version 1.3, 2001/07/24 09:35:54 |
version 1.6, 2001/07/28 03:31:10 |
|
|
% $OpenXM: OpenXM/doc/sci-semi2001/factorb.tex,v 1.2 2001/07/24 08:02:47 noro Exp $ |
% $OpenXM: OpenXM/doc/sci-semi2001/factorb.tex,v 1.5 2001/07/26 07:55:05 noro Exp $ |
|
|
\Large |
\Large |
\parskip 0pt |
\parskip 0pt |
Line 115 $\Rightarrow$ $B$3$l$G(B{\ec $B@0?t78?t$NB?9`<0$r?t |
|
Line 115 $\Rightarrow$ $B$3$l$G(B{\ec $B@0?t78?t$NB?9`<0$r?t |
|
|
|
\begin{slide}{} |
\begin{slide}{} |
\fbox{\sc 3. $BB?9`<0$N0x?tJ,2r(B --- $BCf3X9b9;E*J}K!(B} |
\fbox{\sc 3. $BB?9`<0$N0x?tJ,2r(B --- $BCf3X9b9;E*J}K!(B} |
{ |
|
\Large\parskip 0pt |
|
|
|
\begin{enumerate} |
\begin{enumerate} |
\item {\eec $B4cNOK!(B} ($B2r$H78?t$N4X78(B) |
\item {\eec $B4cNOK!(B} ($B2r$H78?t$N4X78(B) |
|
|
Line 135 $x^2+ax+b=0$ $B$N:,(B ${-b \pm \sqrt{a^2-4b}} \over |
|
Line 132 $x^2+ax+b=0$ $B$N:,(B ${-b \pm \sqrt{a^2-4b}} \over |
|
|
|
$\Rightarrow$ $a^2-4b = t^2$ ($t$ : $B@0?t(B) $B$H$+$1$k$+$I$&$+D4$Y$k(B |
$\Rightarrow$ $a^2-4b = t^2$ ($t$ : $B@0?t(B) $B$H$+$1$k$+$I$&$+D4$Y$k(B |
\end{enumerate} |
\end{enumerate} |
} |
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
Line 161 $\Rightarrow$ {\bf \ec $x^2-t=0$ $B$N@0?t:,$rC5$9J}K! |
|
Line 157 $\Rightarrow$ {\bf \ec $x^2-t=0$ $B$N@0?t:,$rC5$9J}K! |
|
|
|
$\Rightarrow$ {\ec $B:,$rC5$9J}K!$,E,MQ$G$-$k(B} |
$\Rightarrow$ {\ec $B:,$rC5$9J}K!$,E,MQ$G$-$k(B} |
|
|
{\eec $B:,5r(B : $BCf4VCM$NDjM}(B} |
|
$B!V(B$f(a) < 0, f(b) > 0$ $B$J$i(B $a$, $b$ $B$N4V$K(B $f(c)=0$ $B$J$k(B $c$ $B$,$"$k(B.$B!W(B |
|
|
|
\begin{itemize} |
\begin{itemize} |
\item {\eec $BFsJ,K!(B} |
\item {\eec $BFsJ,K!(B} |
|
|
|
{\eec $B:,5r(B : $BCf4VCM$NDjM}(B} |
|
$B!V(B$f(a) < 0, f(b) > 0$ $B$J$i(B $a$, $b$ $B$N4V$K(B $f(c)=0$ $B$J$k(B $c$ $B$,$"$k(B.$B!W(B |
|
|
$B6h4V$rH>J,$:$D69$a$FDI$$9~$`(B |
$B6h4V$rH>J,$:$D69$a$FDI$$9~$`(B |
|
|
\item {\eec Newton $BK!(B} |
\item {\eec Newton $BK!(B} |
Line 187 $\Rightarrow$ {\ec $B:,$rC5$9J}K!$OE,MQ:$Fq(B} |
|
Line 183 $\Rightarrow$ {\ec $B:,$rC5$9J}K!$OE,MQ:$Fq(B} |
|
|
|
\vskip 1cm |
\vskip 1cm |
|
|
\underline{\uc $B%3%s%T%e!<%?$K$ONO5;(B($B7+$jJV$7(B)$B$,;w9g$&(B} |
\underline{\uc $B%3%s%T%e!<%?$K9g$C$?J}K!$O(B?} |
