version 1.1, 2001/07/23 06:46:51 |
version 1.2, 2001/07/24 08:02:47 |
|
|
% $OpenXM$ |
% $OpenXM: OpenXM/doc/sci-semi2001/factorb.tex,v 1.1 2001/07/23 06:46:51 noro Exp $ |
|
|
\Large |
\LARGE |
\parskip 0pt |
\parskip 0pt |
|
|
\begin{slide}{} |
\begin{slide}{} |
\fbox{\bf 1. $B$O$8$a$K(B} |
\fbox{\sc 1. $B$O$8$a$K(B} |
|
|
computer = compute $B$9$k$?$a$N$b$N(B |
computer = compute $B$9$k$?$a$N$b$N(B |
|
|
compute = $B7W;;$9$k(B |
compute = {\ec $B7W;;(B}$B$9$k(B |
|
|
$B:G6a$G$O(B communication $B$N<jCJ$H$J$C$F$7$^$C$?(B |
$B:G6a$G$O(B {\ec $B%G%8%?%k>pJsDL?.(B} $B$N<jCJ$H$J$C$F$7$^$C$?(B |
|
|
$B$5$^$6$^$J>pJs$r%G%8%?%k2=(B ($BId9f2=(B) $B$7$F%M%C%H%o!<%/$rDL$7$FAw<u?.(B |
|
|
|
$\Rightarrow$ $B!V7W;;!W$K;H$C$F$$$k?M$O$4$/>/?t(B |
$\Rightarrow$ $B!V7W;;!W$K;H$C$F$$$k?M$O$4$/>/?t(B |
|
|
$BNc(B : email, $B%&%'%V(B $\cdots$ $B!V%$%s%?!<%M%C%H$9$k!W(B |
{\bf $BNc(B} : email, $B%&%'%V(B {\eec $B!V%$%s%?!<%M%C%H$9$k!W(B} |
|
|
$B$7$+$7(B, $B7W;;5!$NG=NO$O0[MM$K8~>e(B |
$B$7$+$7(B, $B7W;;5!$NG=NO$O0[MM$K8~>e(B |
|
|
$B7W;;$K;H$o$J$$$N$O$b$C$?$$$J$$(B($B$H;W$&(B) |
|
|
{\ec $B7W;;$K;H$o$J$$$N$O$b$C$?$$$J$$(B}($B$H;W$&(B) |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\fbox{\bf 2. $B%3%s%T%e!<%?$K$D$$$F$N%$%m%O(B} |
\fbox{\sc 2. $B%3%s%T%e!<%?$K$D$$$F$N%$%m%O(B} |
|
|
\begin{itemize} |
\begin{itemize} |
\item CPU |
\item {\eec CPU} |
|
|
$B%W%m%0%i%`$K=>$C$FL?Na$r<B9T(B |
$B%W%m%0%i%`$K=>$C$FL?Na$r<B9T(B |
|
|
\item $B%a%b%j(B |
\item {\eec $B%a%b%j(B} |
|
|
$B%W%m%0%i%`(B, $B%G!<%?$rCV$/>l=j(B. $B>l=j(B ($BHVCO(B) $B$r;XDj$7$F9bB.$K=P$7F~$l$,$G$-$k(B. |
$B%W%m%0%i%`(B, $B%G!<%?$rCV$/>l=j(B. $B>l=j(B ($BHVCO(B) $B$r;XDj$7$F9bB.$K=P$7F~$l$,$G$-$k(B. |
|
|
\item $B%l%8%9%?(B |
\item {\eec $B%l%8%9%?(B} |
|
|
CPU $B$,;}$C$F$$$kFCJL$J%a%b%j$G(B, $B1i;;$NBP>]$K$J$k(B. $B?t$OB?$/$J$/(B, $BBg$-$5(B |
CPU $B$,;}$C$F$$$kFCJL$J%a%b%j$G(B, $B1i;;$NBP>]$K$J$k(B. $B?t$OB?$/$J$/(B, $BBg$-$5(B |
($BD9$5(B) $B$b>.$5$$(B. |
($BD9$5(B) $B$b>.$5$$(B. |
Line 44 CPU $B$,;}$C$F$$$kFCJL$J%a%b%j$G(B, $B1i;;$NBP>]$K$ |
|
Line 43 CPU $B$,;}$C$F$$$kFCJL$J%a%b%j$G(B, $B1i;;$NBP>]$K$ |
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $BL?Na$NNc(B} |
\underline{\uc $BL?Na$NNc(B} |
\begin{itemize} |
\begin{itemize} |
\item 10 $BHVCO$+$i(B 1 $B%P%$%HFI$s$G(B A $B%l%8%9%?$KF~$l$h(B |
\item 10 $BHVCO$+$i(B 1 $B%P%$%HFI$s$G(B A $B%l%8%9%?$KF~$l$h(B |
\item A, B $B%l%8%9%?$NCM$rB-$7$F(B C $B%l%8%9%?$KF~$l$h(B |
\item A, B $B%l%8%9%?$NCM$rB-$7$F(B C $B%l%8%9%?$KF~$l$h(B |
\item A $B%l%8%9%?$NCM$,(B 0 $B$J$i(B 100 $BHVCO@h$KHt$Y(B |
\item A $B%l%8%9%?$NCM$,(B 0 $B$J$i(B 100 $BHVCO@h$KHt$Y(B |
\end{itemize} |
\end{itemize} |
|
|
\underline{\bf $B07$($k?t(B} |
\underline{\uc $B07$($k?t(B} |
|
|
$B%l%8%9%?$NBg$-$5$G07$($k?t$NHO0O$,7h$^$k(B. |
$B%l%8%9%?$NBg$-$5(B = $B07$($k?t$NHO0O(B |
|
|
32$B%S%C%H%l%8%9%?(B $\Rightarrow$ 0 $B$+$i(B $2^{32}-1$ $B$^$G$N@0?t$7$+07$($J$$(B |
32$B%S%C%H%l%8%9%?(B $\Rightarrow$ 0 $B$+$i(B $2^{32}-1$ $B$^$G$N@0?t$7$+07$($J$$(B |
