version 1.1.1.1, 1999/12/08 05:47:44 |
version 1.5, 2000/09/23 07:53:24 |
|
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/algnum.texi,v 1.4 2000/03/17 02:17:03 noro Exp $ |
|
\BJP |
@node $BBe?tE*?t$K4X$9$k1i;;(B,,, Top |
@node $BBe?tE*?t$K4X$9$k1i;;(B,,, Top |
@chapter $BBe?tE*?t$K4X$9$k1i;;(B |
@chapter $BBe?tE*?t$K4X$9$k1i;;(B |
|
\E |
|
\BEG |
|
@node Algebraic numbers,,, Top |
|
@chapter Algebraic numbers |
|
\E |
|
|
@menu |
@menu |
|
\BJP |
* $BBe?tE*?t$NI=8=(B:: |
* $BBe?tE*?t$NI=8=(B:: |
* $BBe?tE*?t$N1i;;(B:: |
* $BBe?tE*?t$N1i;;(B:: |
* $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B:: |
* $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B:: |
* $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B:: |
* $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B:: |
|
\E |
|
\BEG |
|
* Representation of algebraic numbers:: |
|
* Operations over algebraic numbers:: |
|
* Operations for uni-variate polynomials over an algebraic number field:: |
|
* Summary of functions for algebraic numbers:: |
|
\E |
@end menu |
@end menu |
|
|
|
\BJP |
@node $BBe?tE*?t$NI=8=(B,,, $BBe?tE*?t$K4X$9$k1i;;(B |
@node $BBe?tE*?t$NI=8=(B,,, $BBe?tE*?t$K4X$9$k1i;;(B |
@section $BBe?tE*?t$NI=8=(B |
@section $BBe?tE*?t$NI=8=(B |
|
\E |
|
\BEG |
|
@node Representation of algebraic numbers,,, Algebraic numbers |
|
@section Representation of algebraic numbers |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
@b{Asir} $B$K$*$$$F$O(B, $BBe?tBN$H$$$&BP>]$ODj5A$5$l$J$$(B. |
@b{Asir} $B$K$*$$$F$O(B, $BBe?tBN$H$$$&BP>]$ODj5A$5$l$J$$(B. |
$BFHN)$7$?BP>]$H$7$FDj5A$5$l$k$N$O(B, $BBe?tE*?t$G$"$k(B. |
$BFHN)$7$?BP>]$H$7$FDj5A$5$l$k$N$O(B, $BBe?tE*?t$G$"$k(B. |
$BBe?tBN$O(B, $BM-M}?tBN$K(B, $BBe?tE*?t$rM-8B8D(B |
$BBe?tBN$O(B, $BM-M}?tBN$K(B, $BBe?tE*?t$rM-8B8D(B |
|
|
$B$3$l$^$GDj5A$5$l$?Be?tE*?t$NB?9`<0$r78?t$H$9$k(B 1 $BJQ?tB?9`<0(B |
$B$3$l$^$GDj5A$5$l$?Be?tE*?t$NB?9`<0$r78?t$H$9$k(B 1 $BJQ?tB?9`<0(B |
$B$rDj5AB?9`<0$H$7$FDj5A$5$l$k(B. $B0J2<(B, $B$"$kDj5AB?9`<0$N:,$H$7$F(B |
$B$rDj5AB?9`<0$H$7$FDj5A$5$l$k(B. $B0J2<(B, $B$"$kDj5AB?9`<0$N:,$H$7$F(B |
$BDj5A$5$l$?Be?tE*?t$r(B, @code{root} $B$H8F$V$3$H$K$9$k(B. |
$BDj5A$5$l$?Be?tE*?t$r(B, @code{root} $B$H8F$V$3$H$K$9$k(B. |
|
\E |
|
\BEG |
|
In @b{Asir} algebraic number fields are not defined |
|
as independent objects. |
|
Instead, individual algebraic numbers are defined by some |
|
means. In @b{Asir} an algebraic number field is |
|
defined virtually as a number field obtained by adjoining a finite number |
|
of algebraic numbers to the rational number field. |
|
|
|
A new algebraic number is introduced in @b{Asir} in such a way where |
|
it is defined as a root of an uni-variate polynomial |
|
whose coefficients include already defined algebraic numbers |
|
as well as rational numbers. |
|
We shall call such a newly defined algebraic number a @b{root}. |
|
Also, we call such an uni-variate polynomial the defining polynomial |
|
of that @b{root}. |
|
\E |
|
|
@example |
@example |
[0] A0=newalg(x^2+1); |
[0] A0=newalg(x^2+1); |
|
|
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
$B$3$NNc$G$O(B, @code{A0} $B$O(B @code{x^2+1=0} $B$N:,(B, @code{A1} $B$O(B, $B$=$N(B @code{A0} |
$B$3$NNc$G$O(B, @code{A0} $B$O(B @code{x^2+1=0} $B$N:,(B, @code{A1} $B$O(B, $B$=$N(B @code{A0} |
$B$r78?t$K4^$`(B @code{x^3+A0*x+A0=0} $B$N:,$H$7$FDj5A$5$l$F$$$k(B. |
$B$r78?t$K4^$`(B @code{x^3+A0*x+A0=0} $B$N:,$H$7$FDj5A$5$l$F$$$k(B. |
|
\E |
|
\BEG |
|
In this example, the algebraic number assigned to @code{A0} is defined |
|
as a @b{root} of a polynomial @code{x^2+1}; |
|
that of @code{A1} is defined as a @b{root} of a polynomial |
|
@code{x^3+A0*x+A0}, which you see contains the previously defined |
|
@b{root} (@code{A0}) in its coefficients. |
|
\E |
|
|
@noindent |
@noindent |
@code{newalg()} $B$N0z?t$9$J$o$ADj5AB?9`<0$K$O<!$N$h$&$J@)8B$,$"$k(B. |
\JP @code{newalg()} $B$N0z?t$9$J$o$ADj5AB?9`<0$K$O<!$N$h$&$J@)8B$,$"$k(B. |
|
\BEG |
|
The argument to @code{newalg()}, i.e., the defining polynomial, |
|
must satisfy the following conditions. |
|
\E |
|
|
@enumerate |
@enumerate |
@item |
@item |
$BDj5AB?9`<0$O(B 1 $BJQ?tB?9`<0$G$J$1$l$P$J$i$J$$(B. |
\JP $BDj5AB?9`<0$O(B 1 $BJQ?tB?9`<0$G$J$1$l$P$J$i$J$$(B. |
|
\EG A defining polynomial must be an uni-variate polynomial. |
|
|
|
|
@item |
@item |
|
\BJP |
@code{newalg()} $B$N0z?t$G$"$kDj5AB?9`<0$O(B, $BBe?tE*?t$r4^$`<0$N4JC12=$N$?(B |
@code{newalg()} $B$N0z?t$G$"$kDj5AB?9`<0$O(B, $BBe?tE*?t$r4^$`<0$N4JC12=$N$?(B |
$B$a$KMQ$$$i$l$k(B. $B$3$N4JC12=$O(B, $BAH$_9~$_H!?t(B @code{srem()} $B$KAjEv$9$kFb(B |
$B$a$KMQ$$$i$l$k(B. $B$3$N4JC12=$O(B, $BAH$_9~$_H!?t(B @code{srem()} $B$KAjEv$9$kFb(B |
$BIt%k!<%A%s$rMQ$$$F9T$o$l$k(B. $B$3$N$?$a(B, $BDj5AB?9`<0$N<g78?t$O(B, $BM-M}?t$K(B |
$BIt%k!<%A%s$rMQ$$$F9T$o$l$k(B. $B$3$N$?$a(B, $BDj5AB?9`<0$N<g78?t$O(B, $BM-M}?t$K(B |
$B$J$C$F$$$kI,MW$,$"$k(B. |
$B$J$C$F$$$kI,MW$,$"$k(B. |
|
\E |
|
\BEG |
|
A defining polynomial is used |
|
to simplify expressions containing that algebraic number. |
|
The procedure of such simplification is performed by an internal routine |
|
similar to the built-in function @code{srem()}, where the defining |
|
polynomial is used for the second argument, the divisor. |
|
By this reason, the leading coefficient of the defining polynomial |
|
must be a rational number (must not be an algebraic number.) |
|
\E |
|
|
@item |
@item |
|
\BJP |
$BDj5AB?9`<0$N78?t$O(B $B$9$G$KDj5A$5$l$F$$$k(B @code{root} $B$NM-M}?t78?tB?9`<0(B |
$BDj5AB?9`<0$N78?t$O(B $B$9$G$KDj5A$5$l$F$$$k(B @code{root} $B$NM-M}?t78?tB?9`<0(B |
$B$G$J$1$l$P$J$i$J$$(B. |
$B$G$J$1$l$P$J$i$J$$(B. |
|
\E |
|
\BEG |
|
Every coefficients of a defining polynomial must be |
|
a `(multi-variate) polynomial' in already defined @b{root}'s. |
|
Here, `(multi-variate) polynomial' means a mathematical concept, |
|
not the object type `polynomial' in @b{Asir}. |
|
\E |
@item |
@item |
|
\BJP |
$BDj5AB?9`<0$O(B, $B$=$N78?t$K4^$^$l$kA4$F$N(B @code{root} $B$rM-M}?t$KE:2C$7$?(B |
$BDj5AB?9`<0$O(B, $B$=$N78?t$K4^$^$l$kA4$F$N(B @code{root} $B$rM-M}?t$KE:2C$7$?(B |
$BBN>e$G4{Ls$G$J$1$l$P$J$i$J$$(B. |
$BBN>e$G4{Ls$G$J$1$l$P$J$i$J$$(B. |
|
\E |
|
\BEG |
|
A defining polynomial must be irreducible over the field that is obtained |
|
by adjoining all @b{root}'s contained in its coefficients |
|
to the rational number field. |
|
\E |
@end enumerate |
@end enumerate |
|
|
@noindent |
@noindent |
|
\BJP |
@code{newalg()} $B$,9T$&0z?t%A%'%C%/$O(B, 1 $B$*$h$S(B 2 $B$N$_$G$"$k(B. |
@code{newalg()} $B$,9T$&0z?t%A%'%C%/$O(B, 1 $B$*$h$S(B 2 $B$N$_$G$"$k(B. |
$BFC$K(B, $B0z?t$NDj5AB?9`<0$N4{Ls@-$OA4$/%A%'%C%/$5$l$J$$(B. $B$3$l$O(B |
$BFC$K(B, $B0z?t$NDj5AB?9`<0$N4{Ls@-$OA4$/%A%'%C%/$5$l$J$$(B. $B$3$l$O(B |
$B4{Ls@-$N%A%'%C%/$,B?Bg$J7W;;NL$rI,MW$H$9$k$?$a$G(B, $B$3$NE@$K4X$7$F$O(B, |
$B4{Ls@-$N%A%'%C%/$,B?Bg$J7W;;NL$rI,MW$H$9$k$?$a$G(B, $B$3$NE@$K4X$7$F$O(B, |
$B%f!<%6$N@UG$$KG$$5$l$F$$$k(B. |
$B%f!<%6$N@UG$$KG$$5$l$F$$$k(B. |
|
\E |
|
\BEG |
|
Only the first two conditions (1 and 2) are checked |
|
by function @code{newalg()}. |
|
Among all, it should be emphasized that no check is done for the |
|
irreducibility at all. |
|
The reason is that the irreducibility test requires enormously much |
|
computation time. You are trusted whether to check it at your own risk. |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$B0lC6(B @code{newalg()} $B$K$h$C$FDj5A$5$l$?Be?tE*?t$O(B, $B?t$H$7$F$N<1JL;R$r;}$A(B, |
$B0lC6(B @code{newalg()} $B$K$h$C$FDj5A$5$l$?Be?tE*?t$O(B, $B?t$H$7$F$N<1JL;R$r;}$A(B, |
$B$^$?(B, $B?t$NCf$G$OBe?tE*?t$H$7$F$N<1JL;R$r;}$D(B. (@code{type()}, @code{vtype()} |
$B$^$?(B, $B?t$NCf$G$OBe?tE*?t$H$7$F$N<1JL;R$r;}$D(B. (@code{type()}, @code{vtype()} |
$B;2>H(B.) $B$5$i$K(B, $BM-M}?t$H(B, @code{root} $B$NM-M}<0$bF1MM$KBe?tE*?t$H$J$k(B. |
$B;2>H(B.) $B$5$i$K(B, $BM-M}?t$H(B, @code{root} $B$NM-M}<0$bF1MM$KBe?tE*?t$H$J$k(B. |
|
\E |
|
\BEG |
|
Once a @b{root} has been defined by @code{newalg()} function, |
|
it is given the type identifier for a number, and furthermore, |
