[BACK]Return to algnum.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts

Diff for /OpenXM/src/asir-doc/parts/algnum.texi between version 1.3 and 1.4

version 1.3, 2000/03/10 07:18:40 version 1.4, 2000/03/17 02:17:03
Line 1 
Line 1 
 @comment $OpenXM: OpenXM/src/asir-doc/parts/algnum.texi,v 1.2 1999/12/21 02:47:30 noro Exp $  @comment $OpenXM: OpenXM/src/asir-doc/parts/algnum.texi,v 1.3 2000/03/10 07:18:40 noro Exp $
 \BJP  \BJP
 @node $BBe?tE*?t$K4X$9$k1i;;(B,,, Top  @node $BBe?tE*?t$K4X$9$k1i;;(B,,, Top
 @chapter $BBe?tE*?t$K4X$9$k1i;;(B  @chapter $BBe?tE*?t$K4X$9$k1i;;(B
Line 706  may yield a polynomial which differs by a constant.
Line 706  may yield a polynomial which differs by a constant.
 * rattoalgp::  * rattoalgp::
 * cr_gcda::  * cr_gcda::
 * sp_norm::  * sp_norm::
 * asq af::  * asq af af_noalg::
 * sp::  * sp sp_noalg::
 @end menu  @end menu
   
 \JP @node newalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B  \JP @node newalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
Line 1109  x+(-#0)
Line 1109  x+(-#0)
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item Reference  \EG @item Reference
 @fref{gr hgr gr_mod}, @fref{asq af}  @fref{gr hgr gr_mod}, @fref{asq af af_noalg}
 @end table  @end table
   
 \JP @node sp_norm,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B  \JP @node sp_norm,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
Line 1192  x^12+2*x^8+5*x^4+1
Line 1192  x^12+2*x^8+5*x^4+1
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item Reference  \EG @item Reference
 @fref{res}, @fref{asq af}  @fref{res}, @fref{asq af af_noalg}
 @end table  @end table
   
 \JP @node asq af,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B  \JP @node asq af af_noalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
 \EG @node asq af,,, Summary of functions for algebraic numbers  \EG @node asq af af_noalg,,, Summary of functions for algebraic numbers
 @subsection @code{asq}, @code{af}  @subsection @code{asq}, @code{af}, @code{af_noalg}
 @findex asq  @findex asq
 @findex af  @findex af
   @findex af_noalg
   
 @table @t  @table @t
 @item asq(@var{poly})  @item asq(@var{poly})
Line 1209  x^12+2*x^8+5*x^4+1
Line 1210  x^12+2*x^8+5*x^4+1
 algebraic number field.  algebraic number field.
 \E  \E
 @item af(@var{poly},@var{alglist})  @item af(@var{poly},@var{alglist})
   @itemx af_noalg(@var{poly},@var{defpolylist})
 \JP :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$N0x?tJ,2r(B  \JP :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$N0x?tJ,2r(B
 \BEG  \BEG
 :: Factorization of polynomial @var{poly} over an  :: Factorization of polynomial @var{poly} over an
Line 1226  algebraic number field.
Line 1228  algebraic number field.
 @item alglist  @item alglist
 \JP @code{root} $B$N%j%9%H(B  \JP @code{root} $B$N%j%9%H(B
 \EG @code{root} list  \EG @code{root} list
   @item defpolylist
   \JP @code{root} $B$rI=$9ITDj85$HDj5AB?9`<0$N%Z%"$N%j%9%H(B
   \EG @code{root} list of pairs of an indeterminate and a polynomial
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
Line 1263  In the second argument @code{alglist}, @b{root} define
Line 1268  In the second argument @code{alglist}, @b{root} define
 first.  first.
 \E  \E
 @item  @item
 \JP $B7k2L$O(B, $BDL>o$NL5J?J}J,2r(B, $B0x?tJ,2r$HF1MM(B [@b{$B0x;R(B}, @b{$B=EJ#EY(B}] $B$N%j%9%H$G$"$k(B.  \BJP
   @code{sp_noalg} $B$G$O(B, @var{poly} $B$K4^$^$l$kBe?tE*?t(B @var{ai} $B$rITDj85(B @var{vi}
   $B$GCV$-49$($k(B. @code{defpolylist} $B$O(B, @var{[[vn,dn(vn,...,v1)],...,[v1,d(v1)]]}
   $B$J$k%j%9%H$G$"$k(B. $B$3$3$G(B @var{di(vi,...,v1)} $B$O(B @var{ai} $B$NDj5AB?9`<0$K$*$$$F(B
   $BBe?tE*?t$rA4$F(B @var{vj} $B$KCV$-49$($?$b$N$G$"$k(B.
   \E
 \BEG  \BEG
   To call @code{sp_noalg}, one should replace each algebraic number
   @var{ai} in @var{poly} with an indeterminate @var{vi}. @code{defpolylist}
   is a list @var{[[vn,dn(vn,...,v1)],...,[v1,d(v1)]]}. In this expression
   @var{di(vi,...,v1)} is a defining polynomial of @var{ai} represented
   as a multivariate polynomial.
   \E
   @item
   \BJP
   $B7k2L$O(B, $BDL>o$NL5J?J}J,2r(B, $B0x?tJ,2r$HF1MM(B [@b{$B0x;R(B}, @b{$B=EJ#EY(B}]
   $B$N%j%9%H$G$"$k(B. @code{af_noalg} $B$N>l9g(B, @b{$B0x;R(B} $B$K8=$l$kBe?tE*?t$O(B,
   @var{defpolylist} $B$K=>$C$FITDj85$KCV$-49$($i$l$k(B.
   \E
   \BEG
 The result is a list, as a result of usual factorization, whose elements  The result is a list, as a result of usual factorization, whose elements
 is of the form [@b{factor}, @b{multiplicity}].  is of the form [@b{factor}, @b{multiplicity}].
   In the result of @code{af_noalg}, algebraic numbers in @v{factor} are
   replaced by the indeterminates according to @var{defpolylist}.
 \E  \E
 @item  @item
 \JP $B=EJ#EY$r9~$a$?0x;R$NA4$F$N@Q$O(B, @var{poly} $B$HDj?tG\$N0c$$$,$"$jF@$k(B.  \JP $B=EJ#EY$r9~$a$?0x;R$NA4$F$N@Q$O(B, @var{poly} $B$HDj?tG\$N0c$$$,$"$jF@$k(B.
Line 1289  the input polynomial by a constant.
Line 1314  the input polynomial by a constant.
 @fref{cr_gcda}, @fref{fctr sqfr}  @fref{cr_gcda}, @fref{fctr sqfr}
 @end table  @end table
   