|
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $B?t3X$K;H$&>l9g$r9M$($k$H(B...} |
\underline{\uc $B?t3X$K;H$&>l9g$r9M$($k$H(B...} |
|
|
$11111111111 \times 11111111111$ |
$11111111111 \times 11111111111$ |
|
|
$\Rightarrow 1332508849$ ??? (=$B7k2L$r(B $2^{32}$ $B$G3d$C$?M>$j(B) |
$\Rightarrow$ {\ec 1332508849} ??? (=$B7k2L$r(B $2^{32}$ $B$G3d$C$?M>$j(B) |
|
|
$B$+$H$$$C$F(B |
$B$+$H$$$C$F(B |
|
|
Line 74 $\Rightarrow 1.234567 \times 10^{20}$ |
|
Line 73 $\Rightarrow 1.234567 \times 10^{20}$ |
|
|
|
$B$b:$$k(B |
$B$b:$$k(B |
|
|
$B8m:9$,F~$k$H?t3X$H$7$F$OL50UL#$J7W;;(B |
{\ec $B8m:9$,F~$k$H?t3X$H$7$F$OL50UL#$J7W;;(B} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $B$H$j$"$($:Bg$-$J@0?t$O07$($J$$$H$$$1$J$$(B} |
\underline{\uc $B$H$j$"$($:Bg$-$J@0?t$O07$($J$$$H$$$1$J$$(B} |
|
|
$\Rightarrow$ $B%W%m%0%i%`$r=q$1$P$h$$(B |
$\Rightarrow$ {\eec $B%W%m%0%i%`(B}$B$r=q$1$P$h$$(B |
|
|
$B%a%b%j>e$K@0?t$rJB$Y$F(B, $B%3%s%T%e!<%?$K!VI.;;!W$r$5$;$l$P$h$$(B |
$B%a%b%j>e$K@0?t$rJB$Y$F(B, $B%3%s%T%e!<%?$K(B {\eec $B!VI.;;!W(B}$B$r$5$;$l$P$h$$(B |
|
|
\begin{itemize} |
\begin{itemize} |
\item $B?M4V(B |
\item {\eec $B?M4V(B} |
|
|
$B$R$H$1$?(B : 0 $B0J>e(B 9 $B0J2<(B |
$B$R$H$1$?(B : 0 $B0J>e(B 9 $B0J2<(B |
|
|
\item $B%3%s%T%e!<%?(B |
\item {\eec $B%3%s%T%e!<%?(B} |
|
|
$B$R$H$1$?(B : 0 $B0J>e(B $2^{32}-1$ $B0J2<(B |
$B$R$H$1$?(B : 0 $B0J>e(B $2^{32}-1$ $B0J2<(B |
\end{itemize} |
\end{itemize} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $BNc(B : $B@0?t$NB-$7;;(B} |
\underline{\uc $BNc(B : $B@0?t$NB-$7;;(B} |
|
|
\begin{tabular}{ccccc} |
\begin{tabular}{ccccc} \\ |
& 5 & 4001257187 & 1914644777 & (= $3^{42}$) \\ |
& 5 & 4001257187 & 1914644777 & (= $3^{42}$) \\ |
+ & & 2830677074 & 689956897 & (= $3^{40}$) \\ \hline |
+ & & 2830677074 & 689956897 & (= $3^{40}$) \\ \hline |
& 6 & 2536966965 & 2604601674 & |
& 6 & 2536966965 & 2604601674 & |
\end{tabular} |
\end{tabular} |
|
|
\underline{\bf $B0lJQ?tB?9`<0(B} |
\vskip 1cm |
|
|
$B3F<!?t$N78?t$rJB$l$P$h$$(B |
\underline{\uc $B0lJQ?tB?9`<0(B} |
|
|
$\Rightarrow$ $B$3$l$G(B, $B@0?t78?t$NB?9`<0$r?t3XE*$K07$($k(B |
$B3F<!?t$N78?t$rJB$Y$l$P$h$$(B |
|
|
|
$\Rightarrow$ $B$3$l$G(B{\ec $B@0?t78?t$NB?9`<0$r?t3XE*$K07$($k(B} |
|
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\fbox{\bf 3. $BB?9`<0$N0x?tJ,2r(B --- $BCf3X9b9;E*J}K!(B} |
\fbox{\sc 3. $BB?9`<0$N0x?tJ,2r(B --- $BCf3X9b9;E*J}K!(B} |
|
{ |
|
\Large\parskip 0pt |
|
|
\begin{enumerate} |
\begin{enumerate} |
\item $B4cNOK!(B ($B2r$H78?t$N4X78(B) |
\item {\eec $B4cNOK!(B} ($B2r$H78?t$N4X78(B) |
|
|
$x^2+ax+b \Rightarrow$ $BB-$7$F(B $a$, $B$+$1$F(B $b$ $B$K$J$k?t$NAH(B |
$x^2+ax+b \Rightarrow$ $BB-$7$F(B $a$, $B$+$1$F(B $b$ $B$K$J$k?t$NAH(B |
|
|
$x^3+ax^2+bx+c$ $B$O$I$&$9$k(B? |
$x^3+ax^2+bx+c$ $B$O$I$&$9$k(B? |
|
|
\item $B0x?tDjM}(B |
\item {\eec $B0x?tDjM}(B} |
|
|
$BBeF~$7$F(B 0 $B$K$J$k?t$rC5$9(B ($B$I$&$d$C$FC5$9(B?) |
$BBeF~$7$F(B 0 $B$K$J$k?t$rC5$9(B ($B$I$&$d$C$FC5$9(B?) |