|
the sub-type identifier for an algebraic number. |
|
(@xref{type}, @ref{ntype}.) |
|
Also, any rational combination of rational numbers and @b{root}'s |
|
is an algebraic number. |
|
\E |
|
|
@example |
@example |
[87] N=(A0^2+A1)/(A1^2-A0-1); |
[87] N=(A0^2+A1)/(A1^2-A0-1); |
|
|
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
$BNc$+$i$o$+$k$h$&$K(B, @code{root}$B$O(B @code{#@var{n}} |
$BNc$+$i$o$+$k$h$&$K(B, @code{root}$B$O(B @code{#@var{n}} |
$B$HI=<($5$l$k(B. $B$7$+$7(B, $B%f!<%6$O$3$N7A$G$OF~NO$G$-$J$$(B. @code{root} $B$O(B |
$B$HI=<($5$l$k(B. $B$7$+$7(B, $B%f!<%6$O$3$N7A$G$OF~NO$G$-$J$$(B. @code{root} $B$O(B |
$BJQ?t$K3JG<$7$FMQ$$$k$+(B, $B$"$k$$$O(B @code{alg(@var{n})} $B$K$h$j<h$j=P$9(B. |
$BJQ?t$K3JG<$7$FMQ$$$k$+(B, $B$"$k$$$O(B @code{alg(@var{n})} $B$K$h$j<h$j=P$9(B. |
$B$^$?(B, $B8zN($OMn$A$k$,(B, $BA4$/F1$80z?t(B ($BJQ?t$O0[$J$C$F$$$F$b$h$$(B) $B$K$h$j(B |
$B$^$?(B, $B8zN($OMn$A$k$,(B, $BA4$/F1$80z?t(B ($BJQ?t$O0[$J$C$F$$$F$b$h$$(B) $B$K$h$j(B |
@code{newalg()} $B$r8F$Y$P(B, $B?7$7$$Be?tE*?t$ODj5A$5$l$:$K4{$KDj5A$5$l$?(B |
@code{newalg()} $B$r8F$Y$P(B, $B?7$7$$Be?tE*?t$ODj5A$5$l$:$K4{$KDj5A$5$l$?(B |
$B$b$N$,F@$i$l$k(B. |
$B$b$N$,F@$i$l$k(B. |
|
\E |
|
\BEG |
|
As you see it in the example, a @b{root} is displayed as |
|
@code{#@var{n}}. But, you cannot input that @b{root} in |
|
its immediate output form. |
|
You have to refer to a @b{root} by a program variable assigned |
|
to the @b{root}, or to get it by @code{alg(@var{n})} function, or by |
|
several other indirect means. |
|
A strange use of @code{newalg()}, with a same argument polynomial |
|
(except for the name of its main variable), will yield the old |
|
@b{root} instead of a new @b{root} though it is apparently inefficient. |
|
\E |
|
|
@example |
@example |
[90] alg(0); |
[90] alg(0); |
|
|
@end example |
@end example |
|
|
@noindent |
@noindent |
@code{root} $B$NDj5AB?9`<0$O(B, @code{defpoly()} $B$K$h$j<h$j=P$;$k(B. |
\JP @code{root} $B$NDj5AB?9`<0$O(B, @code{defpoly()} $B$K$h$j<h$j=P$;$k(B. |
|
\BEG |
|
The defining polynomial of a @b{root} can be obtained by |
|
@code{defpoly()} function. |
|
\E |
|
|
@example |
@example |
[96] defpoly(A0); |
[96] defpoly(A0); |
Line 100 t#1^3+t#0*t#1+t#0 |
|
Line 214 t#1^3+t#0*t#1+t#0 |
|
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
$B$3$3$G8=$l$?(B, @code{t#0}, @code{t#1} $B$O$=$l$>$l(B @code{#0}, @code{#1} $B$K(B |
$B$3$3$G8=$l$?(B, @code{t#0}, @code{t#1} $B$O$=$l$>$l(B @code{#0}, @code{#1} $B$K(B |
$BBP1~$9$kITDj85$G$"$k(B. $B$3$l$i$b%f!<%6$,F~NO$9$k$3$H$O$G$-$J$$(B. |
$BBP1~$9$kITDj85$G$"$k(B. $B$3$l$i$b%f!<%6$,F~NO$9$k$3$H$O$G$-$J$$(B. |
@code{var()} $B$G<h$j=P$9$+(B, $B$"$k$$$O(B @code{algv(@var{n})} $B$K$h$j<h$j=P$9(B. |
@code{var()} $B$G<h$j=P$9$+(B, $B$"$k$$$O(B @code{algv(@var{n})} $B$K$h$j<h$j=P$9(B. |
|
\E |
|
\BEG |
|
Here, you see a strange expression, @code{t#0} and @code{t#1}. |
|
They are a specially indeterminates generated and maintained |
|
by @b{Asir} internally. Indeterminate @code{t#0} corresponds to |
|
@b{root} @code{#0}, and @code{t#0} to @code{#1}. These indeterminates |
|
also cannot be input directly by a user in their immediate forms. |
|
You can get them by several ways: by @code{var()} function, |
|
or @code{algv(@var{n})} function. |
|
\E |
|
|
@example |
@example |
[98] var(@@); |
[98] var(@@); |
|
|
[100] |
[100] |
@end example |
@end example |
|
|
|
\BJP |
@node $BBe?tE*?t$N1i;;(B,,, $BBe?tE*?t$K4X$9$k1i;;(B |
@node $BBe?tE*?t$N1i;;(B,,, $BBe?tE*?t$K4X$9$k1i;;(B |
@section $BBe?tE*?t$N1i;;(B |
@section $BBe?tE*?t$N1i;;(B |
|
\E |
|
\BEG |
|
@node Operations over algebraic numbers,,, Algebraic numbers |
|
@section Operations over algebraic numbers |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$BA0@a$G(B, $BBe?tE*?t$NI=8=(B, $BDj5A$K$D$$$F=R$Y$?(B. $B$3$3$G$O(B, $BBe?tE*?t$rMQ$$$?(B |
$BA0@a$G(B, $BBe?tE*?t$NI=8=(B, $BDj5A$K$D$$$F=R$Y$?(B. $B$3$3$G$O(B, $BBe?tE*?t$rMQ$$$?(B |
$B1i;;$K$D$$$F=R$Y$k(B. $BBe?tE*?t$K4X$7$F$O(B, $BAH$_9~$_H!?t$H$7$FDs6!$5$l$F$$$k(B |
$B1i;;$K$D$$$F=R$Y$k(B. $BBe?tE*?t$K4X$7$F$O(B, $BAH$_9~$_H!?t$H$7$FDs6!$5$l$F$$$k(B |
$B5!G=$O$4$/>/?t$G(B, $BBgItJ,$O%f!<%6Dj5AH!?t$K$h$j<B8=$5$l$F$$$k(B. $B%U%!%$%k(B |
$B5!G=$O$4$/>/?t$G(B, $BBgItJ,$O%f!<%6Dj5AH!?t$K$h$j<B8=$5$l$F$$$k(B. $B%U%!%$%k(B |
$B$O(B, @samp{sp} $B$G(B, @samp{gr} $B$HF1MM(B @b{Asir} $B$NI8=`%i%$%V%i%j%G%#%l%/%H%j(B |
$B$O(B, @samp{sp} $B$G(B, @samp{gr} $B$HF1MM(B @b{Asir} $B$NI8=`%i%$%V%i%j%G%#%l%/%H%j(B |
$B$K$*$+$l$F$$$k(B. |
$B$K$*$+$l$F$$$k(B. |
|
\E |
|
\BEG |
|
In the previous section, we explained about the |
|
representation of algebraic numbers and their defining method. |
|
Here, we describe operations on algebraic numbers. |
|
Only a few functions are built-in, and almost all functions are provided |
|
as user defined functions. The file containing their definitions is |
|
@samp{sp}, and it is placed under the same directory |
|
as @samp{gr} is placed, i.e., the standard library directory of @b{Asir}. |
|
\E |
|
|
@example |
@example |
[0] load("gr")$ |
[0] load("gr")$ |
|
|
@end example |
@end example |
|
|
@noindent |
@noindent |
$B$"$k$$$O(B, $B>o$KMQ$$$k$J$i$P(B, @samp{$HOME/.asirrc} $B$K=q$$$F$*$/$N$b$h$$(B. |
\JP $B$"$k$$$O(B, $B>o$KMQ$$$k$J$i$P(B, @samp{$HOME/.asirrc} $B$K=q$$$F$*$/$N$b$h$$(B. |
|
\BEG |
|
Or if you always need them, it is more convenient to include the |
|
@code{load} commands in @samp{$HOME/.asirrc}. |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
@code{root} $B$O(B $B$=$NB>$N?t$HF1MM(B, $B;MB'1i;;$,2DG=$H$J$k(B. $B$7$+$7(B, $BDj5AB?(B |
@code{root} $B$O(B $B$=$NB>$N?t$HF1MM(B, $B;MB'1i;;$,2DG=$H$J$k(B. $B$7$+$7(B, $BDj5AB?(B |
$B9`<0$K$h$k4JC12=$O<+F0E*$K$O9T$o$l$J$$$N$G(B, $B%f!<%6$NH=CG$GE,599T$o(B |
$B9`<0$K$h$k4JC12=$O<+F0E*$K$O9T$o$l$J$$$N$G(B, $B%f!<%6$NH=CG$GE,599T$o(B |
$B$J$1$l$P$J$i$J$$(B. $BFC$K(B, $BJ,Jl$,(B 0 $B$K$J$k>l9g$KCWL?E*$J%(%i!<$H$J$k$?$a(B, |
$B$J$1$l$P$J$i$J$$(B. $BFC$K(B, $BJ,Jl$,(B 0 $B$K$J$k>l9g$KCWL?E*$J%(%i!<$H$J$k$?$a(B, |
$B<B:]$KJ,Jl$r;}$DBe?tE*?t$r@8@.$9$k>l9g$K$O:Y?4$NCm0U$,I,MW$H$J$k(B. |
$B<B:]$KJ,Jl$r;}$DBe?tE*?t$r@8@.$9$k>l9g$K$O:Y?4$NCm0U$,I,MW$H$J$k(B. |
|
\E |
|
\BEG |
|
Like the other numbers, algebraic numbers can get arithmetic operations |
|
applied. Simplification, however, by defining polynomials are |
|
not automatically performed. It is left to users to simplify their |
|
expressions. A fatal error shall result if the denominator expression |
|
will be simplified to 0. Therefore, be careful enough when you |
|
will create and deal with algebraic numbers which may denominators |
|
in their expressions. |
|
\E |
|
|
@noindent |
\JP $BBe?tE*?t$N(B, $BDj5AB?9`<0$K$h$k4JC12=$O(B, @code{simpalg()} $B$G9T$&(B. |
$BBe?tE*?t$N(B, $BDj5AB?9`<0$K$h$k4JC12=$O(B, @code{simpalg()} $B$G9T$&(B. |
\BEG |
|
Use @code{simpalg()} function for simplification of algebraic numbers |
|
by defining polynomials. |
|
\E |
|
|
@example |
@example |
[49] T=A0^2+1; |
[49] T=A0^2+1; |
|
|
@end example |
@end example |
|
|
@noindent |
@noindent |
@code{simpalg()} $B$OM-M}<0$N7A$r$7$?Be?tE*?t$r(B, $BB?9`<0$N7A$K4JC12=$9$k(B. |
\JP @code{simpalg()} $B$OM-M}<0$N7A$r$7$?Be?tE*?t$r(B, $BB?9`<0$N7A$K4JC12=$9$k(B. |
|
\BEG |
|
Function @code{simpalg()} simplifies algebraic numbers which have |
|
the same structures as rational expressions in their appearances. |
|
\E |
|
|
@example |
@example |
[39] A0=newalg(x^2+1); |
[39] A0=newalg(x^2+1); |
Line 166 stopped in invalgp at line 258 in file "/usr/local/lib |
|
Line 330 stopped in invalgp at line 258 in file "/usr/local/lib |
|
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
$B$3$NNc$G$O(B, $BJ,Jl$,(B 0 $B$NBe?tE*?t$r4JC12=$7$h$&$H$7$F(B 0 $B$K$h$k=|;;$,@8$8(B |
$B$3$NNc$G$O(B, $BJ,Jl$,(B 0 $B$NBe?tE*?t$r4JC12=$7$h$&$H$7$F(B 0 $B$K$h$k=|;;$,@8$8(B |
$B$?$?$a(B, $B%f!<%6Dj5AH!?t$G$"$k(B @code{simpalg()} $B$NCf$G%G%P%C%,$,8F$P$l$?(B |
$B$?$?$a(B, $B%f!<%6Dj5AH!?t$G$"$k(B @code{simpalg()} $B$NCf$G%G%P%C%,$,8F$P$l$?(B |
