[BACK]Return to risa-asir.tex CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / papers

Diff for /OpenXM/src/asir-doc/papers/risa-asir.tex between version 1.1 and 1.2

version 1.1, 2005/06/22 07:22:07 version 1.2, 2005/06/28 00:22:19
Line 293  the precomputed inverse of a divisor),
Line 293  the precomputed inverse of a divisor),
   
 \item Polynomial Factorization  \item Polynomial Factorization
 {\tt fctr } (factorization over the rationals),  {\tt fctr } (factorization over the rationals),
 {\tt fctr\_ff } (univariate factorization over finite fields),  {\tt modfctr}, {\tt fctr\_ff } (univariate factorization over finite fields),
 {\tt af } (univariate factorization over algebraic number fields),  {\tt af } (univariate factorization over algebraic number fields),
 {\tt sp} (splitting field computation).  {\tt sp} (splitting field computation).
   
Line 329  quadratic first-order formula),
Line 329  quadratic first-order formula),
   
 {\tt det} (determinant),  {\tt det} (determinant),
 {\tt qsort} (sorting of an array by the quick sort algorithm),  {\tt qsort} (sorting of an array by the quick sort algorithm),
 {\tt eval} (evaluation of a formula containing transcendental functions  {\tt eval}, {\tt deval} (evaluation of a formula containing transcendental functions
 such as  such as
 {\tt sin}, {\tt cos}, {\tt tan}, {\tt exp},  {\tt sin}, {\tt cos}, {\tt tan}, {\tt exp},
 {\tt log})  {\tt log})
 {\tt roots} (finding all roots of a univariate polynomial),  {\tt pari(roots)} (finding all roots of a univariate polynomial),
 {\tt lll} (computation of an LLL-reduced basis of a lattice).  {\tt pari(lll)} (computation of an LLL-reduced basis of a lattice).
   
 \item $D$-modules ($D$ is the Weyl algebra)  \item $D$-modules ($D$ is the Weyl algebra)
   
 {\tt gb } (Gr\"obner basis),  {\tt sm1.gb } (Gr\"obner basis),
 {\tt syz} (syzygy),  {\tt sm1.syz} (syzygy),
 {\tt annfs} (Annhilating ideal of $f^s$),  %{\tt annfs} (Annhilating ideal of $f^s$),
 {\tt bfunction},\\  {\tt ann} (Annhilating ideal of $f^s$),\\
 {\tt schreyer} (free resolution by the Schreyer method),  {\tt sm1.bfunction},{\tt bfunction} (the global $b$-function of a polynomial)\\
 {\tt vMinRes} (V-minimal free resolution),\\  %{\tt schreyer} (free resolution by the Schreyer method),
 {\tt characteristic} (Characteristic variety),  %{\tt vMinRes} (V-minimal free resolution),\\
 {\tt restriction} in the derived category of $D$-modules,  %{\tt characteristic} (Characteristic variety),
 {\tt integration} in the derived category,  {\tt sm1.restriction} in the derived category of $D$-modules,
 {\tt tensor}  in the derived category,  %{\tt integration} in the derived category,
 {\tt dual} (Dual as a D-module),  %{\tt tensor}  in the derived category,
 {\tt slope}.  %{\tt dual} (Dual as a D-module),
   {\tt sm1.slope}.
   
 \item Cohomology groups  \item Cohomology groups
   
Line 362  and the ring of formal power series).
Line 363  and the ring of formal power series).
   
 Helping to derive and prove {\tt combinatorial} and  Helping to derive and prove {\tt combinatorial} and
 {special function identities},  {special function identities},
 {\tt gkz} (GKZ hypergeometric differential equations),  {\tt sm1.gkz} (GKZ hypergeometric differential equations),
 {\tt appell} (Appell's hypergeometric differential equations),  {\tt sm1.appell1}, {\tt sm1.appell4} (Appell's hypergeometric differential equations),
 {\tt indicial} (indicial equations),  %{\tt indicial} (indicial equations),
 {\tt rank} (Holonomic rank),  {\tt sm1.generalized\_bfunction} (indicial equations),
 {\tt rrank} (Holonomic rank of regular holonomic systems),  {\tt sm1.rank} (Holonomic rank),
 {\tt dsolv} (series solutions of holonomic systems).  {\tt sm1.rrank} (Holonomic rank of regular holonomic systems),
   %{\tt dsolv} (series solutions of holonomic systems).
   {\tt dsolv\_dual}, {\tt dsolv\_starting\_terms} (series solutions of holonomic systems).
   
 \item OpenMATH support  \item OpenMATH support
   
Line 376  Helping to derive and prove {\tt combinatorial} and
Line 379  Helping to derive and prove {\tt combinatorial} and
   
 \item Homotopy Method  \item Homotopy Method
   
 {\tt phc} (Solving systems of algebraic equations by  {\tt phc.phc} (Solving systems of algebraic equations by
 numerical and polyhedral homotopy methods).  numerical and polyhedral homotopy methods).
   
 \item Toric ideal  \item Toric ideal
   
 {\tt tigers} (Enumerate all Gr\"obner basis of a toric ideal.  {\tt tigers.tigers} (Enumerate all Gr\"obner basis of a toric ideal.
 Finding test sets for integer program),  Finding test sets for integer program),
 {\tt arithDeg} (Arithmetic degree of a monomial ideal),  %{\tt arithDeg} (Arithmetic degree of a monomial ideal),
 {\tt stdPair} (Standard pair decomposition of a monomial ideal).  %{\tt stdPair} (Standard pair decomposition of a monomial ideal).
   
 \item Communications  \item Communications
   

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.2

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>