|
|
|
\begin{itemize} |
|
\item {\eec $B!V6a;w!W(B}$B$r$&$^$/;H$&(B |
|
|
{\eec $BCf4VCM$NDjM}(B} = {\eec $B<B?t$K$*$1$k6a;w(B} $B$NMxMQ(B |
{\eec $BCf4VCM$NDjM}(B} = {\eec $B<B?t$K$*$1$k6a;w(B} $B$NMxMQ(B |
|
|
$BJL$N6a;w(B $\Rightarrow$ {\ec $B3d$C$?M>$j(B}$B$KCmL\(B |
$BJL$N6a;w(B $\Rightarrow$ {\ec $B3d$C$?M>$j(B}$B$KCmL\(B |
|
|
|
\item $B%3%s%T%e!<%?$O(B{\eec $B7+$jJV$7(B}$B$,F@0U(B |
|
|
|
$B6a;w$r7+$jJV$7$F@:EY$r>e$2$k(B |
|
\end{itemize} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\fbox{\sc 4. $p$-$B?J6a;w$K$h$kB?9`<0$N0x?tJ,2r(B} |
\fbox{\sc 4. $p$-$B?J6a;w$K$h$kB?9`<0$N0x?tJ,2r(B} |
{\Large\parskip 0pt |
|
|
|
\underline{\uc $B86M}(B} : {\eec $B@0?t(B $m$ $B$,(B 0} $\Leftrightarrow$ |
\underline{\uc $B86M}(B} : {\eec $B@0?t(B $m$ $B$,(B 0} $\Leftrightarrow$ |
|
|
{\eec $m$ $B$O$I$s$J@0?t$G$b3d$j@Z$l$k(B} |
{\eec $m$ $B$O$I$s$J@0?t$G$b3d$j@Z$l$k(B} |
|
|
({\eec $m$ $B$O==J,Bg$-$$@0?t$G3d$j@Z$l$k(B}) |
|
|
|
$B$?$H$($P(B, |
$B$?$H$($P(B, |
|
|
\begin{enumerate} |
\begin{enumerate} |
Line 211 $\Rightarrow$ {\ec $B:,$rC5$9J}K!$OE,MQ:$Fq(B} |
|
Line 212 $\Rightarrow$ {\ec $B:,$rC5$9J}K!$OE,MQ:$Fq(B} |
|
$h_1$ $B$r8+$D$1$k(B. |
$h_1$ $B$r8+$D$1$k(B. |
|
|
\item $f(x)-g_k(x)h_k(x)$ $B$N78?t$,(B $p^k$ $B$G3d$j@Z$l$k$h$&$K(B $g_k$, $h_k$ $B$r(B |
\item $f(x)-g_k(x)h_k(x)$ $B$N78?t$,(B $p^k$ $B$G3d$j@Z$l$k$h$&$K(B $g_k$, $h_k$ $B$r(B |
$B:n$C$F$$$/(B ($k=1,2,\ldots$) |
$B=g<!:n$C$F$$$/(B ($k=2,3,\ldots$) |
|
|
\item $g_1$, $h_1$ $B$,@52r$KBP1~$7$F$$$l$P(B, $BE,Ev$J(B $k$ $B$N$H$3$m$G$[$s$H$K3d$j@Z$l$k$@$m$&(B. |
\item $g_1$, $h_1$ $B$,@52r$KBP1~$7$F$$$l$P(B, $BE,Ev$J(B $k$ $B$N$H$3$m$G$[$s$H$K3d$j@Z$l$k$@$m$&(B. |
\end{enumerate}} |
\end{enumerate} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
Line 238 $h_1$ $B$r8+$D$1$k(B. |
|
Line 239 $h_1$ $B$r8+$D$1$k(B. |
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\uc $B5-9f(B $a \equiv b \bmod M$} |
\underline{\uc $B5-9f(B $a \equiv b \bmod M$} |
|
|
$M$ $B$r@0?t$H$9$k(B. {\eec $a \equiv b \bmod M$} $B$H$O(B |
$M$ $B$r@0?t$H$9$k(B. |
|
|
\begin{itemize} |
\begin{itemize} |
\item $a,b$ $B$,@0?t$N$H$-(B, |
\item $a,b$ $B$,@0?t$N$H$-(B, |
|
|