$B$3$H$r<($9(B. @code{simpalg()} $B$O(B, $BBe?tE*?t$r78?t$H$9$kB?9`<0$N(B |
$B$3$H$r<($9(B. @code{simpalg()} $B$O(B, $BBe?tE*?t$r78?t$H$9$kB?9`<0$N(B |
$B3F78?t$r4JC12=$G$-$k(B. |
$B3F78?t$r4JC12=$G$-$k(B. |
|
\E |
|
\BEG |
|
This example shows an error caused by zero division in the course of |
|
program execution of @code{simpalg()}, which attempted to simplify |
|
an algebraic number expression of which the denominator is 0. |
|
|
|
Function @code{simpalg()} also can take a polynomial as its argument |
|
and simplifies algebraic numbers in its coefficients. |
|
\E |
|
|
@example |
@example |
[43] simpalg(1/A0*x+1/(A0+1)); |
[43] simpalg(1/A0*x+1/(A0+1)); |
(-#0)*x+(-1/2*#0+1/2) |
(-#0)*x+(-1/2*#0+1/2) |
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
$BBe?tE*?t$r78?t$H$9$kB?9`<0$N4pK\1i;;$O(B, $BE,59(B @code{simpalg()} $B$r8F$V$3$H$r(B |
$BBe?tE*?t$r78?t$H$9$kB?9`<0$N4pK\1i;;$O(B, $BE,59(B @code{simpalg()} $B$r8F$V$3$H$r(B |
$B=|$1$PDL>o$N>l9g$HF1MM$G$"$k$,(B, $B0x?tJ,2r$J$I$GIQHK$KMQ$$$i$l$k%N%k%`$N(B |
$B=|$1$PDL>o$N>l9g$HF1MM$G$"$k$,(B, $B0x?tJ,2r$J$I$GIQHK$KMQ$$$i$l$k%N%k%`$N(B |
$B7W;;$J$I$K$*$$$F$O(B, @code{root} $B$rITDj85$KCV$-49$($kI,MW$,=P$F$/$k(B. |
$B7W;;$J$I$K$*$$$F$O(B, @code{root} $B$rITDj85$KCV$-49$($kI,MW$,=P$F$/$k(B. |
$B$3$N>l9g(B, @code{algptorat()} $B$rMQ$$$k(B. |
$B$3$N>l9g(B, @code{algptorat()} $B$rMQ$$$k(B. |
|
\E |
|
\BEG |
|
Thus, you can operate in polynomials which contain algebraic numbers |
|
as you do usually in ordinary polynomials, |
|
except for proper simplification by @code{simpalg()}. |
|
You may sometimes feel needs to convert @b{root}'s into indeterminates, |
|
especially when you are working for norm computation in algorithms for |
|
algebraic factorization. |
|
Function @code{algptorat()} is used for such cases. |
|
\E |
|
|
@example |
@example |
[83] A0=newalg(x^2+1); |
[83] A0=newalg(x^2+1); |
Line 196 t#1^2+t#0*t#1+2*t#0 |
|
Line 381 t#1^2+t#0*t#1+2*t#0 |
|
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
$B$3$N$h$&$K(B, @code{algptorat()} $B$O(B, $BB?9`<0(B, $B?t$K4^$^$l$k(B @code{root} |
$B$3$N$h$&$K(B, @code{algptorat()} $B$O(B, $BB?9`<0(B, $B?t$K4^$^$l$k(B @code{root} |
$B$r(B, $BBP1~$9$kITDj85(B, $B$9$J$o$A(B @code{#@var{n}} $B$KBP$9$k(B @code{t#@var{n}} |
$B$r(B, $BBP1~$9$kITDj85(B, $B$9$J$o$A(B @code{#@var{n}} $B$KBP$9$k(B @code{t#@var{n}} |
$B$KCV$-49$($k(B. $B4{$K=R$Y$?$h$&$K(B, $B$3$NITDj85$O%f!<%6$,F~NO$9$k$3$H$O$G$-$J$$(B. |
$B$KCV$-49$($k(B. $B4{$K=R$Y$?$h$&$K(B, $B$3$NITDj85$O%f!<%6$,F~NO$9$k$3$H$O$G$-$J$$(B. |
$B$3$l$O(B, $B%f!<%6$NF~NO$7$?ITDj85$H(B, @code{root} $B$KBP1~$9$kITDj85$,0lCW(B |
$B$3$l$O(B, $B%f!<%6$NF~NO$7$?ITDj85$H(B, @code{root} $B$KBP1~$9$kITDj85$,0lCW(B |
$B$7$J$$$h$&$K$9$k$?$a$G$"$k(B. |
$B$7$J$$$h$&$K$9$k$?$a$G$"$k(B. |
|
\E |
|
\BEG |
|
As you see by the example, |
|
function @code{algptorat()} converts @b{root}'s, @code{#@var{n}}, |
|
in polynomials and numbers into its associated indeterminates, |
|
@code{t#@var{n}}. As was already mentioned those indeterminates cannot |
|
be directly input in their immediate form. |
|
The restriction is adopted to avoid the confusion that might happen |
|
if the user could input such internally generatable indeterminates. |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$B5U$K(B, @code{root} $B$KBP1~$9$kITDj85$r(B, $BBP1~$9$k(B @code{root} $B$KCV$-49$($k(B |
$B5U$K(B, @code{root} $B$KBP1~$9$kITDj85$r(B, $BBP1~$9$k(B @code{root} $B$KCV$-49$($k(B |
$B$?$a$K$O(B @code{rattoalgp()} $B$rMQ$$$k(B. |
$B$?$a$K$O(B @code{rattoalgp()} $B$rMQ$$$k(B. |
|
\E |
|
\BEG |
|
The associated indeterminate to a @b{root} is reversely converted |
|
into the @b{root} by @code{rattoalgp()} function. |
|
\E |
|
|
@example |
@example |
[88] rattoalgp(S,[alg(0)]); |
[88] rattoalgp(S,[alg(0)]); |
Line 222 t#1^2+t#0*t#1+2*t#0 |
|
Line 424 t#1^2+t#0*t#1+2*t#0 |
|
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
@code{rattoalgp()} $B$O(B, $BCV49$NBP>]$H$J$k(B @code{root} $B$N%j%9%H$rBh(B 2 $B0z?t(B |
@code{rattoalgp()} $B$O(B, $BCV49$NBP>]$H$J$k(B @code{root} $B$N%j%9%H$rBh(B 2 $B0z?t(B |
$B$K$H$j(B, $B:8$+$i=g$K(B, $BBP1~$9$kITDj85$rCV$-49$($F9T$/(B. $B$3$NNc$O(B, |
$B$K$H$j(B, $B:8$+$i=g$K(B, $BBP1~$9$kITDj85$rCV$-49$($F9T$/(B. $B$3$NNc$O(B, |
$BCV49$9$k=g=x$r49$($k$H4JC12=$r9T$o$J$$$3$H$K$h$j7k2L$,0l8+0[$J$k$,(B, |
$BCV49$9$k=g=x$r49$($k$H4JC12=$r9T$o$J$$$3$H$K$h$j7k2L$,0l8+0[$J$k$,(B, |
$B4JC12=$K$h$j<B$O0lCW$9$k$3$H$r<($7$F$$$k(B. @code{algptorat()}, |
$B4JC12=$K$h$j<B$O0lCW$9$k$3$H$r<($7$F$$$k(B. @code{algptorat()}, |
@code{rattoalgp()} $B$O(B, $B%f!<%6$,FH<+$N4JC12=$r9T$$$?$$>l9g$J$I$K$b(B |
@code{rattoalgp()} $B$O(B, $B%f!<%6$,FH<+$N4JC12=$r9T$$$?$$>l9g$J$I$K$b(B |
$BMQ$$$k$3$H$,$G$-$k(B. |
$BMQ$$$k$3$H$,$G$-$k(B. |
|
\E |
|
\BEG |
|
Function @code{rattoalgp()} takes as the second argument |
|
a list consisting of @b{root}'s that you want to convert, |
|
and converts them successively from the left. |
|
This example shows that apparent difference of the results due to |
|
the order of such conversion will vanish by simplification yielding |
|
the same result. |
|
Functions @code{algptorat()} and @code{rattoalgp()} can be conveniently |
|
used for your own simplification. |
|
\E |
|
|
|
\BJP |
@node $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B,,, $BBe?tE*?t$K4X$9$k1i;;(B |
@node $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B,,, $BBe?tE*?t$K4X$9$k1i;;(B |
@section $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B |
@section $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B |
|
\E |
|
\BEG |
|
@node Operations for uni-variate polynomials over an algebraic number field,,, Algebraic numbers |
|
@section Operations for uni-variate polynomials over an algebraic number field |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
@samp{sp} $B$G$O(B, 1 $BJQ?tB?9`<0$K8B$j(B, GCD, $B0x?tJ,2r$*$h$S$=$l$i$N1~MQ$H$7$F(B |
@samp{sp} $B$G$O(B, 1 $BJQ?tB?9`<0$K8B$j(B, GCD, $B0x?tJ,2r$*$h$S$=$l$i$N1~MQ$H$7$F(B |
$B:G>.J,2rBN$r5a$a$kH!?t$rDs6!$7$F$$$k(B. |
$B:G>.J,2rBN$r5a$a$kH!?t$rDs6!$7$F$$$k(B. |
|
\E |
|
\BEG |
|
In the file @samp{sp} are provided functions for uni-variate polynomial |
|
factorization and uni-variate polynomial GCD computation |
|
over algebraic numbers, |
|
and furthermore, as an application of them, |
|
functions to compute splitting fields of univariate polynomials. |
|
\E |
|
|
@menu |
@menu |
* GCD:: |
* GCD:: |
|
\BJP |
* $BL5J?J}J,2r(B $B0x?tJ,2r(B:: |
* $BL5J?J}J,2r(B $B0x?tJ,2r(B:: |
* $B:G>.J,2rBN(B:: |
* $B:G>.J,2rBN(B:: |
|
\E |
|
\BEG |
|
* Square-free factorization and Factorization:: |
|
* Splitting fields:: |
|
\E |
@end menu |
@end menu |
|
|
@node GCD,,, $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B |
\JP @node GCD,,, $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B |
|
\EG @node GCD,,, Operations for uni-variate polynomials over an algebraic number field |
@subsection GCD |
@subsection GCD |
|
|
@noindent |
@noindent |
$BBe?tBN>e$G$N(B GCD $B$O(B @code{gcda()} $B$K$h$j7W;;$5$l$k(B. |
\BJP |
|
$BBe?tBN>e$G$N(B GCD $B$O(B @code{cr_gcda()} $B$K$h$j7W;;$5$l$k(B. |
$B$3$NH!?t$O%b%8%e%i1i;;$*$h$SCf9q>jM>DjM}$K$h$jBe?tBN>e$N(B GCD $B$r(B |
$B$3$NH!?t$O%b%8%e%i1i;;$*$h$SCf9q>jM>DjM}$K$h$jBe?tBN>e$N(B GCD $B$r(B |
$B7W;;$9$k$b$N$G(B, $BC`<!3HBg$KBP$7$F$bM-8z$G$"$k(B. |
$B7W;;$9$k$b$N$G(B, $BC`<!3HBg$KBP$7$F$bM-8z$G$"$k(B. |
|
\E |
|
\BEG |
|
Greatest common divisors (GCD) over algebraic number fields are computed |
|
by @code{cr_gcda()} function. This function computes GCD by using modular |
|
computation and Chinese remainder theorem and it works for the case |
|
where the ground field is a multiple extension. |
|
\E |
|
|
@example |
@example |
[63] A=newalg(t^9-15*t^6-87*t^3-125); |
[63] A=newalg(t^9-15*t^6-87*t^3-125); |
Line 258 t#1^2+t#0*t#1+2*t#0 |
|
Line 502 t#1^2+t#0*t#1+2*t#0 |
|
[65] P1=75*x^2+(150*B+10*A^7-175*A^4-395*A)*x+(75*B^2+(10*A^7-175*A^4-395*A)*B |
[65] P1=75*x^2+(150*B+10*A^7-175*A^4-395*A)*x+(75*B^2+(10*A^7-175*A^4-395*A)*B |
