===================================================================
RCS file: /home/cvs/OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd,v
retrieving revision 1.1
retrieving revision 1.17
diff -u -p -r1.1 -r1.17
--- OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd	2013/02/07 07:38:23	1.1
+++ OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd	2022/04/07 00:56:44	1.17
@@ -1,40 +1,73 @@
-%% $OpenXM$
+%% $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm-package.Rd,v 1.16 2020/02/06 05:58:17 takayama Exp $
 \name{hgm-package}
 \alias{hgm-package}
+\alias{HGM}
 \alias{hgm}
 \docType{package}
 \title{
 HGM
 }
 \description{
-The holonomic gradient method (hgm) gives a way to evaluate normalization
+The holonomic gradient method (HGM, hgm) gives a way to evaluate normalizing
   constants of unnormalized probability distributions by utilizing holonomic 
-  system of differential equations. The holonomic gradient descent gives a method
-  to find maximal likelihood estimates by utilizing the hgm.
+  systems of differential or difference equations. 
+  The holonomic gradient descent (HGD, hgd) gives a method
+  to find maximal likelihood estimates by utilizing the HGM.
 }
 \details{
 \tabular{ll}{
 Package: \tab hgm\cr
 Type: \tab Package\cr
-Version: \tab 1.0\cr
-Date: \tab 2013-02-07\cr
-License: \tab GPL\cr
+License: \tab GPL-2\cr
 LazyLoad: \tab yes\cr
 }
-More details.
+The HGM and HGD are proposed in the paper below.
+This method based on the fact that a broad class of normalizing constants
+of unnormalized probability distributions belongs to the class of
+holonomic functions, which are solutions of holonomic systems of linear
+partial differential equations.
 }
-\author{
-Nobuki Takayama (takayama@math.kobe-u.ac.jp)
+\note{
+  This package includes a small subset of the Gnu scientific library codes
+  (\url{http://www.gnu.org/software/gsl/}).
+  Then, it might cause a conflict with the package gsl.
+%  (see \code{\link[gsl]{gsl-package}}).
+%  When you use the package gsl, it is recommeded to unload the shared libraries
+%  of the package hgm by \code{library.dynam.unload("hgm")}<--error, todo.
+%  (see \code{\link[base]{library.dynam.unload}}).
 }
 \references{
- \url{http://www.openxm.org}
+\itemize{
+\item  (N3OST2)  Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara,
+Tomonari Sei, Nobuki Takayama, Akimichi Takemura,
+Holonomic Gradient Descent  and its Application to Fisher-Bingham Integral,
+Advances in Applied Mathematics 47 (2011), 639--658, 
+\doi{10.1016/j.aam.2011.03.001}
+\item (dojo) Edited by T.Hibi,  Groebner Bases: Statistics and Software Systems, Springer, 2013,
+\doi{10.1007/978-4-431-54574-3}
+\item  \url{http://www.openxm.org}
 }
+}
 \keyword{ package }
+\keyword{ holonomic gradient method}
+\keyword{ holonomic gradient descent}
+\keyword{ HGM }
+\keyword{ HGD }
 \seealso{
-\code{\link{hgm.so3nc}}
+\code{\link{hgm.ncBingham}},
+\code{\link{hgm.ncorthant}},
+\code{\link{hgm.ncso3}},
+\code{\link{hgm.pwishart}},
+\code{\link{hgm.Rhgm}}
+\code{\link{hgm.p2wishart}},
 }
 \examples{
 \dontrun{
-example(hgm.so3nc)
+example(hgm.ncBingham)
+example(hgm.ncorthant)
+example(hgm.ncso3)
+example(hgm.pwishart)
+example(hgm.Rhgm)
+example(hgm.p2wishart)
 }
 }