===================================================================
RCS file: /home/cvs/OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd,v
retrieving revision 1.5
retrieving revision 1.10
diff -u -p -r1.5 -r1.10
--- OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd	2014/03/16 03:11:07	1.5
+++ OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd	2015/03/27 02:36:30	1.10
@@ -1,17 +1,18 @@
-% $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd,v 1.4 2013/03/26 05:53:57 takayama Exp $
+% $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd,v 1.9 2015/03/26 11:54:13 takayama Exp $
 \name{hgm.pwishart}
 \alias{hgm.pwishart}
 %- Also NEED an '\alias' for EACH other topic documented here.
 \title{
     The function hgm.pwishart evaluates the cumulative distribution function
-  of random wishart matrix.
+  of random wishart matrices.
 }
 \description{
     The function hgm.pwishart evaluates the cumulative distribution function
-  of random wishart matrix of size m times m.
+  of random wishart matrices of size m times m.
 }
 \usage{
-hgm.pwishart(m,n,beta,q0,approxdeg,h,dp,q,mode,method,err)
+hgm.pwishart(m,n,beta,q0,approxdeg,h,dp,q,mode,method,
+            err,automatic,assigned_series_error,verbose)
 }
 %- maybe also 'usage' for other objects documented here.
 \arguments{
@@ -59,6 +60,8 @@ hgm.pwishart(m,n,beta,q0,approxdeg,h,dp,q,mode,method,
     |(F(i)-F(i-1))/F(i-1)| < assigned_series_error where
     F(i) is the degree i approximation of the hypergeometric series
     with matrix argument.
+    Step sizes for the Runge-Kutta method are also set automatically from
+    the assigned_series_error if it is 1.
   }  
   \item{assigned_series_error}{
     assigned_series_error=0.00001 is the default value.
@@ -87,21 +90,28 @@ See the reference below.
 }
 \references{
 H.Hashiguchi, Y.Numata, N.Takayama, A.Takemura,
-Holonomic gradient method for the distribution function of the largest root of a Wishart matrix
-\url{http://arxiv.org/abs/1201.0472},
+Holonomic gradient method for the distribution function of the largest root of a Wishart matrix,
+Journal of Multivariate Analysis, 117, (2013) 296-312, 
+\url{http://dx.doi.org/10.1016/j.jmva.2013.03.011},
 }
 \author{
 Nobuki Takayama
 }
 \note{
-%%  ~~further notes~~
+This function does not work well under the following cases:
+1. The beta (the set of eigenvalues)
+is degenerated or is almost degenerated.
+2. The beta is very skew, in other words, there is a big eigenvalue
+and there is also a small eigenvalue.
+The error control is done by a heuristic method. 
+The obtained value is not validated automatically.
 }
 
 %% ~Make other sections like Warning with \section{Warning }{....} ~
 
-\seealso{
-%%\code{\link{oxm.matrix_r2tfb}}
-}
+%\seealso{
+%%%\code{\link{oxm.matrix_r2tfb}}
+%}
 \examples{
 ## =====================================================
 ## Example 1.