+13*A^8-220*A^5-581*A^2)$ |
+13*A^8-220*A^5-581*A^2)$ |
[66] P2=x^2+A*x+A^2$ |
[66] P2=x^2+A*x+A^2$ |
[67] gcda(P1,P2,[B,A]); |
[67] cr_gcda(P1,P2); |
27*x+((#0^6-19*#0^3-65)*#1-#0^7+19*#0^4+38*#0) |
27*x+((#0^6-19*#0^3-65)*#1-#0^7+19*#0^4+38*#0) |
@end example |
@end example |
|
|
|
\BJP |
@node $BL5J?J}J,2r(B $B0x?tJ,2r(B,,, $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B |
@node $BL5J?J}J,2r(B $B0x?tJ,2r(B,,, $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B |
@subsection $BL5J?J}J,2r(B, $B0x?tJ,2r(B |
@subsection $BL5J?J}J,2r(B, $B0x?tJ,2r(B |
|
\E |
|
\BEG |
|
@node Square-free factorization and Factorization,,, Operations for uni-variate polynomials over an algebraic number field |
|
@subsection Square-free factorization and Factorization |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$BL5J?J}J,2r$O(B, $BB?9`<0$H$=$NHyJ,$H$N(B GCD $B$N7W;;$+$i;O$^$k$b$C$H$b0lHLE*$J(B |
$BL5J?J}J,2r$O(B, $BB?9`<0$H$=$NHyJ,$H$N(B GCD $B$N7W;;$+$i;O$^$k$b$C$H$b0lHLE*$J(B |
$B%"%k%4%j%:%`$r:NMQ$7$F$$$k(B. $BH!?t$O(B @code{asq()} $B$G$"$k(B. |
$B%"%k%4%j%:%`$r:NMQ$7$F$$$k(B. $BH!?t$O(B @code{asq()} $B$G$"$k(B. |
|
\E |
|
\BEG |
|
For square-free factorization (of uni-variate polynomials over algebraic |
|
number fields), we employ the most fundamental algorithm which begins |
|
first to compute GCD of a polynomial and its derivative. |
|
The function to do this factorization is @code{asq()}. |
|
\E |
|
|
@example |
@example |
[116] A=newalg(x^2+x+1); |
[116] A=newalg(x^2+x+1); |
Line 281 x^11+(#4+1)*x^10+(-4*#4-8)*x^9+(-10*#4-4)*x^8+(16*#4+2 |
|
Line 539 x^11+(#4+1)*x^10+(-4*#4-8)*x^9+(-10*#4-4)*x^8+(16*#4+2 |
|
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
$B7k2L$ODL>o$HF1MM$K(B, [@b{$B0x;R(B}, @b{$B=EJ#EY(B}] $B$N%j%9%H$H$J$k$,(B, $BA4$F$N0x;R(B |
$B7k2L$ODL>o$HF1MM$K(B, [@b{$B0x;R(B}, @b{$B=EJ#EY(B}] $B$N%j%9%H$H$J$k$,(B, $BA4$F$N0x;R(B |
$B$N@Q$O(B, $B$b$H$NB?9`<0$HDj?tG\$N:9$O$"$jF@$k(B. $B$3$l$O(B, $B0x;R$r@0?t78?t$K$7(B |
$B$N@Q$O(B, $B$b$H$NB?9`<0$HDj?tG\$N:9$O$"$jF@$k(B. $B$3$l$O(B, $B0x;R$r@0?t78?t$K$7(B |
$B$F8+$d$9$/$9$k$?$a$G(B, $B0x?tJ,2r$G$bF1MM$G$"$k(B. |
$B$F8+$d$9$/$9$k$?$a$G(B, $B0x?tJ,2r$G$bF1MM$G$"$k(B. |
|
\E |
|
\BEG |
|
Like factorization over the rational number field, |
|
the result is presented, |
|
commonly to both square-free factorization and factorization, |
|
as a list whose elements are pairs (list of two elements) in the form |
|
[@b{factor}, @b{multiplicity}] |
|
without the constant multiple part. |
|
|
|
Here, it should be noticed that the products of all factors of the |
|
result may DIFFER from the input polynomial by a constant. |
|
The reason is that the factors are normalized so that they have |
|
integral leading coefficients for the sake of readability. |
|
|
|
This incongruity may happen to square-free factorization and |
|
factorization commonly. |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$BBe?tBN>e$G$N0x?tJ,2r$O(B, Trager $B$K$h$k%N%k%`K!$r2~NI$7$?$b$N$G(B, $BFC$K(B |
$BBe?tBN>e$G$N0x?tJ,2r$O(B, Trager $B$K$h$k%N%k%`K!$r2~NI$7$?$b$N$G(B, $BFC$K(B |
$B$"$kB?9`<0$KBP$7(B, $B$=$N:,$rE:2C$7$?BN>e$G$=$NB?9`<0<+?H$r0x?tJ,2r$9$k(B |
$B$"$kB?9`<0$KBP$7(B, $B$=$N:,$rE:2C$7$?BN>e$G$=$NB?9`<0<+?H$r0x?tJ,2r$9$k(B |
$B>l9g$KFC$KM-8z$G$"$k(B. |
$B>l9g$KFC$KM-8z$G$"$k(B. |
|
\E |
|
\BEG |
|
The algorithm employed for factorization over algebraic number fields |
|
is an improvement of the norm method by Trager. |
|
It is especially very effective to factorize a polynomial over a field |
|
obtained by adjoining some of its @b{root}'s to the base field. |
|
\E |
|
|
@example |
@example |
[119] af(T,[A]); |
[119] af(T,[A]); |
Line 296 x^11+(#4+1)*x^10+(-4*#4-8)*x^9+(-10*#4-4)*x^8+(16*#4+2 |
|
Line 580 x^11+(#4+1)*x^10+(-4*#4-8)*x^9+(-10*#4-4)*x^8+(16*#4+2 |
|
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
$B0z?t$O(B 2 $B$D$G(B, $BBh(B 2 $B0z?t$O(B, @code{root} $B$N%j%9%H$G$"$k(B. $B0x?tJ,2r$O(B |
$B0z?t$O(B 2 $B$D$G(B, $BBh(B 2 $B0z?t$O(B, @code{root} $B$N%j%9%H$G$"$k(B. $B0x?tJ,2r$O(B |
$BM-M}?tBN$K(B, $B$=$l$i$N(B @code{root} $B$rE:2C$7$?BN>e$G9T$o$l$k(B. |
$BM-M}?tBN$K(B, $B$=$l$i$N(B @code{root} $B$rE:2C$7$?BN>e$G9T$o$l$k(B. |
@code{root} $B$N=g=x$K$O@)8B$,$"$k(B. $B$9$J$o$A(B, $B8e$GDj5A$5$l$?$b$N$[$I(B |
@code{root} $B$N=g=x$K$O@)8B$,$"$k(B. $B$9$J$o$A(B, $B8e$GDj5A$5$l$?$b$N$[$I(B |
$BA0$NJ}$K$3$J$1$l$P(B |
$BA0$NJ}$K$3$J$1$l$P(B |
$B$J$i$J$$(B. $BJB$Y49$($O(B, $B<+F0E*$K$O9T$o$l$J$$(B. $B%f!<%6$N@UG$$H$J$k(B. |
$B$J$i$J$$(B. $BJB$Y49$($O(B, $B<+F0E*$K$O9T$o$l$J$$(B. $B%f!<%6$N@UG$$H$J$k(B. |
|
\E |
|
\BEG |
|
The function takes two arguments: The second argument is a list of |
|
@b{root}'s. Factorization is performed over a field obtained by |
|
adjoining the @b{root}'s to the rational number field. |
|
It is important to keep in mind that the ordering of the @b{root}'s |
|
must obey a restriction: Last defined should come first. |
|
The automatic re-ordering is not done. |
|
It should be done by yourself. |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$B%N%k%`$rMQ$$$?0x?tJ,2r$K$*$$$F$O(B, $B%N%k%`$N7W;;$H@0?t78?t(B 1 $BJQ?tB?9`<0$N(B |
$B%N%k%`$rMQ$$$?0x?tJ,2r$K$*$$$F$O(B, $B%N%k%`$N7W;;$H@0?t78?t(B 1 $BJQ?tB?9`<0$N(B |
$B0x?tJ,2r$N8zN($,(B, $BA4BN$N8zN($r:81&$9$k(B. $B$3$N$&$A(B, $BFC$K9b<!$NB?9`<0(B |
$B0x?tJ,2r$N8zN($,(B, $BA4BN$N8zN($r:81&$9$k(B. $B$3$N$&$A(B, $BFC$K9b<!$NB?9`<0(B |
$B$N>l9g$K8e<T$K$*$$$FAH9g$;GzH/$K$h$j7W;;ITG=$K$J$k>l9g$,$7$P$7$P@8$:$k(B. |
$B$N>l9g$K8e<T$K$*$$$FAH9g$;GzH/$K$h$j7W;;ITG=$K$J$k>l9g$,$7$P$7$P@8$:$k(B. |
|
\E |
|
\BEG |
|
The efficiency of factorization via norm depends on the efficiency |
|
of the norm computation and univariate factorization over the rationals. |
|
Especially the latter often causes combinatorial explosion and the |
|
computation will stick in such a case. |
|
\E |
|
|
@example |
@example |
[120] B=newalg(x^2-2*A-3); |
[120] B=newalg(x^2-2*A-3); |
Line 314 x^11+(#4+1)*x^10+(-4*#4-8)*x^9+(-10*#4-4)*x^8+(16*#4+2 |
|
Line 617 x^11+(#4+1)*x^10+(-4*#4-8)*x^9+(-10*#4-4)*x^8+(16*#4+2 |
|
[[x+(#5),2],[x^3-x+(-#4),2],[x+(-#5),2],[x+(#4+1),1]] |
[[x+(#5),2],[x^3-x+(-#4),2],[x+(-#5),2],[x+(#4+1),1]] |
@end example |
@end example |
|
|
|
\BJP |
@node $B:G>.J,2rBN(B,,, $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B |
@node $B:G>.J,2rBN(B,,, $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B |
@subsection $B:G>.J,2rBN(B |
@subsection $B:G>.J,2rBN(B |
|
\E |
|
\BEG |
|
@node Splitting fields,,, Operations for uni-variate polynomials over an algebraic number field |
|
@subsection Splitting fields |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$B$d$dFC<l$J1i;;$G$O$"$k$,(B, $BA0@a$N0x?tJ,2r$rH?I|E,MQ$9$k$3$H$K$h$j(B, |
$B$d$dFC<l$J1i;;$G$O$"$k$,(B, $BA0@a$N0x?tJ,2r$rH?I|E,MQ$9$k$3$H$K$h$j(B, |
$BB?9`<0$N:G>.J,2rBN$r5a$a$k$3$H$,$G$-$k(B. $BH!?t$O(B @code{sp()} $B$G$"$k(B. |
$BB?9`<0$N:G>.J,2rBN$r5a$a$k$3$H$,$G$-$k(B. $BH!?t$O(B @code{sp()} $B$G$"$k(B. |
|
\E |
|
\BEG |
|
This operation may be somewhat unusual and for specific interest. |
|
(Galois Group for example.) Procedurally, however, it is easy to |
|
obtain the splitting field of a polynomial by repeated application |
|
of algebraic factorization described in the previous section. |
|
The function is @code{sp()}. |
|
\E |
|
|
@example |
@example |
[103] sp(x^5-2); |
[103] sp(x^5-2); |
Line 329 x^11+(#4+1)*x^10+(-4*#4-8)*x^9+(-10*#4-4)*x^8+(16*#4+2 |
|
Line 647 x^11+(#4+1)*x^10+(-4*#4-8)*x^9+(-10*#4-4)*x^8+(16*#4+2 |
|
@end example |
@end example |
|
|
@noindent |
@noindent |
|
\BJP |
@code{sp()} $B$O(B 1 $B0z?t$G(B, $B7k2L$O(B @code{[1 $B<!0x;R$N%j%9%H(B, [[root, |
@code{sp()} $B$O(B 1 $B0z?t$G(B, $B7k2L$O(B @code{[1 $B<!0x;R$N%j%9%H(B, [[root, |
algptorat($BDj5AB?9`<0(B)] $B$N%j%9%H(B]} $B$J$k%j%9%H$G$"$k(B. |
algptorat($BDj5AB?9`<0(B)] $B$N%j%9%H(B]} $B$J$k%j%9%H$G$"$k(B. |
$BBh(B 2 $BMWAG$N(B @code{[root,algptorat($BDj5AB?9`<0(B)]} $B$N%j%9%H$O(B, |
$BBh(B 2 $BMWAG$N(B @code{[root,algptorat($BDj5AB?9`<0(B)]} $B$N%j%9%H$O(B, |
