===================================================================
RCS file: /home/cvs/OpenXM/src/asir-contrib/packages/doc/Attic/dsolv.oxweave,v
retrieving revision 1.1
retrieving revision 1.6
diff -u -p -r1.1 -r1.6
--- OpenXM/src/asir-contrib/packages/doc/Attic/dsolv.oxweave	2000/02/06 06:39:48	1.1
+++ OpenXM/src/asir-contrib/packages/doc/Attic/dsolv.oxweave	2004/03/05 15:30:50	1.6
@@ -1,17 +1,25 @@
-/* $OpenXM$ */
+/* $OpenXM: OpenXM/src/asir-contrib/packages/doc/dsolv.oxweave,v 1.5 2003/07/27 13:18:45 takayama Exp $ */
 /* dsolv.oxweave */
-/*&eg-texi
+/*&C-texi
 @node DSOLV Functions,,, Top
+*/
 
+/*&en
+
 @chapter DSOLV Functions
 
 This section is a collection of functions to solve regular holonomic
 systems in terms of series.
 Algorithms are explained in the book [SST].
 You can load this package by the command
-@code{load("dsolv");}
+@code{load("dsolv")$}
 This package requires @code{Diff} and @code{dmodule}.
 
+To use the functions of the package @code{dsolv} in OpenXM/Risa/Asir,
+executing the command @code{load("dsolv")$}
+is necessary at first.
+
+
 This package uses @code{ox_sm1}, so the variables you can use
 is as same as those you can use in the package @code{sm1}.
 
@@ -19,8 +27,7 @@ is as same as those you can use in the package @code{s
 
 */
 
-/*&jp-texi
-@node DSOLV 函数,,, Top
+/*&ja
 
 @chapter DSOLV 函数
 
@@ -29,19 +36,30 @@ is as same as those you can use in the package @code{s
 アルゴリズムについては [SST] に説明がある.
 このパッケージは次のコマンド @code{load("dsolv");}
 でロードできる.
-このパッケージは @code{Diff} および @code{dmodule} を使用する.
+このパッケージは @code{Diff} および @code{Dmodule} を使用する.
 
+OpenXM/Risa/Asir での利用にあたっては,
+@example
+load("dsolv");$
+@end example
+が始めに必要.
+
 このパッケージは @code{ox_sm1} を利用している.
 したがって使用できる変数は @code{sm1} パッケージと同様の変数しかつかえない.
 
-@section Functions
+@section 函数一覧
 
 */
 
-/*&eg-texi
+/*&C-texi
 @menu
 * dsolv_dual::
+* dsolv_starting_term::
 @end menu
+*/
+
+
+/*&en
 @node dsolv_dual,,, DSOLV Functions
 @subsection @code{dsolv_dual}
 @findex dsolv_dual
@@ -64,18 +82,20 @@ with variables @var{v}.
 generated by @var{v}.
 If it is not primary to the maximal ideal, then this function falls into
 an infinite loop.
-@item This is an implementation of Algorithm 2.3.14 of the book [SST].
+@end itemize
+
+
+@noindent
+Algorithm:
+This is an implementation of Algorithm 2.3.14 of the book [SST].
 If we replace variables x, y, ... in the output by log(x), log(y), ...,
 then these polynomials in log are solutions of the system of differential
-equations @code{map(subst,@var{f},x,x*dx, y,y*dy, ...)}.
-@end itemize
+equations @var{f}@code{_(x->x*dx, y->y*dy, ...)}.
+
 */
 
-/*&jp-texi
-@menu
-* dsolv_dual::
-@end menu
-@node dsolv_dual,,, DSOLV 函数
+/*&ja
+@node dsolv_dual,,, DSOLV Functions
 @subsection @code{dsolv_dual}
 @findex dsolv_dual
 @table @t
@@ -96,12 +116,16 @@ equations @code{map(subst,@var{f},x,x*dx, y,y*dy, ...)
 @item @var{f} で生成されるイデアルは, @var{v} で生成される極大イデアルに
 対して, primary でないといけない.
 primary でない場合, この函数は無限ループにおちいる.
-@item この函数は本 [SST] の Algorithm 2.3.14  の実装である.
+@end itemize
+
+@noindent
+Algorithm:
+この函数は本 [SST] の Algorithm 2.3.14  の実装である.
 出力中の変数 x, y, ... をそれぞれ log(x), log(y), ..., でおきかえると,
 これらの log 多項式は, 
-@code{map(subst,@var{f},x,x*dx, y,y*dy, ...)} で生成される微分方程式系
+@var{f}@code{_(x->x*dx, y->y*dy, ...)}
+で生成される微分方程式系
 の解となっている.
-@end itemize
 */
 
 /*&C-texi
@@ -130,11 +154,8 @@ primary でない場合, この函数は無限ループにお��������⑮�繚∑纔���緕���㍉辣銛�⑩�糂闌�齡癇�鈑熹纈躡�㍉緕�辣銛��川閼�糂闌�齡癇�鈑熹纈蹶��柘鰐�弐釿�闔��栴�黼笏蜿�雪閼纛糂闌�齡癇�鈑熹纈逹��蝉蜴粤�糂闌�齡癇�鈑熹纈�誓�⑰況���幻��誓��緕��蜩�胚釿�闔�阨���辣齠瘍纉�糒鱸鈑���竢逅���������⑮�褓∑纔���裃���㍉辣銛�⑩�糂闌�齡癇�鈑熹纈躡�㍉緕�辣銛�㍉鈿粤�糂闌�齡癇�鈑熹纈蹶��柘鰐�函数
+@node dsolv_starting_term,,, DSOLV Functions
 @subsection @code{dsolv_starting_term}
 @findex dsolv_starting_term
 @table @t
@@ -200,9 +218,15 @@ Staring terms を計算する. ここで, @var{v} 
 この函数は計算の途中にいろいろとメッセージを出力する.
 @end itemize
 
+
 */
 
 /*&C-texi
+
+@noindent
+Algorithm: Saito, Sturmfels, Takayama, Grobner Deformations of Hypergeometric
+Differential Equations ([SST]), Chapter 2.
+
 
 @example
 [1076]   F = sm1_gkz( [ [[1,1,1,1,1],[1,1,0,-1,0],[0,1,1,-1,0]], [1,0,0]]);