|
|
\item $B2r$N8x<0(B |
\item {\eec $B2r$N8x<0(B} |
|
|
$x^2+ax+b$ $B$N:,(B ${-b \pm \sqrt{a^2-4b}} \over 2$ |
$x^2+ax+b=0$ $B$N:,(B ${-b \pm \sqrt{a^2-4b}} \over 2$ |
|
|
$\Rightarrow$ $a^2-4b = t^2$ ($t$ : $B@0?t(B) $B$H$+$1$k$+$I$&$+D4$Y$k(B |
$\Rightarrow$ $a^2-4b = t^2$ ($t$ : $B@0?t(B) $B$H$+$1$k$+$I$&$+D4$Y$k(B |
\end{enumerate} |
\end{enumerate} |
|
} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $B4cNOK!$OLdBj$rFq$7$/$7$F$$$k(B} |
\underline{\uc $B4cNOK!$OLdBj$rFq$7$/$7$F$$$k(B} |
|
|
$BNc(B : $x^2+11508x+28386587$ |
$BNc(B : $x^2+11508x+28386587$ |
|
|
$28386587=3581\times 7927$ $B$,$a$N$3$GJ,$+$k?M$O>/$J$$(B($B$H;W$&(B) |
$28386587=3581\times 7927$ $B$,4cNO$GJ,$+$k?M$O>/$J$$(B($B$H;W$&(B) |
|
|
\underline{\bf $B2r$N8x<0K!$OM-K>(B} |
\vskip 1cm |
|
|
|
\underline{\uc $B2r$N8x<0K!$OM-K>(B} |
|
|
$(a^2-4b)/4 = 4717584 = 2172^2$ $B$J$i2?$H$+$J$k(B? |
$(a^2-4b)/4 = 4717584 = 2172^2$ $B$J$i2?$H$+$J$k(B? |
|
|
$\Rightarrow$ $x^2-t$ $B$N@0?t:,$rC5$9J}K!$,$"$l$P$h$$(B |
$\Rightarrow$ {\bf \ec $x^2-t=0$ $B$N@0?t:,$rC5$9J}K!$,$"$l$P$h$$(B} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf 3 $B<!0J2<$N>l9g(B} |
\underline{\uc 3 $B<!0J2<$NB?9`<0(B} |
|
|
\underline{\bf $B@0?t>e$GJ,2r$G$-$k$J$i(B, $B0l<!0x;R$r;}$D(B} |
{\eec $B@0?t>e$GJ,2r$G$-$k$J$i(B, $B0l<!0x;R$r;}$D(B} |
|
|
$B:,$rC5$9J}K!$,E,MQ$G$-$k(B. |
$\Rightarrow$ {\ec $B:,$rC5$9J}K!$,E,MQ$G$-$k(B} |
|
|
$B:,5r(B : $BCf4VCM$NDjM}(B |
{\eec $B:,5r(B : $BCf4VCM$NDjM}(B} |
$B!V(B$f(a) < 0, f(b) > 0$ $B$J$i(B $a$, $b$ $B$N4V$K(B $f(c)=0$ $B$J$k(B $c$ $B$,$"$k(B.$B!W(B |
$B!V(B$f(a) < 0, f(b) > 0$ $B$J$i(B $a$, $b$ $B$N4V$K(B $f(c)=0$ $B$J$k(B $c$ $B$,$"$k(B.$B!W(B |
|
|
\begin{itemize} |
\begin{itemize} |
\item $BFsJ,K!(B |
\item {\eec $BFsJ,K!(B} |
|
|
$B6h4V$rH>J,$:$D69$a$FDI$$9~$`(B |
$B6h4V$rH>J,$:$D69$a$FDI$$9~$`(B |
|
|
\item Newton $BK!(B |
\item {\eec Newton $BK!(B} |
|
|
$BFsJ,K!$h$j$:$C$H9bB.(B |
$BFsJ,K!$h$j$:$C$H9bB.(B |
\end{itemize} |
\end{itemize} |
Line 171 $\Rightarrow$ $x^2-t$ $B$N@0?t:,$rC5$9J}K!$,$"$l$P$h$ |
|
Line 177 $\Rightarrow$ $x^2-t$ $B$N@0?t:,$rC5$9J}K!$,$"$l$P$h$ |
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf 4 $B<!0J>e$N>l9g(B} |
\underline{\uc 4 $B<!0J>e$N>l9g(B} |
|
|
$B$$$m$$$m$JJ,2r%Q%?!<%s$,$"$jF@$k(B |
$B$$$m$$$m$JJ,2r%Q%?!<%s$,$"$jF@$k(B |
|
|
4 $B<!(B = 2 $B<!(B $\times$ 2 $B<!(B |
4 $B<!(B = 2 $B<!(B $\times$ 2 $B<!(B |
|
|
$\Rightarrow$ $B:,$rC5$9J}K!$OE,MQ:$Fq(B |
$\Rightarrow$ {\ec $B:,$rC5$9J}K!$OE,MQ:$Fq(B} |
|
|
\underline{\bf $B%3%s%T%e!<%?MQ$K$O(B, $B$b$&>/$7E}0lE*$JJ}K!$,I,MW(B} |
\vskip 1cm |
|
|
$BCf4VCM$NDjM}$O(B, $B<B?t$K$*$1$k(B {\bf $B6a;w(B} $B$NMxMQ(B |
\underline{\uc $B%3%s%T%e!<%?$K$ONO5;(B($B7+$jJV$7(B)$B$,;w9g$&(B} |
|
|
$BJL$N6a;w(B $\Rightarrow$ {\bf $B3d$C$?M>$j(B}$B$KCmL\(B |
{\eec $BCf4VCM$NDjM}(B} = {\eec $B<B?t$K$*$1$k6a;w(B} $B$NMxMQ(B |
|
|
|
$BJL$N6a;w(B $\Rightarrow$ {\ec $B3d$C$?M>$j(B}$B$KCmL\(B |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\fbox{\bf 4. $p$-$B?J6a;w$K$h$kB?9`<0$N0x?tJ,2r(B} |