$B1&$+$i=g$K(B, $B:G>.J,2rBN$,F@$i$l$k$^$GE:2C$7$F$$$C$?(B @code{root} $B$r<($9(B. |
$B1&$+$i=g$K(B, $B:G>.J,2rBN$,F@$i$l$k$^$GE:2C$7$F$$$C$?(B @code{root} $B$r<($9(B. |
$B$=$NDj5AB?9`<0$O(B, $B$=$ND>A0$^$G$N(B @code{root} $B$rE:2C$7$?BN>e$G4{Ls$G$"$k$3$H(B |
$B$=$NDj5AB?9`<0$O(B, $B$=$ND>A0$^$G$N(B @code{root} $B$rE:2C$7$?BN>e$G4{Ls$G$"$k$3$H(B |
$B$,J]>Z$5$l$F$$$k(B. |
$B$,J]>Z$5$l$F$$$k(B. |
|
\E |
|
\BEG |
|
Function @code{sp()} takes only one argument. |
|
The result is a list of two element: The first element is |
|
a list of linear factors, and the second one is a list whose elements |
|
are pairs (list of two elements) in the form |
|
@code{[@b{root}, algptorat(@b{defining polynomial})]}. |
|
The second element, a list of pairs of form |
|
@code{[@b{root},algptorat(@b{defining polynomial})]}, |
|
corresponds to the @b{root}'s which are adjoined to eventually obtain |
|
the splitting field. They are listed in the reverse order of adjoining. |
|
Each of the defining polynomials in the list is, of course, |
|
guaranteed to be irreducible over the field obtained by adjoining all |
|
@b{root}'s defined before it. |
|
\E |
|
|
@noindent |
@noindent |
|
\BJP |
$B7k2L$NBh(B 1 $BMWAG$G$"$k(B 1 $B<!0x;R$N%j%9%H$O(B, $BBh(B 2 $BMWAG$N(B @code{root} $B$rA4$F(B |
$B7k2L$NBh(B 1 $BMWAG$G$"$k(B 1 $B<!0x;R$N%j%9%H$O(B, $BBh(B 2 $BMWAG$N(B @code{root} $B$rA4$F(B |
$BE:2C$7$?BN>e$G$N(B, @code{sp()} $B$N0z?t$NB?9`<0$NA4$F$N0x;R$rI=$9(B. $B$=$NBN$O(B |
$BE:2C$7$?BN>e$G$N(B, @code{sp()} $B$N0z?t$NB?9`<0$NA4$F$N0x;R$rI=$9(B. $B$=$NBN$O(B |
$B:G>.J,2rBN$H$J$C$F$$$k$N$G(B, $B0x;R$OA4$F(B 1 $B<!$H$J$k$o$1$G$"$k(B. @code{af()} |
$B:G>.J,2rBN$H$J$C$F$$$k$N$G(B, $B0x;R$OA4$F(B 1 $B<!$H$J$k$o$1$G$"$k(B. @code{af()} |
$B$HF1MM(B, $BA4$F$N0x;R$N@Q$O(B, $B$b$H$NB?9`<0$HDj?tG\$N:9$O$"$jF@$k(B. |
$B$HF1MM(B, $BA4$F$N0x;R$N@Q$O(B, $B$b$H$NB?9`<0$HDj?tG\$N:9$O$"$jF@$k(B. |
|
\E |
|
\BEG |
|
The first element of the result, a list of linear factors, contains |
|
all irreducible factors of the input polynomial over the field |
|
obtained by adjoining all @b{root}'s in the second element of the result. |
|
Because such field is the splitting field of the input polynomial, |
|
factors in the result are all linear as the consequence. |
|
|
|
Similarly to function @code{af()}, the product of all resulting factors |
|
may yield a polynomial which differs by a constant. |
|
\E |
|
|
|
\BJP |
@node $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B,,, $BBe?tE*?t$K4X$9$k1i;;(B |
@node $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B,,, $BBe?tE*?t$K4X$9$k1i;;(B |
@section $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
@section $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
|
\E |
|
\BEG |
|
@node Summary of functions for algebraic numbers,,, Algebraic numbers |
|
@section Summary of functions for algebraic numbers |
|
\E |
@menu |
@menu |
* newalg:: |
* newalg:: |
* defpoly:: |
* defpoly:: |
Line 354 algptorat($BDj5AB?9`<0(B)] $B$N%j%9%H(B]} $B$J$k% |
|
Line 704 algptorat($BDj5AB?9`<0(B)] $B$N%j%9%H(B]} $B$J$k% |
|
* simpalg:: |
* simpalg:: |
* algptorat:: |
* algptorat:: |
* rattoalgp:: |
* rattoalgp:: |
* gcda:: |
* cr_gcda:: |
* sp_norm:: |
* sp_norm:: |
* asq af:: |
* asq af af_noalg:: |
* sp:: |
* sp sp_noalg:: |
@end menu |
@end menu |
|
|
@node newalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
\JP @node newalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
|
\EG @node newalg,,, Summary of functions for algebraic numbers |
@subsection @code{newalg} |
@subsection @code{newalg} |
@findex newalg |
@findex newalg |
|
|
@table @t |
@table @t |
@item newalg(@var{defpoly}) |
@item newalg(@var{defpoly}) |
:: @code{root} $B$r@8@.$9$k(B. |
\JP :: @code{root} $B$r@8@.$9$k(B. |
|
\EG :: Creates a new @b{root}. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BBe?tE*?t(B (@code{root}) |
\JP $BBe?tE*?t(B (@code{root}) |
|
\EG algebraic number (@b{root}) |
@item defpoly |
@item defpoly |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
@item |
@item |
@var{defpoly} $B$rDj5AB?9`<0$H$9$kBe?tE*?t(B (@code{root}) $B$r@8@.$9$k(B. |
\JP @var{defpoly} $B$rDj5AB?9`<0$H$9$kBe?tE*?t(B (@code{root}) $B$r@8@.$9$k(B. |
|
\BEG |
|
Creates a new @b{root} (algebraic number) with its defining |
|
polynomial @var{defpoly}. |
|
\E |
@item |
@item |
@var{defpoly} $B$KBP$9$k@)8B$K4X$7$F$O(B, @xref{$BBe?tE*?t$NI=8=(B}. |
\JP @var{defpoly} $B$KBP$9$k@)8B$K4X$7$F$O(B, @xref{$BBe?tE*?t$NI=8=(B}. |
|
\BEG |
|
For constraints on @var{defpoly}, |
|
@xref{Representation of algebraic numbers}. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 389 algptorat($BDj5AB?9`<0(B)] $B$N%j%9%H(B]} $B$J$k% |
|
Line 751 algptorat($BDj5AB?9`<0(B)] $B$N%j%9%H(B]} $B$J$k% |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item Reference |
@fref{defpoly} |
@fref{defpoly} |
@end table |
@end table |
|
|
@node defpoly,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
\JP @node defpoly,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
|
\EG @node defpoly,,, Summary of functions for algebraic numbers |
@subsection @code{defpoly} |
@subsection @code{defpoly} |
@findex defpoly |
@findex defpoly |
|
|
@table @t |
@table @t |
@item defpoly(@var{alg}) |
@item defpoly(@var{alg}) |
:: @code{root} $B$NDj5AB?9`<0$rJV$9(B. |
\JP :: @code{root} $B$NDj5AB?9`<0$rJV$9(B. |
|
\EG :: Returns the defining polynomial of @b{root} @var{alg}. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@item alg |
@item alg |
$BBe?tE*?t(B (@code{root}) |
\JP $BBe?tE*?t(B (@code{root}) |
|
\EG algebraic number (@code{root}) |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
@item |
@item |
@code{root} @var{alg} $B$NDj5AB?9`<0$rJV$9(B. |
\JP @code{root} @var{alg} $B$NDj5AB?9`<0$rJV$9(B. |
|
\EG Returns the defining polynomial of @b{root} @var{alg}. |
@item |
@item |
|
\BJP |
@code{root} $B$r(B @code{#@var{n}} $B$H$9$l$P(B, $BDj5AB?9`<0$N<gJQ?t$O(B |
@code{root} $B$r(B @code{#@var{n}} $B$H$9$l$P(B, $BDj5AB?9`<0$N<gJQ?t$O(B |
@code{t#@var{n}} $B$H$J$k(B. |
@code{t#@var{n}} $B$H$J$k(B. |
|
\E |
|
\BEG |
|
If the argument @var{alg}, a @b{root}, is @code{#@var{n}}, |
|
then the main variable of its defining polynomial is |
|
@code{t#@var{n}}. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
|
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item Reference |
@fref{newalg}, @fref{alg}, @fref{algv} |
@fref{newalg}, @fref{alg}, @fref{algv} |
@end table |
@end table |
|
|
@node alg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
\JP @node alg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
|
\EG @node alg,,, Summary of functions for algebraic numbers |
@subsection @code{alg} |
@subsection @code{alg} |
@findex alg |
@findex alg |
|
|
@table @t |
@table @t |
@item alg(@var{i}) |
@item alg(@var{i}) |
:: $B%$%s%G%C%/%9$KBP1~$9$k(B @code{root} $B$rJV$9(B. |
\JP :: $B%$%s%G%C%/%9$KBP1~$9$k(B @code{root} $B$rJV$9(B. |
|
\EG :: Returns a @b{root} which correspond to the index @var{i}. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BBe?tE*?t(B (@code{root}) |
\JP $BBe?tE*?t(B (@code{root}) |
|
\EG algebraic number (@code{root}) |
@item i |
@item i |
$B@0?t(B |
\JP $B@0?t(B |
|
\EG integer |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
@item |
@item |
@code{root} @code{#@var{i}} $B$rJV$9(B. |
\JP @code{root} @code{#@var{i}} $B$rJV$9(B. |
|
\EG Returns @code{#@var{i}}, a @b{root}. |
@item |
@item |
|
\BJP |
@code{#@var{i}} $B$O%f!<%6$,D>@\F~NO$G$-$J$$$?$a(B, @code{alg(@var{i})} $B$H(B |
@code{#@var{i}} $B$O%f!<%6$,D>@\F~NO$G$-$J$$$?$a(B, @code{alg(@var{i})} $B$H(B |
$B$$$&7A$GF~NO$9$k(B. |
$B$$$&7A$GF~NO$9$k(B. |
|
\E |
|
\BEG |
|
Because @code{#@var{i}} cannot be input directly, |
|
this function provides an alternative way: input @code{alg(@var{i})}. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
|
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item Reference |
@fref{newalg}, @fref{algv} |
@fref{newalg}, @fref{algv} |
@end table |
@end table |
|
|