 \JP @node sp,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B  \JP @node sp sp_noalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
 \EG @node sp,,, Summary of functions for algebraic numbers  \EG @node sp sp_noalg,,, Summary of functions for algebraic numbers
 @subsection @code{sp}  @subsection @code{sp}, @code{sp_noalg}
 @findex sp  @findex sp
   
 @table @t  @table @t
 @item sp(@var{poly})  @item sp(@var{poly})
   @itemx sp_noalg(@var{poly})
 \JP :: $B:G>.J,2rBN$r5a$a$k(B.  \JP :: $B:G>.J,2rBN$r5a$a$k(B.
 \EG :: Finds the splitting field of polynomial @var{poly} and splits.  \EG :: Finds the splitting field of polynomial @var{poly} and splits.
 @end table  @end table
Line 1326  over the field.
Line 1352  over the field.
 @item  @item
 \BJP  \BJP
 $B7k2L$O(B, @var{poly} $B$N0x;R$N%j%9%H$H(B, $B:G>.J,2rBN$N(B, $BC`<!3HBg$K$h$kI=8=(B  $B7k2L$O(B, @var{poly} $B$N0x;R$N%j%9%H$H(B, $B:G>.J,2rBN$N(B, $BC`<!3HBg$K$h$kI=8=(B
 $B$+$i$J$k%j%9%H$G$"$k(B.  $B$+$i$J$k%j%9%H$G$"$k(B. @code{sp_noalg} $B$G$O(B, $BA4$F$NBe?tE*?t$,(B, $BBP1~$9$k(B
   $BITDj85(B ($BB($A(B @code{#i} $B$KBP$9$k(B @code{t#i}) $B$KCV$-49$($i$l$k(B. $B$3$l$K(B
   $B$h$j(B, @code{sp_noalg} $B$N=PNO$O(B, $B@0?t78?tB?JQ?tB?9`<0$N%j%9%H$H$J$k(B.
 \E  \E
 \BEG  \BEG
 The result consists of a two element list: The first element is  The result consists of a two element list: The first element is
 the list of all linear factors of @var{poly}; the second element is  the list of all linear factors of @var{poly}; the second element is
 a list which represents the successive extension of the field.  a list which represents the successive extension of the field.
   In the result of @code{sp_noalg} all the algebraic numbers are replaced
   by the special indeterminate associated with it, that is @code{t#i}
   for @code{#i}. By this operation the result of @code{sp_noalg}
   is a list containing only integral polynomials.
 \E  \E
 @item  @item
 \BJP  \BJP
Line 1382  the builtin function @code{res()} is always used.
Line 1414  the builtin function @code{res()} is always used.
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item Reference  \EG @item Reference
 @fref{asq af}, @fref{defpoly}, @fref{algptorat}, @fref{sp_norm}.  @fref{asq af af_noalg}, @fref{defpoly}, @fref{algptorat}, @fref{sp_norm}.
 @end table  @end table
   

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.4

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>