{\eec $a-b$ $B$,(B $M$ $B$G3d$j@Z$l$k(B}$B$3$H(B |
{\eec $a \equiv b \bmod M$} $\Leftrightarrow$ |
|
{\eec $a-b$ $B$,(B $M$ $B$G3d$j@Z$l$k(B} |
|
|
\item $a,b$ $B$,@0?t78?tB?9`<0$N$H$-(B |
\item $a,b$ $B$,@0?t78?tB?9`<0$N$H$-(B |
|
|
{\eec $a-b$ $B$N3F78?t$,(B $M$ $B$G3d$j@Z$l$k(B}$B$3$H(B |
{\eec $a \equiv b \bmod M$} $\Leftrightarrow$ |
\end{itemize} |
{\eec $a-b$ $B$N3F78?t$,(B $M$ $B$G3d$j@Z$l$k(B} |
|
|
\vskip 1cm |
\item {\eec $a$ $B$r(B $M$ $B$G3d$C$?M>$j(B} $B$b(B {\eec $a \bmod M$} $B$H=q$/(B |
|
|
\underline{\uc $a$ $B$r(B $M$ $B$G3d$C$?M>$j$b(B $a \bmod M$ $B$H=q$/(B} |
\item $\equiv$ $B$G7k$P$l$?<0(B : {\eec $BEy<0$HF1MM$K07$($k(B} |
|
\end{itemize} |
|
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
Line 278 $p = 3$ $B$H$9$k$H(B $a_0(x)=x^4+x^3+x+2$ |
|
Line 282 $p = 3$ $B$H$9$k$H(B $a_0(x)=x^4+x^3+x+2$ |
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
|
\underline{\uc $f(x)$ $B$N(B $3$-$B?JE83+(B} |
|
|
|
$f(x)=(x^4+x^3+x+2)+3^1\cdot x+$ |
|
|
|
$3^2(2x^3+x+2)+ |
|
3^3(x^3+x^2+2x+2)+$ |
|
|
|
$3^4(x^2+x+1)+ |
|
3^5 \cdot x^3+ |
|
3^6(2x^3+x+2)+$ |
|
|
|
$3^7(x^3+x^2+x)+ |
|
3^8(2x^3+x^2+2x)+$ |
|
|
|
$3^9(x^2+2x+1)+ |
|
3^{11}(2x^2+x+1)+$ |
|
|
|
$3^{12}(x^2+2x+1)+ |
|
3^{13}(x+1)+ |
|
3^{14} \cdot 2+$ |
|
|
|
$3^{15}(2x^2+x+2)+ |
|
3^{16}(x^2+2)+ |
|
3^{17} \cdot 2+$ |
|
|
|
$3^{19} \cdot 2+ |
|
3^{20}(x+2)+ |
|
3^{21} \cdot 2$ |
|
\end{slide} |
|
|
|
\begin{slide}{} |
\underline{\uc $B0l<!0x;R$,$"$k$+(B?} |
\underline{\uc $B0l<!0x;R$,$"$k$+(B?} |
|
|
{\ec $b_0(x) = x+q$}, |
{\ec $b_0(x) = x+q$}, |
Line 321 $q$, $r$, $s$, $t$ $B$K(B 0, 1, 2 $B$NCM$rF~$l$F$_$ |
|
Line 356 $q$, $r$, $s$, $t$ $B$K(B 0, 1, 2 $B$NCM$rF~$l$F$_$ |
|
|
|
{\eec $(q,r,s,t) = (0,1,1,2), (1,2,0,1)$} |
{\eec $(q,r,s,t) = (0,1,1,2), (1,2,0,1)$} |
|
|
$B0lJ}$,(B $b_0$, $BB>J}$,(B $c_0$ $\Rightarrow$ $B$3$l$i$OF1$8$b$N(B |
($b_0$,$c_0$) $B$N%Z%"$H$7$F$O$3$l$i$OF1$8$b$N(B |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\uc $BFs<!0x;R$D$E$-(B --- $b_1$, $c_1$ $B$,K~$?$9@-<A(B} |
\underline{\uc $BFs<!0x;R$D$E$-(B --- $b_1$, $c_1$ $B$,K~$?$9>r7o(B} |
|
|
{\Large\parskip 0pt |
|
{\eec $b_0 = x^2+1$}, |
{\eec $b_0 = x^2+1$}, |