@node algv,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
\JP @node algv,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
|
\EG @node algv,,, Summary of functions for algebraic numbers |
@subsection @code{algv} |
@subsection @code{algv} |
@findex algv |
@findex algv |
|
|
@table @t |
@table @t |
@item algv(@var{i}) |
@item algv(@var{i}) |
:: @code{alg(@var{i})} $B$KBP1~$9$kITDj85$rJV$9(B. |
\JP :: @code{alg(@var{i})} $B$KBP1~$9$kITDj85$rJV$9(B. |
|
\EG :: Returns the associated indeterminate with @code{alg(@var{i})}. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@item i |
@item i |
$B@0?t(B |
\JP $B@0?t(B |
|
\EG integer |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
@item |
@item |
$BB?9`<0(B @code{t#@var{i}} $B$rJV$9(B. |
\JP $BB?9`<0(B @code{t#@var{i}} $B$rJV$9(B. |
|
\EG Returns an indeterminate @code{t#@var{i}} |
@item |
@item |
|
\BJP |
@code{t#@var{i}} $B$O%f!<%6$,D>@\F~NO$G$-$J$$$?$a(B, @code{algv(@var{i})} $B$H(B |
@code{t#@var{i}} $B$O%f!<%6$,D>@\F~NO$G$-$J$$$?$a(B, @code{algv(@var{i})} $B$H(B |
$B$$$&7A$GF~NO$9$k(B. |
$B$$$&7A$GF~NO$9$k(B. |
|
\E |
|
\BEG |
|
Since indeterminate @code{t#@var{i}} cannot be input directly, |
|
it is input by @code{algv(@var{i})}. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
|
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item Reference |
@fref{newalg}, @fref{defpoly}, @fref{alg} |
@fref{newalg}, @fref{defpoly}, @fref{alg} |
@end table |
@end table |
|
|
@node simpalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
\JP @node simpalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
|
\EG @node simpalg,,, Summary of functions for algebraic numbers |
@subsection @code{simpalg} |
@subsection @code{simpalg} |
@findex simpalg |
@findex simpalg |
|
|
@table @t |
@table @t |
@item simpalg(@var{rat}) |
@item simpalg(@var{rat}) |
:: $BM-M}<0$K4^$^$l$kBe?tE*?t$r4JC12=$9$k(B. |
\JP :: $BM-M}<0$K4^$^$l$kBe?tE*?t$r4JC12=$9$k(B. |
|
\EG :: Simplifies algebraic numbers in a rational expression. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BM-M}<0(B |
\JP $BM-M}<0(B |
|
\EG rational expression |
@item rat |
@item rat |
$BM-M}<0(B |
\JP $BM-M}<0(B |
|
\EG rational expression |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
@item |
@item |
@samp{sp} $B$GDj5A$5$l$F$$$k(B. |
\JP @samp{sp} $B$GDj5A$5$l$F$$$k(B. |
|
\EG Defined in the file @samp{sp}. |
@item |
@item |
|
\BJP |
$B?t(B, $BB?9`<0(B, $BM-M}<0$K4^$^$l$kBe?tE*?t$r(B, $B4^$^$l$k(B @code{root} $B$NDj5A(B |
$B?t(B, $BB?9`<0(B, $BM-M}<0$K4^$^$l$kBe?tE*?t$r(B, $B4^$^$l$k(B @code{root} $B$NDj5A(B |
$BB?9`<0$K$h$j4JC12=$9$k(B. |
$BB?9`<0$K$h$j4JC12=$9$k(B. |
|
\E |
|
\BEG |
|
Simplifies algebraic numbers contained in numbers, |
|
polynomials, and rational expressions by the defining |
|
polynomials of @b{root}'s contained in them. |
|
\E |
@item |
@item |
$B?t$N>l9g(B, $BJ,Jl$,$"$l$PM-M}2=$5$l(B, $B7k2L$O(B @code{root} $B$NB?9`<0$H$J$k(B. |
\JP $B?t$N>l9g(B, $BJ,Jl$,$"$l$PM-M}2=$5$l(B, $B7k2L$O(B @code{root} $B$NB?9`<0$H$J$k(B. |
|
\BEG |
|
If the argument is a number having the denominator, it is |
|
rationalized and the result is a polynomial in @b{root}'s. |
|
\E |
@item |
@item |
$BB?9`<0$N>l9g(B, $B3F78?t$,4JC12=$5$l$k(B. |
\JP $BB?9`<0$N>l9g(B, $B3F78?t$,4JC12=$5$l$k(B. |
|
\EG If the argument is a polynomial, each coefficient is simplified. |
@item |
@item |
$BM-M}<0$N>l9g(B, $BJ,JlJ,;R$,B?9`<0$H$7$F4JC12=$5$l$k(B. |
\JP $BM-M}<0$N>l9g(B, $BJ,JlJ,;R$,B?9`<0$H$7$F4JC12=$5$l$k(B. |
|
\BEG |
|
If the argument is a rational expression, its denominator and |
|
numerator are simplified as a polynomial. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 546 return to toplevel |
|
Line 967 return to toplevel |
|
(x+(#0+1))/(x+(-#0+1)) |
(x+(#0+1))/(x+(-#0+1)) |
@end example |
@end example |
|
|
@node algptorat,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
\JP @node algptorat,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
|
\EG @node algptorat,,, Summary of functions for algebraic numbers |
@subsection @code{algptorat} |
@subsection @code{algptorat} |
@findex algptorat |
@findex algptorat |
|
|
@table @t |
@table @t |
@item algptorat(@var{poly}) |
@item algptorat(@var{poly}) |
:: $BB?9`<0$K4^$^$l$k(B @code{root} $B$r(B, $BBP1~$9$kITDj85$KCV$-49$($k(B. |
\JP :: $BB?9`<0$K4^$^$l$k(B @code{root} $B$r(B, $BBP1~$9$kITDj85$KCV$-49$($k(B. |
|
\EG :: Substitutes the associated indeterminate for every @b{root} |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@item poly |
@item poly |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
@item |
@item |
@samp{sp} $B$GDj5A$5$l$F$$$k(B. |
\JP @samp{sp} $B$GDj5A$5$l$F$$$k(B. |
|
\EG Defined in the file @samp{sp}. |
@item |
@item |
|
\BJP |
$BB?9`<0$K4^$^$l$k(B @code{root} @code{#@var{n}} $B$rA4$F(B @code{t#@var{n}} $B$K(B |
$BB?9`<0$K4^$^$l$k(B @code{root} @code{#@var{n}} $B$rA4$F(B @code{t#@var{n}} $B$K(B |
$BCV$-49$($k(B. |
$BCV$-49$($k(B. |
|
\E |
|
\BEG |
|
Substitutes the associated indeterminate @code{t#@var{n}} |
|
for every @b{root} @code{#@var{n}} in a polynomial. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 576 return to toplevel |
|
Line 1008 return to toplevel |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item Reference |
@fref{defpoly}, @fref{algv} |
@fref{defpoly}, @fref{algv} |
@end table |
@end table |
|
|
@node rattoalgp,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
\JP @node rattoalgp,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
|
\EG @node rattoalgp,,, Summary of functions for algebraic numbers |
@subsection @code{rattoalgp} |
@subsection @code{rattoalgp} |
@findex rattoalgp |
@findex rattoalgp |
|
|
@table @t |
@table @t |
@item rattoalgp(@var{poly},@var{alglist}) |
@item rattoalgp(@var{poly},@var{alglist}) |
|
\BJP |
:: $BB?9`<0$K4^$^$l$k(B @code{root} $B$KBP1~$9$kITDj85$r(B @code{root} $B$K(B |
:: $BB?9`<0$K4^$^$l$k(B @code{root} $B$KBP1~$9$kITDj85$r(B @code{root} $B$K(B |
$BCV$-49$($k(B. |
$BCV$-49$($k(B. |
|
\E |
|
\BEG |
|
:: Substitutes a @b{root} for the associated indeterminate with the |
|
@b{root}. |
|
\E |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@item poly |
@item poly |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@item alglist |
@item alglist |
$B%j%9%H(B |
\JP $B%j%9%H(B |
|
\EG list |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
@item |
@item |
@samp{sp} $B$GDj5A$5$l$F$$$k(B. |
\JP @samp{sp} $B$GDj5A$5$l$F$$$k(B. |
|
\EG Defined in the file @samp{sp}. |
@item |
@item |
|
\BJP |
$BBh(B 2 $B0z?t$O(B @code{root} $B$N%j%9%H$G$"$k(B. @code{rattoalgp()} $B$O(B, $B$3$N(B @code{root} |
$BBh(B 2 $B0z?t$O(B @code{root} $B$N%j%9%H$G$"$k(B. @code{rattoalgp()} $B$O(B, $B$3$N(B @code{root} |
$B$KBP1~$9$kITDj85$r(B, $B$=$l$>$l(B @code{root} $B$KCV$-49$($k(B. |
$B$KBP1~$9$kITDj85$r(B, $B$=$l$>$l(B @code{root} $B$KCV$-49$($k(B. |
|
\E |
|
\BEG |
|
The second argument is a list of @b{root}'s. Function @code{rattoalgp()} |
|
substitutes a @b{root} for the associated indeterminate of the @b{root}. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 613 return to toplevel |
|
Line 1063 return to toplevel |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
|
\EG @item Reference |
@fref{alg}, @fref{algv} |
@fref{alg}, @fref{algv} |
@end table |
@end table |
|
|
@node gcda,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
\JP @node cr_gcda,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
@subsection @code{gcda} |
\EG @node cr_gcda,,, Summary of functions for algebraic numbers |
@findex gcda |
@subsection @code{cr_gcda} |
|
@findex cr_gcda |
|
|
@table @t |
@table @t |
@item gcda(@var{poly1},@var{poly2},@var{alist}) |
@item cr_gcda(@var{poly1},@var{poly2}) |
:: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$N(B GCD |
\JP :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$N(B GCD |
|
\EG :: GCD of two uni-variate polynomials over an algebraic number field. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@item poly1, poly2 |
@item poly1, poly2 |