\fbox{\sc 4. $p$-$B?J6a;w$K$h$kB?9`<0$N0x?tJ,2r(B} |
|
{\Large\parskip 0pt |
|
|
\underline{\bf $B86M}(B} : {\bf $B@0?t(B $m$ $B$,(B 0} $\Leftrightarrow$ |
\underline{\uc $B86M}(B} : {\eec $B@0?t(B $m$ $B$,(B 0} $\Leftrightarrow$ |
|
|
{\bf $m$ $B$O$I$s$J@0?t$G$b3d$j@Z$l$k(B} |
{\eec $m$ $B$O$I$s$J@0?t$G$b3d$j@Z$l$k(B} |
|
|
({\bf $m$ $B$O==J,Bg$-$$@0?t$G3d$j@Z$l$k(B}) |
({\eec $m$ $B$O==J,Bg$-$$@0?t$G3d$j@Z$l$k(B}) |
|
|
$B$?$H$($P(B, |
$B$?$H$($P(B, |
|
|
Line 204 $h_1$ $B$r8+$D$1$k(B. |
|
Line 213 $h_1$ $B$r8+$D$1$k(B. |
|
\item $f(x)-g_k(x)h_k(x)$ $B$N78?t$,(B $p^k$ $B$G3d$j@Z$l$k$h$&$K(B $g_k$, $h_k$ $B$r(B |
\item $f(x)-g_k(x)h_k(x)$ $B$N78?t$,(B $p^k$ $B$G3d$j@Z$l$k$h$&$K(B $g_k$, $h_k$ $B$r(B |
$B:n$C$F$$$/(B ($k=1,2,\ldots$) |
$B:n$C$F$$$/(B ($k=1,2,\ldots$) |
|
|
\item $g_1$, $h_1$ $B$,Ev$?$j$J$i(B, $BE,Ev$J(B $k$ $B$N$H$3$m$G$[$s$H$K3d$j@Z$l$k$@$m$&(B. |
\item $g_1$, $h_1$ $B$,@52r$KBP1~$7$F$$$l$P(B, $BE,Ev$J(B $k$ $B$N$H$3$m$G$[$s$H$K3d$j@Z$l$k$@$m$&(B. |
\end{enumerate} |
\end{enumerate}} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $B8@$$$+$($l$P(B...} |
\underline{\uc $B8@$$$+$($l$P(B...} |
|
|
$B0J2<(B, $B4JC1$N$?$a(B, $f(x)$ $B$*$h$S0x;R$N78?t$OA4$F@5$G$"$k$H$9$k(B. |
$B0J2<(B, {\ec $B4JC1$N$?$a(B}, $f(x)$ $B$*$h$S0x;R$N78?t$OA4$F@5$G$"$k$H$9$k(B. |
|
|
$f(x) = a_0(x)+p\cdot a_1(x)+p^2\cdot a_2(x)+\cdots$ |
{\eec $f(x) = a_0(x)+p \cdot a_1(x)+p^2\cdot a_2(x)+\cdots$} |
|
|
$B$H!V$Y$-5i?tE83+!W$9$k(B. ( $a_i$ $B$N78?t$O(B $p-1$ $B0J2<(B) |
$B$H!V$Y$-5i?tE83+!W(B ( $a_i$ $B$N78?t$O(B $p-1$ $B0J2<(B) |
|
|
$g(x) = b_0(x)+p\cdot b_1(x)+p^2\cdot b_2(x)+\cdots$ |
{\ec $g(x) = b_0(x)+p\cdot b_1(x)+p^2\cdot b_2(x)+\cdots$} |
|
|
$h(x) = c_0(x)+p\cdot c_1(x)+p^2\cdot c_2(x)+\cdots$ |
{\ec $h(x) = c_0(x)+p\cdot c_1(x)+p^2\cdot c_2(x)+\cdots$} |
|
|
|
($b_i$, $c_i$ $B$N78?t$O(B $p-1$ $B0J2<(B) |
|
|
$B$H$*$$$F(B $f(x)-g(x)h(x)=0$ $B$+$i(B $b_i$, $c_i$ $B$r7h$a$k(B. |
$B$H$*$$$F(B $f(x)-g(x)h(x)=0$ $B$+$i(B $b_i$, $c_i$ $B$r7h$a$k(B. |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $B5-9f(B $a \equiv b \bmod M$} |
\underline{\uc $B5-9f(B $a \equiv b \bmod M$} |
|
|
$M$ $B$r@0?t$H$9$k(B. $a \equiv b \bmod M$ $B$H$O(B |
$M$ $B$r@0?t$H$9$k(B. {\eec $a \equiv b \bmod M$} $B$H$O(B |
|
|
\begin{itemize} |
\begin{itemize} |
\item $a,b$ $B$,@0?t$N$H$-(B, |
\item $a,b$ $B$,@0?t$N$H$-(B, |
|
|
$a-b$ $B$,(B $M$ $B$G3d$j@Z$l$k$3$H(B |
{\eec $a-b$ $B$,(B $M$ $B$G3d$j@Z$l$k(B}$B$3$H(B |
|
|
\item $a,b$ $B$,@0?t78?tB?9`<0$N$H$-(B |
\item $a,b$ $B$,@0?t78?tB?9`<0$N$H$-(B |
|
|
$a-b$ $B$N3F78?t$,(B $M$ $B$G3d$j@Z$l$k$3$H(B |
{\eec $a-b$ $B$N3F78?t$,(B $M$ $B$G3d$j@Z$l$k(B}$B$3$H(B |
\end{itemize} |
\end{itemize} |
|
|
$a$ $B$r(B $M$ $B$G3d$C$?M>$j$b(B $a \bmod M$ $B$H=q$/(B |
\vskip 1cm |
|
|
|
\underline{\uc $a$ $B$r(B $M$ $B$G3d$C$?M>$j$b(B $a \bmod M$ $B$H=q$/(B} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf$b_0(x)$, $c_0(x)$ $B$+$i%9%?!<%H(B} |