{\eec $c_0 = x^2+x+2$} $B$H$9$k$H(B |
{\eec $c_0 = x^2+x+2$} $B$H$9$k$H(B |
|
|
\centerline{\eec $f-b_0c_0 \equiv 0 \bmod 3$} |
\centerline{\eec $f \equiv b_0c_0 \bmod 3$} |
|
|
$f-gh \equiv a_0-b_0c_0+p(a_1-$ |
$gh \equiv (b_0+3${\ec $b_1$}$)(c_0+3${\ec$c_1$}$) \bmod 3^2$ $B$h$j(B |
|
|
|
$f-gh \equiv a_0-b_0c_0+3(a_1-$ |
$(b_0${\ec$c_1$}$+c_0${\ec$b_1$}$))\bmod 3^2$ |
$(b_0${\ec$c_1$}$+c_0${\ec$b_1$}$))\bmod 3^2$ |
|
|
$B$h$j(B, $BN>JU$r(B 3 $B$G3d$C$F(B |
$BN>JU$r(B 3 $B$G3d$C$F(B |
|
|
${{f-gh}\over 3} \equiv {{a_0-b_0c_0}\over 3}+(a_1-$ |
${{f-gh}\over 3} \equiv {{a_0-b_0c_0}\over 3}+(a_1-$ |
$(b_0${\ec$c_1$}$+c_0${\ec$b_1$}$))\bmod 3$ |
$(b_0${\ec$c_1$}$+c_0${\ec$b_1$}$))\bmod 3$ |
|
|
$B:8JU$O(B $3$ $B$G2?2s$G$b3d$l$k(B $\Rightarrow$ $B1&JU$O(B $3$ $B$G3d$l$k(B |
$B:8JU$O(B $3$ $B$G2?2s$G$b3d$l$k(B $\Rightarrow$ $B1&JU$O(B $3$ $B$G3d$l$k(B |
|
|
$BJd@59`(B {\ec $b_1$}, {\ec $c_1$} : $x^2$ $B$N78?t$O(B 0 $B$H$7$F$h$$(B} |
$BJd@59`(B {\ec $b_1$}, {\ec $c_1$} : $x^2$ $B$N78?t$O(B 0 $B$H$7$F$h$$(B |
|
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\uc $BFs<!0x;R$D$E$-(B --- $b_1$, $c_1$ $B$,K~$?$9J}Dx<0(B} |
\underline{\uc $BFs<!0x;R$D$E$-(B --- $b_1$, $c_1$ $B$,K~$?$9J}Dx<0(B} |
|
|
{\Large\parskip 0pt |
|
{\ec $b_1 = qx+r$}, |
{\ec $b_1 = qx+r$}, |
{\ec $c_1 = sx+t$} $B$H$*$/(B. |
{\ec $c_1 = sx+t$} $B$H$*$/(B. |
|
|
Line 372 $2r+t \equiv 0 \bmod 3$} |
|
Line 407 $2r+t \equiv 0 \bmod 3$} |
|
|
|
$B$3$s$I$OO"N)0l<!J}Dx<0(B($B9gF1<0(B). $B$3$l$r2r$/$H(B |
$B$3$s$I$OO"N)0l<!J}Dx<0(B($B9gF1<0(B). $B$3$l$r2r$/$H(B |
|
|
{\eec $(q,r,s,t) = (0,1,0,1)$} $B$9$J$o$A(B {\eec $b_1 = 1$}, {\eec $c_1 = 1$}} |
{\eec $(q,r,s,t) = (0,1,0,1)$} $B$9$J$o$A(B {\eec $b_1 = 1$}, {\eec $c_1 = 1$} |
|
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\uc $BFs<!0x;R$D$E$-(B --- $b_k$, $c_k$ $B$bF1MM(B} |
\underline{\uc $BFs<!0x;R$D$E$-(B --- $b_2$, $c_2$ $B$O(B $\bmod 3^3$ $B$G(B} |
|
|
{\Large\parskip 0pt |
$B$3$l$G(B, {\eec $f \equiv (b_0+3b_1)(c_0+3c_1) \bmod 3^2$} |
$B$3$l$G(B, |
|
|
|
\centerline{\eec $f \equiv (b_0+3b_1)(c_0+3c_1) \bmod 3^2$} |
$B<!$O(B $a_2$, $b_2$, $c_2$ $B$^$G$H$C$F(B $\bmod 3^3$ $B$G8+$k(B |
|
|
|