$BB?9`<0(B |
\JP $BB?9`<0(B |
@item alist |
\EG polynomial |
$B%j%9%H(B |
|
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
@item |
@item |
@samp{sp} $B$GDj5A$5$l$F$$$k(B. |
\JP @samp{sp} $B$GDj5A$5$l$F$$$k(B. |
|
\EG Defined in the file @samp{sp}. |
@item |
@item |
2 $B$D$N(B 1 $BJQ?tB?9`<0$N(B GCD $B$r5a$a$k(B. |
\JP 2 $B$D$N(B 1 $BJQ?tB?9`<0$N(B GCD $B$r5a$a$k(B. |
@item |
\EG Finds the GCD of two uni-variate polynomials. |
@var{alist} $B$OF~NO$K8=$l$k(B @code{root} $B$*$h$S(B, $B$=$l$i$NDj5A$K4^$^$l$k(B |
|
@code{root} $B$r:F5"E*$K<h$j=P$7$FJB$Y$?%j%9%H(B. @var{a} $B$,(B @var{b} $B$N(B |
|
$BDj5A$K4^$^$l$F$$$k>l9g(B, @var{a} $B$O(B @var{b} $B$h$j8e(B ($B1&(B) $B$KJB$P$J$1$l$P(B |
|
$B$J$i$J$$(B. |
|
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 652 return to toplevel |
|
Line 1102 return to toplevel |
|
[77] Y=x^6+6*x^5+24*x^4+8*x^3-48*x^2+384*x+1024$ |
[77] Y=x^6+6*x^5+24*x^4+8*x^3-48*x^2+384*x+1024$ |
[78] A=newalg(X); |
[78] A=newalg(X); |
(#0) |
(#0) |
[79] gcda(X,subst(Y,x,x+A),[A]); |
[79] cr_gcda(X,subst(Y,x,x+A)); |
x+(-#0) |
x+(-#0) |
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
@fref{gr hgr gr_mod}, @fref{asq af} |
\EG @item Reference |
|
@fref{gr hgr gr_mod}, @fref{asq af af_noalg} |
@end table |
@end table |
|
|
@node sp_norm,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
\JP @node sp_norm,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
|
\EG @node sp_norm,,, Summary of functions for algebraic numbers |
@subsection @code{sp_norm} |
@subsection @code{sp_norm} |
@findex sp_norm |
@findex sp_norm |
|
|
@table @t |
@table @t |
@item sp_norm(@var{alg},@var{var},@var{poly},@var{alglist}) |
@item sp_norm(@var{alg},@var{var},@var{poly},@var{alglist}) |
:: $BBe?tBN>e$G$N%N%k%`$N7W;;(B |
\JP :: $BBe?tBN>e$G$N%N%k%`$N7W;;(B |
|
\EG :: Norm computation over an algebraic number field. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@item var |
@item var |
@var{poly} $B$N<gJQ?t(B |
\JP @var{poly} $B$N<gJQ?t(B |
|
\EG The main variable of @var{poly} |
@item poly |
@item poly |
1 $BJQ?tB?9`<0(B |
\JP 1 $BJQ?tB?9`<0(B |
|
\EG univariate polynomial |
@item alg |
@item alg |
@code{root} |
@code{root} |
@item alglist |
@item alglist |
@code{root} $B$N%j%9%H(B |
\JP @code{root} $B$N%j%9%H(B |
|
\EG @code{root} list |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
@item |
@item |
@samp{sp} $B$GDj5A$5$l$F$$$k(B. |
\JP @samp{sp} $B$GDj5A$5$l$F$$$k(B. |
|
\EG Defined in the file @samp{sp}. |
@item |
@item |
|
\BJP |
@var{poly} $B$N(B, @var{alg} $B$K4X$9$k%N%k%`$r$H$k(B. $B$9$J$o$A(B, |
@var{poly} $B$N(B, @var{alg} $B$K4X$9$k%N%k%`$r$H$k(B. $B$9$J$o$A(B, |
@b{K} = @b{Q}(@var{alglist} \ @{@var{alg}@}) $B$H$9$k$H$-(B, |
@b{K} = @b{Q}(@var{alglist} \ @{@var{alg}@}) $B$H$9$k$H$-(B, |
@var{poly} $B$K8=$l$k(B @var{alg} $B$r(B, @var{alg} $B$N(B @b{K} $B>e$N6&Lr$KCV$-49$($?$b$N(B |
@var{poly} $B$K8=$l$k(B @var{alg} $B$r(B, @var{alg} $B$N(B @b{K} $B>e$N6&Lr$KCV$-49$($?$b$N(B |
$BA4$F$N@Q$rJV$9(B. |
$BA4$F$N@Q$rJV$9(B. |
|
\E |
|
\BEG |
|
Computes the norm of @var{poly} with respect to @var{alg}. |
|
Namely, if we write |
|
@b{K} = @b{Q}(@var{alglist} \ @{@var{alg}@}), |
|
The function returns a product of all conjugates of @var{poly}, |
|
where the conjugate of polynomial @var{poly} is a polynomial |
|
in which the algebraic number @var{alg} is substituted |
|
for its conjugate over @b{K}. |
|
\E |
@item |
@item |
$B7k2L$O(B @b{K} $B>e$NB?9`<0$H$J$k(B. |
\JP $B7k2L$O(B @b{K} $B>e$NB?9`<0$H$J$k(B. |
|
\EG The result is a polynomial over @b{K}. |
@item |
@item |
|
\BJP |
$B<B:]$K$OF~NO$K$h$j>l9g$o$1$,9T$o$l(B, $B=*7k<0$ND>@\7W;;$dCf9q>jM>DjM}$K(B |
$B<B:]$K$OF~NO$K$h$j>l9g$o$1$,9T$o$l(B, $B=*7k<0$ND>@\7W;;$dCf9q>jM>DjM}$K(B |
$B$h$j7W;;$5$l$k$,(B, $B:GE,$JA*Br$,9T$o$l$F$$$k$H$O8B$i$J$$(B. |
$B$h$j7W;;$5$l$k$,(B, $B:GE,$JA*Br$,9T$o$l$F$$$k$H$O8B$i$J$$(B. |
$BBg0hJQ?t(B @code{USE_RES} $B$r(B 1 $B$K@_Dj$9$k$3$H$K$h$j(B, $B>o$K=*7k<0$K$h$j7W;;(B |
$BBg0hJQ?t(B @code{USE_RES} $B$r(B 1 $B$K@_Dj$9$k$3$H$K$h$j(B, $B>o$K=*7k<0$K$h$j7W;;(B |
$B$5$;$k$3$H$,$G$-$k(B. |
$B$5$;$k$3$H$,$G$-$k(B. |
|
\E |
|
\BEG |
|
The method of computation depends on the input. Currently |
|
direct computation of resultant and Chinese remainder theorem |
|
are used but the selection is not necessarily optimal. |
|
By setting the global variable @code{USE_RES} to 1, the builtin function |
|
@code{res()} is always used. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 711 x^12+2*x^8+5*x^4+1 |
|
Line 1190 x^12+2*x^8+5*x^4+1 |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
@fref{res}, @fref{asq af} |
\EG @item Reference |
|
@fref{res}, @fref{asq af af_noalg} |
@end table |
@end table |
|
|
@node asq af,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
\JP @node asq af af_noalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
@subsection @code{asq}, @code{af} |
\EG @node asq af af_noalg,,, Summary of functions for algebraic numbers |
|
@subsection @code{asq}, @code{af}, @code{af_noalg} |
@findex asq |
@findex asq |
@findex af |
@findex af |
|
@findex af_noalg |
|
|
@table @t |
@table @t |
@item asq(@var{poly}) |
@item asq(@var{poly}) |
:: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$NL5J?J}J,2r(B |
\JP :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$NL5J?J}J,2r(B |
|
\BEG |
|
:: Square-free factorization of polynomial @var{poly} over an |
|
algebraic number field. |
|
\E |
@item af(@var{poly},@var{alglist}) |
@item af(@var{poly},@var{alglist}) |
:: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$N0x?tJ,2r(B |
@itemx af_noalg(@var{poly},@var{defpolylist}) |
|
\JP :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$N0x?tJ,2r(B |
|
\BEG |
|
:: Factorization of polynomial @var{poly} over an |
|
algebraic number field. |
|
\E |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B%j%9%H(B |
\JP $B%j%9%H(B |
|
\EG list |
@item poly |
@item poly |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@item alglist |
@item alglist |
@code{root} $B$N%j%9%H(B |
\JP @code{root} $B$N%j%9%H(B |
|
\EG @code{root} list |
|
@item defpolylist |
|
\JP @code{root} $B$rI=$9ITDj85$HDj5AB?9`<0$N%Z%"$N%j%9%H(B |
|
\EG @code{root} list of pairs of an indeterminate and a polynomial |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
@item |
@item |
$B$$$:$l$b(B @samp{sp} $B$GDj5A$5$l$F$$$k(B. |
\JP $B$$$:$l$b(B @samp{sp} $B$GDj5A$5$l$F$$$k(B. |
|
\EG Both defined in the file @samp{sp}. |
@item |
@item |
|
\BJP |
@code{root} $B$r4^$^$J$$>l9g$O@0?t>e$NH!?t$,8F$S=P$5$l9bB.$G$"$k$,(B, |
@code{root} $B$r4^$^$J$$>l9g$O@0?t>e$NH!?t$,8F$S=P$5$l9bB.$G$"$k$,(B, |
@code{root} $B$r4^$`>l9g$K$O(B, @code{gcda()} $B$,5/F0$5$l$k$?$a$7$P$7$P(B |
@code{root} $B$r4^$`>l9g$K$O(B, @code{cr_gcda()} $B$,5/F0$5$l$k$?$a$7$P$7$P(B |
$B;~4V$,$+$+$k(B. |
$B;~4V$,$+$+$k(B. |
|
\E |
|
\BEG |
|
If the inputs contain no @b{root}'s, these functions run fast |
|
since they invoke functions over the integers. |
|
In contrast to this, if the inputs contain @b{root}'s, they sometimes |
|
take a long time, since @code{cr_gcda()} is invoked. |
|
\E |
@item |
@item |
|
\BJP |
@code{af()} $B$O(B, $B4pACBN$N;XDj(B, $B$9$J$o$ABh(B 2 $B0z?t$N(B, @code{root} $B$N%j%9%H(B |
@code{af()} $B$O(B, $B4pACBN$N;XDj(B, $B$9$J$o$ABh(B 2 $B0z?t$N(B, @code{root} $B$N%j%9%H(B |
$B$N;XDj$,I,MW$G$"$k(B. |
$B$N;XDj$,I,MW$G$"$k(B. |
|
\E |
|
\BEG |
|
Function @code{af()} requires the specification of base field, |
|
i.e., list of @b{root}'s for its second argument. |
|
\E |
@item |
@item |
|
\BJP |
@code{alglist} $B$G;XDj$5$l$k(B @code{root} $B$O(B, $B8e$GDj5A$5$l$?$b$N$[$IA0$N(B |
@code{alglist} $B$G;XDj$5$l$k(B @code{root} $B$O(B, $B8e$GDj5A$5$l$?$b$N$[$IA0$N(B |
$BJ}$KMh$J$1$l$P$J$i$J$$(B. |
$BJ}$KMh$J$1$l$P$J$i$J$$(B. |
|
\E |
|
\BEG |
|
In the second argument @code{alglist}, @b{root} defined last must come |
|
first. |
|
\E |
@item |
@item |
$B7k2L$O(B, $BDL>o$NL5J?J}J,2r(B, $B0x?tJ,2r$HF1MM(B [@b{$B0x;R(B}, @b{$B=EJ#EY(B}] $B$N%j%9%H$G$"$k(B. |
\BJP |
|
