL>o$NL5J?J}J,2r(B, $B0x?tJ,2r$HF1MM(B [@b{$B0x;R(B}, @b{$B=EJ#EY(B}] |
$B7k2L$O(B, $BDL>o$NL5J?J}J,2r(B, $B0x?tJ,2r$HF1MM(B [@b{$B0x;R(B}, @b{$B=EJ#EY(B}] |
| Line 1302 the input polynomial by a constant. |
|
| Line 1329 the input polynomial by a constant. |
|
| @end itemize |
@end itemize |
| |
|
| @example |
@example |
| |
[98] A = newalg(t^2-2); |
| |
(#0) |
| [99] asq(-x^4+6*x^3+(2*alg(0)-9)*x^2+(-6*alg(0))*x-2); |
[99] asq(-x^4+6*x^3+(2*alg(0)-9)*x^2+(-6*alg(0))*x-2); |
| [[-x^2+3*x+(#0),2]] |
[[-x^2+3*x+(#0),2]] |
| [100] af(-x^2+3*x+alg(0),[alg(0)]); |
[100] af(-x^2+3*x+alg(0),[alg(0)]); |
| [[x+(#0-1),1],[-x+(#0+2),1]] |
[[x+(#0-1),1],[-x+(#0+2),1]] |
| |
[101] af_noalg(-x^2+3*x+a,[[a,x^2-2]]); |
| |
[[x+a-1,1],[-x+a+2,1]] |
| @end example |
@end example |
| |
|
| @table @t |
@table @t |