===================================================================
RCS file: /home/cvs/OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd,v
retrieving revision 1.7
retrieving revision 1.17
diff -u -p -r1.7 -r1.17
--- OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd	2014/03/25 02:25:26	1.7
+++ OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd	2022/04/07 00:56:44	1.17
@@ -1,4 +1,4 @@
-%% $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd,v 1.6 2014/03/24 05:28:17 takayama Exp $
+%% $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd,v 1.16 2020/02/06 05:58:17 takayama Exp $
 \name{hgm-package}
 \alias{hgm-package}
 \alias{HGM}
@@ -8,9 +8,9 @@
 HGM
 }
 \description{
-The holonomic gradient method (HGM, hgm) gives a way to evaluate normalization
+The holonomic gradient method (HGM, hgm) gives a way to evaluate normalizing
   constants of unnormalized probability distributions by utilizing holonomic 
-  systems of differential equations. 
+  systems of differential or difference equations. 
   The holonomic gradient descent (HGD, hgd) gives a method
   to find maximal likelihood estimates by utilizing the HGM.
 }
@@ -22,7 +22,7 @@ License: \tab GPL-2\cr
 LazyLoad: \tab yes\cr
 }
 The HGM and HGD are proposed in the paper below.
-This method based on the fact that a broad class of normalization constants
+This method based on the fact that a broad class of normalizing constants
 of unnormalized probability distributions belongs to the class of
 holonomic functions, which are solutions of holonomic systems of linear
 partial differential equations.
@@ -30,20 +30,21 @@ partial differential equations.
 \note{
   This package includes a small subset of the Gnu scientific library codes
   (\url{http://www.gnu.org/software/gsl/}).
-  Then, it might cause a conflict with the package gsl
-  (see \code{\link[gsl]{gsl-package}}).
+  Then, it might cause a conflict with the package gsl.
+%  (see \code{\link[gsl]{gsl-package}}).
 %  When you use the package gsl, it is recommeded to unload the shared libraries
 %  of the package hgm by \code{library.dynam.unload("hgm")}<--error, todo.
 %  (see \code{\link[base]{library.dynam.unload}}).
 }
 \references{
 \itemize{
-\item  Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara,
-  Tomonari Sei, Nobuki Takayama, Akimichi Takemura,
+\item  (N3OST2)  Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara,
+Tomonari Sei, Nobuki Takayama, Akimichi Takemura,
 Holonomic Gradient Descent  and its Application to Fisher-Bingham Integral,
 Advances in Applied Mathematics 47 (2011), 639--658, 
-\url{http://dx.doi.org/10.1016/j.aam.2011.03.001}
-
+\doi{10.1016/j.aam.2011.03.001}
+\item (dojo) Edited by T.Hibi,  Groebner Bases: Statistics and Software Systems, Springer, 2013,
+\doi{10.1007/978-4-431-54574-3}
 \item  \url{http://www.openxm.org}
 }
 }
@@ -53,16 +54,20 @@ Advances in Applied Mathematics 47 (2011), 639--658, 
 \keyword{ HGM }
 \keyword{ HGD }
 \seealso{
-\code{\link{hgm.ncorthant}}
-\code{\link{hgm.ncso3}}
-\code{\link{hgm.pwishart}}
+\code{\link{hgm.ncBingham}},
+\code{\link{hgm.ncorthant}},
+\code{\link{hgm.ncso3}},
+\code{\link{hgm.pwishart}},
 \code{\link{hgm.Rhgm}}
+\code{\link{hgm.p2wishart}},
 }
 \examples{
 \dontrun{
+example(hgm.ncBingham)
 example(hgm.ncorthant)
 example(hgm.ncso3)
 example(hgm.pwishart)
 example(hgm.Rhgm)
+example(hgm.p2wishart)
 }
 }