\centerline{\eec $f \equiv a_0+3a_1+3^2a_2 \bmod 3^3$} |
|
|
|
\centerline{\ec $f \equiv (b_0+3b_1+3^2b_2)(c_0+3c_1+3^2c_2) \bmod 3^3$} |
|
|
|
$B$+$i(B {$((a_0+3a_1)-(b_0+3b_1)(c_0+3c_1))+$} |
|
|
|
\centerline{$3^2(a_2-(c_0b_2+b_0c_2)) \equiv 0 \bmod 3^3$} |
|
|
|
$BN>JU$r(B $3^2$ $B$G3d$C$F(B, {\ec $b_2=qx+r$}, {\ec $c_2=sx+t$} |
|
|
|
$\Rightarrow$ $k=1$ $B$HF1MM$N(B{\eec $BO"N)0l<!9gF1<0(B}$B$rF@$k(B |
|
|
|
\end{slide} |
|
|
|
\begin{slide}{} |
|
\underline{\uc $BFs<!0x;R$D$E$-(B --- $b_k$, $c_k$ $B$bF1MM(B} |
|
|
$B0J2<F1MM$K(B, |
$B0J2<F1MM$K(B, |
|
|
\centerline{\ec $b_k = qx+r, c_k = sx+t$} |
\centerline{\ec $b_i = qx+r, c_i = sx+t$} |
|
|
$B$H$*$$$F(B, $(q,r,s,t)$ $B$NO"N)0l<!J}Dx<0$r2r$1$P(B |
($i=2,3,\ldots$) $B$H$*$$$F(B, $(q,r,s,t)$ $B$NO"N)0l<!J}Dx<0$r=g<!(B |
|
$B2r$$$F$$$1$P(B |
|
|
\centerline{\eec $f \equiv (b_0+\ldots+3^{k-1}b_{k-1})(c_0+\ldots+3^{k-1}c_{k-1}) \bmod 3^k$} |
\centerline{\eec $f \equiv (b_0+\ldots+3^{k-1}b_{k-1})(c_0+\ldots+3^{k-1}c_{k-1}) \bmod 3^k$} |
|
|
Line 396 $2r+t \equiv 0 \bmod 3$} |
|
Line 448 $2r+t \equiv 0 \bmod 3$} |
|
|
|
\centerline{\eec $f \equiv g_kh_k \bmod 3^k$} |
\centerline{\eec $f \equiv g_kh_k \bmod 3^k$} |
|
|
$B$H$J$k(B $g_k, h_k$ $B$,7h$^$k(B. } |
$B$H$J$k(B $g_k, h_k$ $B$,7h$^$k(B. |
|
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
Line 427 $k$ & $g_k$ & $h_k$ \\ \hline |
|
Line 478 $k$ & $g_k$ & $h_k$ \\ \hline |
|
|
|
$BI=$G8+$k$H(B, {\eec $k=12 \rightarrow 13$ $B$GJQ2=$,$J$$(B} |
$BI=$G8+$k$H(B, {\eec $k=12 \rightarrow 13$ $B$GJQ2=$,$J$$(B} |
|
|
$\Rightarrow$ {\ec $f-g_{13}h_{13}$ $B$r7W;;$7$F$_$k$H(B 0!} |
$\Rightarrow$ {\ec $f-g_{13}h_{13}$ $B$r7W;;$7$F$_$k$H(B 0} |
|
|
{\eec |
{\eec |
$f(x) = (x^2+7821x+89347) \times$ |
$f(x) =$ |
|
|
$(x^2+9235x+342527)$} |
$ (x^2+7821x+89347)(x^2+9235x+342527)$} |
|
|
\underline{\uc $B<B:]$K$O(B...} |
\underline{\uc $B<B:]$K$O(B...} |
|
|
Line 444 $(x^2+9235x+342527)$} |
|
Line 495 $(x^2+9235x+342527)$} |
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\uc $\bmod p$ $B$G$NJ,2r$,0lHVBg@Z(B} |
\underline{\uc $\bmod p$ $B$G$NJ,2r$,LdBj(B} |
|
|
$B3F%9%F%C%W$G=P$FMh$k78?t$NJ}Dx<0(B |
$B3F%9%F%C%W$G=P$FMh$k78?t$NJ}Dx<0(B |