@code{af(F,AL)} $B$K$*$$$F(B, @code{AL} $B$OBe?tE*?t$N%j%9%H$G$"$j(B, $BM-M}?tBN$N(B |
|
$BBe?t3HBg$rI=$9(B. @code{AL=[An,...,A1]} $B$H=q$/$H$-(B, $B3F(B @code{Ak} $B$O(B, $B$=$l$h$j(B |
|
$B1&$K$"$kBe?tE*?t$r78?t$H$7$?(B, $B%b%K%C%/$JDj5AB?9`<0$GDj5A$5$l$F$$$J$1$l$P(B |
|
$B$J$i$J$$(B. |
|
\E |
|
\BEG |
|
In @code{af(F,AL)}, @code{AL} denotes a list of @code{roots} and it |
|
represents an algebraic number field. In @code{AL=[An,...,A1]} each |
|
@code{Ak} should be defined as a root of a defining polynomial |
|
whose coefficients are in @code{Q(A(k+1),...,An)}. |
|
\E |
|
|
|
@example |
|
[1] A1 = newalg(x^2+1); |
|
[2] A2 = newalg(x^2+A1); |
|
[3] A3 = newalg(x^2+A2*x+A1); |
|
[4] af(x^2+A2*x+A1,[A2,A1]); |
|
[[x^2+(#1)*x+(#0),1]] |
|
@end example |
|
|
|
\BJP |
|
@code{af_noalg} $B$G$O(B, @var{poly} $B$K4^$^$l$kBe?tE*?t(B @var{ai} $B$rITDj85(B @var{vi} |
|
$B$GCV$-49$($k(B. @code{defpolylist} $B$O(B, @var{[[vn,dn(vn,...,v1)],...,[v1,d(v1)]]} |
|
$B$J$k%j%9%H$G$"$k(B. $B$3$3$G(B @var{di(vi,...,v1)} $B$O(B @var{ai} $B$NDj5AB?9`<0$K$*$$$F(B |
|
$BBe?tE*?t$rA4$F(B @var{vj} $B$KCV$-49$($?$b$N$G$"$k(B. |
|
\E |
|
\BEG |
|
To call @code{sp_noalg}, one should replace each algebraic number |
|
@var{ai} in @var{poly} with an indeterminate @var{vi}. @code{defpolylist} |
|
is a list @var{[[vn,dn(vn,...,v1)],...,[v1,d(v1)]]}. In this expression |
|
@var{di(vi,...,v1)} is a defining polynomial of @var{ai} represented |
|
as a multivariate polynomial. |
|
\E |
|
|
|
@example |
|
[1] af_noalg(x^2+a2*x+a1,[[a2,a2^2+a1],[a1,a1^2+1]]); |
|
[[x^2+a2*x+a1,1]] |
|
@end example |
|
|
@item |
@item |
$B=EJ#EY$r9~$a$?0x;R$NA4$F$N@Q$O(B, @var{poly} $B$HDj?tG\$N0c$$$,$"$jF@$k(B. |
\BJP |
|
$B7k2L$O(B, $BDL>o$NL5J?J}J,2r(B, $B0x?tJ,2r$HF1MM(B [@b{$B0x;R(B}, @b{$B=EJ#EY(B}] |
|
$B$N%j%9%H$G$"$k(B. @code{af_noalg} $B$N>l9g(B, @b{$B0x;R(B} $B$K8=$l$kBe?tE*?t$O(B, |
|
@var{defpolylist} $B$K=>$C$FITDj85$KCV$-49$($i$l$k(B. |
|
\E |
|
\BEG |
|
The result is a list, as a result of usual factorization, whose elements |
|
is of the form [@b{factor}, @b{multiplicity}]. |
|
In the result of @code{af_noalg}, algebraic numbers in @v{factor} are |
|
replaced by the indeterminates according to @var{defpolylist}. |
|
\E |
|
@item |
|
\JP $B=EJ#EY$r9~$a$?0x;R$NA4$F$N@Q$O(B, @var{poly} $B$HDj?tG\$N0c$$$,$"$jF@$k(B. |
|
\BEG |
|
The product of all factors with multiplicities counted may differ from |
|
the input polynomial by a constant. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
|
[98] A = newalg(t^2-2); |
|
(#0) |
[99] asq(-x^4+6*x^3+(2*alg(0)-9)*x^2+(-6*alg(0))*x-2); |
[99] asq(-x^4+6*x^3+(2*alg(0)-9)*x^2+(-6*alg(0))*x-2); |
[[-x^2+3*x+(#0),2]] |
[[-x^2+3*x+(#0),2]] |
[100] af(-x^2+3*x+alg(0),[alg(0)]); |
[100] af(-x^2+3*x+alg(0),[alg(0)]); |
[[x+(#0-1),1],[-x+(#0+2),1]] |
[[x+(#0-1),1],[-x+(#0+2),1]] |
|
[101] af_noalg(-x^2+3*x+a,[[a,x^2-2]]); |
|
[[x+a-1,1],[-x+a+2,1]] |
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
@fref{gcda}, @fref{fctr sqfr} |
\EG @item Reference |
|
@fref{cr_gcda}, @fref{fctr sqfr} |
@end table |
@end table |
|
|
@node sp,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
\JP @node sp sp_noalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B |
@subsection @code{sp} |
\EG @node sp sp_noalg,,, Summary of functions for algebraic numbers |
|
@subsection @code{sp}, @code{sp_noalg} |
@findex sp |
@findex sp |
|
|
@table @t |
@table @t |
@item sp(@var{poly}) |
@item sp(@var{poly}) |
:: $B:G>.J,2rBN$r5a$a$k(B. |
@itemx sp_noalg(@var{poly}) |
|
\JP :: $B:G>.J,2rBN$r5a$a$k(B. |
|
\EG :: Finds the splitting field of polynomial @var{poly} and splits. |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
$B%j%9%H(B |
\JP $B%j%9%H(B |
|
\EG list |
@item poly |
@item poly |
$BB?9`<0(B |
\JP $BB?9`<0(B |
|
\EG polynomial |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
@item |
@item |
@samp{sp} $B$GDj5A$5$l$F$$$k(B. |
\JP @samp{sp} $B$GDj5A$5$l$F$$$k(B. |
|
\EG Defined in the file @samp{sp}. |
@item |
@item |
|
\BJP |
$BM-M}?t78?t$N(B 1 $BJQ?tB?9`<0(B @var{poly} $B$N:G>.J,2rBN(B, $B$*$h$S$=$NBN>e$G$N(B |
$BM-M}?t78?t$N(B 1 $BJQ?tB?9`<0(B @var{poly} $B$N:G>.J,2rBN(B, $B$*$h$S$=$NBN>e$G$N(B |
@var{poly} $B$N(B 1 $B<!0x;R$X$NJ,2r$r5a$a$k(B. |
@var{poly} $B$N(B 1 $B<!0x;R$X$NJ,2r$r5a$a$k(B. |
|
\E |
|
\BEG |
|
Finds the splitting field of @var{poly}, an uni-variate polynomial |
|
over with rational coefficients, and splits it into its linear factors |
|
over the field. |
|
\E |
@item |
@item |
|
\BJP |
$B7k2L$O(B, @var{poly} $B$N0x;R$N%j%9%H$H(B, $B:G>.J,2rBN$N(B, $BC`<!3HBg$K$h$kI=8=(B |
$B7k2L$O(B, @var{poly} $B$N0x;R$N%j%9%H$H(B, $B:G>.J,2rBN$N(B, $BC`<!3HBg$K$h$kI=8=(B |
$B$+$i$J$k%j%9%H$G$"$k(B. |
$B$+$i$J$k%j%9%H$G$"$k(B. @code{sp_noalg} $B$G$O(B, $BA4$F$NBe?tE*?t$,(B, $BBP1~$9$k(B |
|
$BITDj85(B ($BB($A(B @code{#i} $B$KBP$9$k(B @code{t#i}) $B$KCV$-49$($i$l$k(B. $B$3$l$K(B |
|
$B$h$j(B, @code{sp_noalg} $B$N=PNO$O(B, $B@0?t78?tB?JQ?tB?9`<0$N%j%9%H$H$J$k(B. |
|
\E |
|
\BEG |
|
The result consists of a two element list: The first element is |
|
the list of all linear factors of @var{poly}; the second element is |
|
a list which represents the successive extension of the field. |
|
In the result of @code{sp_noalg} all the algebraic numbers are replaced |
|
by the special indeterminate associated with it, that is @code{t#i} |
|
for @code{#i}. By this operation the result of @code{sp_noalg} |
|
is a list containing only integral polynomials. |
|
\E |
@item |
@item |
|
\BJP |
$B:G>.J,2rBN$O(B, @code{[root,algptorat(defpoly(root))]} $B$N%j%9%H$H$7$F(B |
$B:G>.J,2rBN$O(B, @code{[root,algptorat(defpoly(root))]} $B$N%j%9%H$H$7$F(B |
$BI=8=$5$l$F$$$k(B. $B$9$J$o$A(B, $B5a$a$k:G>.J,2rBN$O(B, $BM-M}?tBN$K(B, $B$3$N(B @code{root} |
$BI=8=$5$l$F$$$k(B. $B$9$J$o$A(B, $B5a$a$k:G>.J,2rBN$O(B, $BM-M}?tBN$K(B, $B$3$N(B @code{root} |
$B$rA4$FE:2C$7$?BN$H$7$FF@$i$l$k(B. $BE:2C$O(B, $B1&$NJ}$N(B @code{root} $B$+$i=g$K(B |
$B$rA4$FE:2C$7$?BN$H$7$FF@$i$l$k(B. $BE:2C$O(B, $B1&$NJ}$N(B @code{root} $B$+$i=g$K(B |
$B9T$o$l$k(B. |
$B9T$o$l$k(B. |
|
\E |
|
\BEG |
|
The splitting field is represented as a list of pairs of form |
|
@code{[root,algptorat(defpoly(root))]}. |
|
In more detail, the list is interpreted as a representation |
|
of successive extension obtained by adjoining @b{root}'s |
|
to the rational number field. Adjoining is performed from the right |
|
@b{root} to the left. |
|
\E |
@item |
@item |
|
\BJP |
@code{sp()} $B$O(B, $BFbIt$G%N%k%`$N7W;;$N$?$a$K(B @code{sp_norm()} $B$r$7$P$7$P(B |
@code{sp()} $B$O(B, $BFbIt$G%N%k%`$N7W;;$N$?$a$K(B @code{sp_norm()} $B$r$7$P$7$P(B |
$B5/F0$9$k(B. $B%N%k%`$N7W;;$O(B, $B>u67$K1~$8$F$5$^$6$^$JJ}K!$G9T$o$l$k$,(B, |
$B5/F0$9$k(B. $B%N%k%`$N7W;;$O(B, $B>u67$K1~$8$F$5$^$6$^$JJ}K!$G9T$o$l$k$,(B, |
$B$=$3$GMQ$$$i$l$kJ}K!$,:GA1$H$O8B$i$:(B, $BC1=c$J=*7k<0$N7W;;$NJ}$,9bB.(B |
$B$=$3$GMQ$$$i$l$kJ}K!$,:GA1$H$O8B$i$:(B, $BC1=c$J=*7k<0$N7W;;$NJ}$,9bB.(B |
$B$G$"$k>l9g$b$"$k(B. |
$B$G$"$k>l9g$b$"$k(B. |
$BBg0hJQ?t(B @code{USE_RES} $B$r(B 1 $B$K@_Dj$9$k$3$H$K$h$j(B, $B>o$K=*7k<0$K$h$j7W;;(B |
$BBg0hJQ?t(B @code{USE_RES} $B$r(B 1 $B$K@_Dj$9$k$3$H$K$h$j(B, $B>o$K=*7k<0$K$h$j7W;;(B |
$B$5$;$k$3$H$,$G$-$k(B. |
$B$5$;$k$3$H$,$G$-$k(B. |
|
\E |
|
\BEG |
|
@code{sp()} invokes @code{sp_norm()} internally. Computation of norm |
|
is done by several methods according to the situation but the algorithm |
|
selection is not always optimal and a simple resultant computation is |
|
often superior to the other methods. |
|
By setting the global variable @code{USE_RES} to 1, |
|
the builtin function @code{res()} is always used. |
|
\E |
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 819 x^12+2*x^8+5*x^4+1 |
|
Line 1443 x^12+2*x^8+5*x^4+1 |
|
@end example |
@end example |
|
|
@table @t |
@table @t |
@item $B;2>H(B |
\JP @item $B;2>H(B |
@fref{asq af}, @fref{defpoly}, @fref{algptorat}, @fref{sp_norm}. |
\EG @item Reference |
|
@fref{asq af af_noalg}, @fref{defpoly}, @fref{algptorat}, @fref{sp_norm}. |
@end table |
@end table |
|
|