\underline{\uc $b_0(x)$, $c_0(x)$ $B$+$i%9%?!<%H(B} |
|
|
$f-gh = a_0-b_0c_0$ + ($p$$B$G3d$j@Z$l$kB?9`<0(B) |
$f-gh$ |
|
|
$B$@$+$i(B, $f=gh$ $B$J$i(B $a_0 \equiv b_0c_0 \bmod p$ $B$N$O$:(B |
$\quad = a_0-${\ec $b_0c_0$} + ($p$$B$G3d$j@Z$l$kB?9`<0(B) |
|
|
\underline{$BNc(B} |
$B$@$+$i(B, $f=gh$ $B$J$i(B |
|
|
|
$a_0 \equiv$ {\ec $b_0c_0$} $\bmod p$ $B$N$O$:(B |
|
|
|
\underline{\uc $BNc(B} |
|
|
|
{\eec |
\begin{tabbing} |
\begin{tabbing} |
$f(x)=$ \= $x^4+17056x^3+72658809x^2$ \\ |
$f(x)=$ \= $x^4+17056x^3+72658809x^2$ \\ |
\> $+3504023212x+30603759869$ |
\> $+3504023212x+30603759869$ |
\end{tabbing} |
\end{tabbing}} |
|
|
$p = 3$ $B$H$9$k$H(B $a_0(x)=x^4+x^3+x+2$ |
$p = 3$ $B$H$9$k$H(B $a_0(x)=x^4+x^3+x+2$ |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $B0l<!0x;R$,$"$k$+(B?} |
\underline{\uc $B0l<!0x;R$,$"$k$+(B?} |
|
|
$b_0(x) = x+p$, $h_0(x) = x^3+qx^2+rx+s$ $B$H$*$/(B. |
{\ec $b_0(x) = x+q$}, |
|
{\ec $c_0(x) = x^3+rx^2+sx+t$} $B$H$*$/(B. |
|
|
$a_0 \equiv b_0c_0 \bmod 3$ $B$h$j(B\\ |
$a_0 \equiv b_0c_0 \bmod 3$ $B$h$j(B\\ |
|
|
|
{\ec |
$\left\{ |
$\left\{ |
\parbox[c]{6in}{ |
\parbox[c]{6in}{ |
$p+q \equiv 1 \bmod 3$ \\ |
$q+r \equiv 1 \bmod 3$ \\ |
$pq+r \equiv 0 \bmod 3$ \\ |
$qr+s \equiv 0 \bmod 3$ \\ |
$pr+s \equiv 1 \bmod 3$ \\ |
$qs+t \equiv 1 \bmod 3$ \\ |
$ps \equiv 2 \bmod 3$} |
$qt \equiv 2 \bmod 3$} |
\right.$\\ |
\right.$\\} |
|
|
$p$, $q$, $r$, $s$ $B$K(B 0, 1, 2 $B$r$I$&F~$l$F$b%@%a(B. |
$q$, $r$, $s$, $t$ $B$K(B 0, 1, 2 $B$r$I$&F~$l$F$b%@%a(B. |
|
|
$B$h$C$F(B, $B0l<!0x;R$O$J$$(B. |
$B$h$C$F(B, {\eec $B0l<!0x;R$O$J$$(B}. |
|
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $BFs<!0x;R$O$"$k$+(B? --- $B$^$:(B $b_0$, $c_0$ $B$rC5$9(B} |
\underline{\uc $BFs<!0x;R$O$"$k$+(B? --- $B$^$:(B $b_0$, $c_0$ $B$rC5$9(B} |
|
|
$b_0(x) = x^2+px+q$, $h_0(x) = x^2+rx+s$ $B$H$*$/(B |
{\ec $b_0(x) = x^2+qx+r$}, |
|
{\ec $c_0(x) = x^2+sx+t$} |
|
|
$a_0 \equiv b_0c_0 \bmod 3$ $B$h$j(B\\ |
$B$H$*$/$H(B, $a_0 \equiv b_0c_0 \bmod 3$ $B$h$j(B\\ |
|
|
|
{\ec |
$\left\{ |
$\left\{ |
\parbox[c]{6in}{ |
\parbox[c]{6in}{ |
$p+r \equiv 1 \bmod 3$ \\ |
$q+s \equiv 1 \bmod 3$ \\ |
$pr+q+s \equiv 0 \bmod 3$ \\ |
$qs+r+t \equiv 0 \bmod 3$ \\ |
$ps+qr \equiv 1 \bmod 3$ \\ |
$qt+rs \equiv 1 \bmod 3$ \\ |
$sq \equiv 2 \bmod 3$} |
$tr \equiv 2 \bmod 3$} |
\right.$\\ |
\right.$\\} |
|
|
$p$, $q$, $r$, $s$ $B$K(B 0, 1, 2 $B$NCM$rF~$l$F$_$l$P(B |
$q$, $r$, $s$, $t$ $B$K(B 0, 1, 2 $B$NCM$rF~$l$F$_$l$P(B |
|
|
$(p,q,r,s) = (0,1,1,2), (1,2,0,1)$ $B$,8+$D$+$k(B. |
{\eec $(q,r,s,t) = (0,1,1,2), (1,2,0,1)$} |
|
|
$B0lJ}$,(B $b_0$, $BB>J}$,(B $c_0$ $B$H$_$J$;$P$3$l$i$OF1$8$b$N(B |
$B0lJ}$,(B $b_0$, $BB>J}$,(B $c_0$ $\Rightarrow$ $B$3$l$i$OF1$8$b$N(B |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $BFs<!0x;R$D$E$-(B --- $b_1$, $c_1$ $B$,K~$?$9@-<A(B} |
\underline{\uc $BFs<!0x;R$D$E$-(B --- $b_1$, $c_1$ $B$,K~$?$9@-<A(B} |
|
|
$b_0 = x^2+1$, $c_0 = x^2+x+2$ $B$H$9$k$H(B |