|
|
Line 573 $\Rightarrow$ $B7W;;5!$N%Q%o!<$@$1$G$O%@%a(B. |
|
Line 624 $\Rightarrow$ $B7W;;5!$N%Q%o!<$@$1$G$O%@%a(B. |
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
{\Large\parskip 0pt |
|
\underline{\uc A $B$5$s$H(B B $B$5$s$,80$r6&M-(B --- Diffie-Hellman} |
\underline{\uc A $B$5$s$H(B B $B$5$s$,80$r6&M-(B --- Diffie-Hellman} |
|
|
\begin{itemize} |
\begin{itemize} |
Line 586 $\Rightarrow$ $B7W;;5!$N%Q%o!<$@$1$G$O%@%a(B. |
|
Line 636 $\Rightarrow$ $B7W;;5!$N%Q%o!<$@$1$G$O%@%a(B. |
|
\begin{enumerate} |
\begin{enumerate} |
\item $0 < s_A < p$ $B$J$k@0?t(B {\eec $s_A$} ($BHkL)(B) $B$r:n$k(B. |
\item $0 < s_A < p$ $B$J$k@0?t(B {\eec $s_A$} ($BHkL)(B) $B$r:n$k(B. |
\item $w_A =$ {\eec $g^{s_A} \bmod p$} $B$r(B B $B$5$s$KAw$k(B. |
\item $w_A =$ {\eec $g^{s_A} \bmod p$} $B$r(B B $B$5$s$KAw$k(B. |
\item $s =$ {\eec $w_B^{s_A} \bmod p$} $B$r:n$k(B. |
\item $B<u$1<h$C$?(B $w_B$ $B$+$i(B $s =$ {\eec $w_B^{s_A} \bmod p$} $B$r:n$k(B. |
\end{enumerate} |
\end{enumerate} |
|
|
\item {\eec B $B$5$s$N;E;v(B} |
\item {\eec B $B$5$s$N;E;v(B} |
Line 594 $\Rightarrow$ $B7W;;5!$N%Q%o!<$@$1$G$O%@%a(B. |
|
Line 644 $\Rightarrow$ $B7W;;5!$N%Q%o!<$@$1$G$O%@%a(B. |
|
\begin{enumerate} |
\begin{enumerate} |
\item $0 < s_B < p$ $B$J$k@0?t(B {\eec $s_B$} ($BHkL)(B) $B$r:n$k(B. |
\item $0 < s_B < p$ $B$J$k@0?t(B {\eec $s_B$} ($BHkL)(B) $B$r:n$k(B. |
\item $w_B =$ {\eec $g^{s_B} \bmod p$} $B$r(B A $B$5$s$KAw$k(B. |
\item $w_B =$ {\eec $g^{s_B} \bmod p$} $B$r(B A $B$5$s$KAw$k(B. |
\item $s =$ {\eec $w_A^{s_B} \bmod p$} $B$r:n$k(B. |
\item $B<u$1<h$C$?(B $w_A$ $B$+$i(B $s =$ {\eec $w_A^{s_B} \bmod p$} $B$r:n$k(B. |
\end{enumerate} |
\end{enumerate} |
|
|
\end{itemize}} |
\end{itemize} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
Line 608 $\Rightarrow$ $B7W;;5!$N%Q%o!<$@$1$G$O%@%a(B. |
|
Line 658 $\Rightarrow$ $B7W;;5!$N%Q%o!<$@$1$G$O%@%a(B. |
|
|
|
$B$3$l$G80$,6&M-$G$-$?(B |
$B$3$l$G80$,6&M-$G$-$?(B |
|
|
\item {\eec $w_A$, $w_B$ $B$O0E9f2=$5$l$J$$(B} |
\item {\eec $w_A$, $w_B$ $B$O0E9f2=$NI,MW$J$7(B} |
|
|
$g^{s_A} \bmod p$ $B$+$i(B $s_A$ $B$r5a$a$k$N$OFq$7$$(B |
$g^{s_A} \bmod p$ $B$+$i(B $s_A$ $B$r5a$a$k$N$OFq$7$$(B |
|
|