| version 1.2, 2005/06/28 00:22:19 |
version 1.4, 2005/07/01 04:24:54 |
|
|
| \usepackage{makeidx} % allows index generation |
\usepackage{makeidx} % allows index generation |
| \usepackage{graphicx} % standard LaTeX graphics tool |
\usepackage{graphicx} % standard LaTeX graphics tool |
| % for including eps-figure files |
% for including eps-figure files |
| \usepackage{subeqnar} % subnumbers individual equations |
%\usepackage{subeqnar} % subnumbers individual equations |
| % within an array |
% within an array |
| \usepackage{multicol} % used for the two-column index |
%\usepackage{multicol} % used for the two-column index |
| \usepackage{cropmark} % cropmarks for pages without |
%\usepackage{cropmark} % cropmarks for pages without |
| % pagenumbers |
% pagenumbers |
| \usepackage{math} % placeholder for figures |
%\usepackage{math} % placeholder for figures |
| \makeindex % used for the subject index |
\makeindex % used for the subject index |
| % please use the style sprmidx.sty with |
% please use the style sprmidx.sty with |
| % your makeindex program |
% your makeindex program |
|
|
| |
|
| {\tt sm1.gb } (Gr\"obner basis), |
{\tt sm1.gb } (Gr\"obner basis), |
| {\tt sm1.syz} (syzygy), |
{\tt sm1.syz} (syzygy), |
| %{\tt annfs} (Annhilating ideal of $f^s$), |
{\tt sm1.bfunction},{\tt bfunction} (the global $b$-function of a polynomial) |
| {\tt ann} (Annhilating ideal of $f^s$),\\ |
|
| {\tt sm1.bfunction},{\tt bfunction} (the global $b$-function of a polynomial)\\ |
|
| %{\tt schreyer} (free resolution by the Schreyer method), |
|
| %{\tt vMinRes} (V-minimal free resolution),\\ |
|
| %{\tt characteristic} (Characteristic variety), |
|
| {\tt sm1.restriction} in the derived category of $D$-modules, |
{\tt sm1.restriction} in the derived category of $D$-modules, |
| %{\tt integration} in the derived category, |
{\tt sm1.slope}, |
| %{\tt tensor} in the derived category, |
{\tt sm1.sm1(annfs)} (Annhilating ideal of $f^s$), |
| %{\tt dual} (Dual as a D-module), |
{\tt sm1.sm1(schreyer)} (free resolution by the Schreyer method), |
| {\tt sm1.slope}. |
%{\tt sm1.sm1(vMinRes)} (V-minimal free resolution),\\ |
| |
{\tt sm1.sm1(characteristic)} (Characteristic variety), |
| |
{\tt sm1.sm1(integration)} in the derived category, |
| |
%{\tt sm1.sm1(tensor)} in the derived category, |
| |
{\tt sm1.sm1(res-dual)} (Dual as a D-module). |
| |
|
| \item Cohomology groups |
\item Cohomology groups |
| |
|