{\Large\parskip 0pt |
|
{\eec $b_0 = x^2+1$}, |
|
{\eec $c_0 = x^2+x+2$} $B$H$9$k$H(B |
|
|
\centerline{$f-b_0c_0 \equiv 0 \bmod 3$} |
\centerline{\eec $f-b_0c_0 \equiv 0 \bmod 3$} |
|
|
$f-gh \equiv a_0-b_0c_0+p(a_1-(b_0c_1+b_1c_0)) \bmod 3^2$ |
$f-gh \equiv a_0-b_0c_0+p(a_1-$ |
|
$(b_0${\ec$c_1$}$+c_0${\ec$b_1$}$))\bmod 3^2$ |
|
|
$B$h$j(B, $BN>JU$r(B 3 $B$G3d$C$F(B |
$B$h$j(B, $BN>JU$r(B 3 $B$G3d$C$F(B |
|
|
${{f-gh} \over 3} \equiv {{a_0-b_0c_0}\over 3} + (a_1-(b_0c_1+b_1c_0)) \bmod 3$ |
${{f-gh}\over 3} \equiv {{a_0-b_0c_0}\over 3}+(a_1-$ |
|
$(b_0${\ec$c_1$}$+c_0${\ec$b_1$}$))\bmod 3$ |
|
|
$B:8JU$O(B $3$ $B$G2?2s$G$b3d$l$k(B $\Rightarrow$ $B1&JU$O(B $3$ $B$G3d$l$k(B |
$B:8JU$O(B $3$ $B$G2?2s$G$b3d$l$k(B $\Rightarrow$ $B1&JU$O(B $3$ $B$G3d$l$k(B |
|
|
$BJd@59`(B $b_1$, $c_1$ : $x^2$ $B$N78?t$O(B 0 $B$H$7$F$h$$(B |
$BJd@59`(B {\ec $b_1$}, {\ec $c_1$} : $x^2$ $B$N78?t$O(B 0 $B$H$7$F$h$$(B} |
|
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $BFs<!0x;R$D$E$-(B --- $b_1$, $c_1$ $B$,K~$?$9J}Dx<0(B} |
\underline{\uc $BFs<!0x;R$D$E$-(B --- $b_1$, $c_1$ $B$,K~$?$9J}Dx<0(B} |
|
|
$b_1 = px+q$, $c_1 = rx+s$ $B$H$*$/(B. |
{\Large\parskip 0pt |
|
{\ec $b_1 = qx+r$}, |
|
{\ec $c_1 = sx+t$} $B$H$*$/(B. |
|
|
\begin{tabbing} |
\begin{tabbing} |
$B1&JU(B = \= $-(p+r)x^3-(p+q+s+1)x^2$\\ |
$B1&JU(B = \= {\ec $-(q+s)x^3-(q+r+t+1)x^2$}\\ |
\> $-(2p+q+r-1)x-(2q+s)$ |
\> {\ec $-(2q+r+s-1)x-(2r+t)$} |
\end{tabbing} |
\end{tabbing} |
|
|
$$B1&JU(B \equiv 0 \bmod 3$ $B$h$j(B\\ |
$$B1&JU(B \equiv 0 \bmod 3$ $B$h$j(B\\ |
|
|
|
{\ec |
$\left\{ |
$\left\{ |
\parbox[c]{6in}{ |
\parbox[c]{6in}{ |
$p+r \equiv 0 \bmod 3$ \\ |
$q+s \equiv 0 \bmod 3$ \\ |
$p+q+s+1 \equiv 0 \bmod 3$ \\ |
$q+r+t+1 \equiv 0 \bmod 3$ \\ |
$2p+q+r-1 \equiv 0 \bmod 3$ \\ |
$2q+r+s-1 \equiv 0 \bmod 3$ \\ |
$2q+s \equiv 0 \bmod 3$} |
$2r+t \equiv 0 \bmod 3$} |
\right.$\\ |
\right.$\\} |
|
|
$B$3$s$I$OO"N)0l<!J}Dx<0(B($B9gF1<0(B). $B$3$l$r2r$/$H(B |
$B$3$s$I$OO"N)0l<!J}Dx<0(B($B9gF1<0(B). $B$3$l$r2r$/$H(B |
|
|
$(p,q,r,s) = (0,1,0,1)$ $B$9$J$o$A(B $b_1 = 1$, $c_1 = 1$ |
{\eec $(q,r,s,t) = (0,1,0,1)$} $B$9$J$o$A(B {\eec $b_1 = 1$}, {\eec $c_1 = 1$}} |
|
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $BFs<!0x;R$D$E$-(B --- $b_k$, $c_k$ $B$bF1MM(B} |
\underline{\uc $BFs<!0x;R$D$E$-(B --- $b_k$, $c_k$ $B$bF1MM(B} |
|
|
|
{\Large\parskip 0pt |
$B$3$l$G(B, |
$B$3$l$G(B, |
|
|
\centerline{$f \equiv (b_0+3b_1)(c_0+3c_1) \bmod 3^2$} |
\centerline{\eec $f \equiv (b_0+3b_1)(c_0+3c_1) \bmod 3^2$} |
|
|
$B0J2<F1MM$K(B, |
$B0J2<F1MM$K(B, |
|
|
\centerline{$b_k = px+q, c_k = rx+s$} |
\centerline{\ec $b_k = qx+r, c_k = sx+t$} |
|
|
$B$H$*$$$F(B, $(p,q,r,s)$ $B$NO"N)0l<!J}Dx<0$r2r$1$P(B |
$B$H$*$$$F(B, $(q,r,s,t)$ $B$NO"N)0l<!J}Dx<0$r2r$1$P(B |
|
|
\centerline{$f \equiv (b_0+\ldots+3^{k-1}b_{k-1})(c_0+\ldots+3^{k-1}c_{k-1}) \bmod 3^k$} |
\centerline{\eec $f \equiv (b_0+\ldots+3^{k-1}b_{k-1})(c_0+\ldots+3^{k-1}c_{k-1}) \bmod 3^k$} |
|
|
$B$9$J$o$A(B |
$B$9$J$o$A(B |
|
|
\centerline{$f \equiv g_kh_k \bmod 3^k$} |
\centerline{\eec $f \equiv g_kh_k \bmod 3^k$} |
|
|
$B$H$J$k(B $g_k, h_k$ $B$,7h$^$k(B. |
$B$H$J$k(B $g_k, h_k$ $B$,7h$^$k(B. } |
|
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $(g_k, h_k)$ $B$NI=(B} |
\underline{\uc $(g_k, h_k)$ $B$NI=(B} |
|
|
{\large |
{\large |
\begin{tabular} { c | c c } |
\begin{tabular} { c | c c } |
Line 387 $k$ & $g_k$ & $h_k$ \\ \hline |
|
Line 417 $k$ & $g_k$ & $h_k$ \\ \hline |
|
9&$x^2+7821x+10615$&$x^2+9235x+7916$\\ \hline |
9&$x^2+7821x+10615$&$x^2+9235x+7916$\\ \hline |
10&$x^2+7821x+30298$&$x^2+9235x+47282$\\ \hline |
10&$x^2+7821x+30298$&$x^2+9235x+47282$\\ \hline |
11&$x^2+7821x+89347$&$x^2+9235x+165380$\\ \hline |
11&$x^2+7821x+89347$&$x^2+9235x+165380$\\ \hline |
12&$x^2+7821x+89347$&$x^2+9235x+342527$\\ \hline |
12&{\ec $x^2+7821x+89347$}&{\ec $x^2+9235x+342527$}\\ \hline |
13&$x^2+7821x+89347$&$x^2+9235x+342527$\\ \hline |
13&{\ec $x^2+7821x+89347$}&{\ec $x^2+9235x+342527$}\\ \hline |
\end{tabular}} |
\end{tabular}} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $\bmod 3^k$ $B$G$N0x;R$+$i??$N0x;R$X(B} |
\underline{\uc $\bmod 3^k$ $B$G$N0x;R$+$i??$N0x;R$X(B} |
|
|
$BI=$G8+$k$H(B, $k=12$ $B$+$i(B $k=13$ $B$GJQ2=$,$J$$(B |
$BI=$G8+$k$H(B, {\eec $k=12 \rightarrow 13$ $B$GJQ2=$,$J$$(B} |
|
|
$\Rightarrow$ $f-g_{13}h_{13}$ $B$r7W;;$7$F$_$k$H(B 0 $B$K$J$C$F$$$k(B! |
$\Rightarrow$ {\ec $f-g_{13}h_{13}$ $B$r7W;;$7$F$_$k$H(B 0!} |
|
|
$B$9$J$o$A(B |
{\eec |
|
$f(x) = (x^2+7821x+89347) \times$ |
|
|
$f(x) = $ |
$(x^2+9235x+342527)$} |
|
|
$(x^2+7821x+89347)(x^2+9235x+342527)$ |
\underline{\uc $B<B:]$K$O(B...} |
|
|
\underline{\bf $B<B:]$K$O(B...} |
|
|
|
\begin{itemize} |
\begin{itemize} |
\item $BIi$N78?t$N>l9g$r07$&$?$a$N9)IW$,I,MW(B |
\item $BIi$N78?t$N>l9g$r07$&$?$a$N9)IW$,I,MW(B |
|
|
Line 415 $(x^2+7821x+89347)(x^2+9235x+342527)$ |
|
Line 444 $(x^2+7821x+89347)(x^2+9235x+342527)$ |
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $\bmod p$ $B$G$NJ,2r$,0lHVBg@Z(B} |
\underline{\uc $\bmod p$ $B$G$NJ,2r$,0lHVBg@Z(B} |
|
|
$B=P$FMh$?(B, $B78?t$NJ}Dx<0(B |
$B3F%9%F%C%W$G=P$FMh$k78?t$NJ}Dx<0(B |
|
|
\begin{itemize} |
\begin{itemize} |
\item $k > 1$ |
\item {\eec $k > 1$} |
|
|
$BC1$J$kO"N)0l<!J}Dx<0(B |
$BO"N)0l<!J}Dx<0(B ($B<B:]$K$O9gF1<0(B) |
|
|
\item $k = 1$ |
\item {\eec $k = 1$} |
|
|
$B0l<!J}Dx<0$G$J$$(B $\Rightarrow$ $B$7$i$_$D$V$7$G2r$/$N$O$"$^$j$K8zN((B |
$B0l<!J}Dx<0$G$J$$(B |
|
|
|
$\Rightarrow$ $B$7$i$_$D$V$7$G2r$/$N$O$"$^$j$K8zN((B |
$B$,$o$k$$(B ($B$$$/$i%3%s%T%e!<%?$G$b(B) |
$B$,$o$k$$(B ($B$$$/$i%3%s%T%e!<%?$G$b(B) |
\end{itemize} |
\end{itemize} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\fbox{\bf 5. $BM-8BBN(B $GF(p) = \{0,1,\cdots,p-1\}$ } |
\fbox{\sc 5. $BM-8BBN(B $GF(p) = \{0,1,\cdots,p-1\}$ } |
|
|
$p$ $B$,AG?t$N$H$-(B, |
$p$ $B$,(B{\ec $BAG?t(B}$B$N$H$-(B, |
$GF(p) = \{0,1,\cdots,p-1\}$ $B$K(B, $+$, $-$, $\times$ $B$r(B |
|
$B!V7k2L$r(B $p$ $B$G(B $B3d$C$?M>$j!W$GDj5A$9$k$H(B |
|
|
|
|
{\eec $GF(p) = \{0,1,\cdots,p-1\}$} $B$K(B, $+$, $-$, $\times$ $B$r(B |
|
{\eec $B!V7k2L$r(B $p$ $B$G(B $B3d$C$?M>$j!W(B}$B$GDj5A$9$k$H(B |
|
|
\begin{enumerate} |
\begin{enumerate} |
\item $B2C8:>h;;$GJD$8$F$$$k(B. |
\item $B2C8:>h;;$GJD$8$F$$$k(B. |
\item 0 $B0J30$N85$G3d;;$,$G$-$k(B. |
\item {\eec 0 $B0J30$N85$G3d;;$,$G$-$k(B. } |
|
|
$B!V(B$a {\not \equiv} 0 \bmod p$ $B$J$i(B $ab \equiv 1 \bmod p$ $B$H$J$k(B $b$ $B$,$H$l$k!W(B |
$B!V(B$a {\not \equiv} 0 \bmod p$ $B$J$i(B $ab \equiv 1 \bmod p$ $B$J$k(B $b$ $B$,$"$k!W(B |
\end{enumerate} |
\end{enumerate} |
|
|
$B$9$J$o$A(B, {\bf $GF(p)$ $B$OBN(B($B%?%$(B)} |
$B$9$J$o$A(B, {\eec $GF(p)$ $B$OBN(B($B%?%$(B)} |
|
|
$B85$N8D?t$,M-8B8D(B ($p$ $B8D(B)$B$J$N$G(B {\bf $BM-8BBN(B} $B$H$h$V(B. |
$B85$N8D?t$,M-8B8D(B ($p$ $B8D(B)$B$J$N$G(B {\ec $BM-8BBN(B} $B$H$h$V(B. |
|
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $k=1$ $B$G$N7W;;$O(B, $BM-8BBN>e$G$N0x?tJ,2r(B} |
\underline{\uc $k=1$ $\Rightarrow$ $BM-8BBN>e$G$N0x?tJ,2r(B} |
|
|
$a_0 \equiv f \bmod p$ $B$r(B $GF(p)$ $B78?tB?9`<0$H$_$k(B. |
$a_0 \equiv f \bmod p$ $B$r(B $GF(p)$ $B78?tB?9`<0$H$_$k(B. |
|
|
$\Rightarrow$ $a_0 \equiv b_0c_0 \bmod p$ $B$H$J$k(B $b_0$, $c_0$ $B$r(B |
$\Rightarrow$ $a_0 \equiv b_0c_0 \bmod p$ $B$H$J$k(B $b_0$, $c_0$ $B$r(B |
$B5a$a$k$3$H$O(B, $GF(p)$ $B>e$G$N0x?tJ,2r$KAjEv(B |
$B5a$a$k$3$H$O(B, $GF(p)$ $B>e$G$N0x?tJ,2r$KAjEv(B |
|
|
$\Rightarrow$ {\bf $B$h$$%"%k%4%j%:%`$,$?$/$5$s$"$k(B} |
$\Rightarrow$ {\eec $B<B$O$h$$%"%k%4%j%:%`$,$"$k(B} |
|
|
\underline{\bf $k > 1$ $B$G$N7W;;$O(B, $BM-8BBN>e$G$NO"N)0l<!J}Dx<05a2r(B} |
\vskip 1cm |
|
|
|
\underline{\uc $k > 1$ $\Rightarrow$ $BM-8BBN>e$G$NO"N)0l<!J}Dx<05a2r(B} |
|
|
$B<B:]$K$O(B, $k=1$ $B$N7k2L$+$i5!3#E*$K7W;;$G$-$k(B. |
$B<B:]$K$O(B, $k=1$ $B$N7k2L$+$i5!3#E*$K7W;;$G$-$k(B. |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $B0x?tJ,2r$N$^$H$a(B (Zassenhaus $B%"%k%4%j%:%`(B)} |
\underline{\uc $B0x?tJ,2r$^$H$a(B (Zassenhaus $B%"%k%4%j%:%`(B)} |
|
|
\begin{enumerate} |
\begin{enumerate} |
\item $B$h$$AG?t(B $p$ $B$rA*$s$G(B $f \bmod p$ $B$r0x?tJ,2r(B |
\item {\eec $B$h$$AG?t(B $p$ $B$rA*$s$G(B $f \bmod p$ $B$r0x?tJ,2r(B} |
|
|
$f$ $B$N:G9b<!78?t$r3d$i$J$$(B |
{\eec $B!V$h$$!W(B} $B$H$O(B |
|
|
$GF(p)$ $B$G$N0x;R$,A4$F0[$J$k(B etc. |
\begin{itemize} |
|
\item $f$ $B$N:G9b<!78?t$r3d$i$J$$(B |
|
|
\item $B<!$r7+$jJV$7(B |
\item $GF(p)$ $B$G$N0x;R$,A4$F0[$J$k(B etc. |
|
\end{itemize} |
|
|
|
\item {\eec $B<!$r7+$jJV$7(B} |
|
|
\begin{enumerate} |
\begin{enumerate} |
\item $GF(p)$ $B>e$N0x;R$rFsAH$KJ,$1$k(B |
\item $GF(p)$ $B>e$N0x;R$rFsAH$KJ,$1$k(B |
|
|
Line 492 $GF(p)$ $B$G$N0x;R$,A4$F0[$J$k(B etc. |
|
Line 530 $GF(p)$ $B$G$N0x;R$,A4$F0[$J$k(B etc. |
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $BN"$K$O$$$m$$$m?t3X$,1#$l$F$$$k(B} |
\underline{\uc $BN"$K$O$$$m$$$m?t3X$,1#$l$F$$$k(B} |
|
|
\begin{itemize} |
\begin{itemize} |
\item $BBN$N>e$G$N0x?tJ,2r$N0l0U@-(B |
\item {\eec $BBN$N>e$G$N0x?tJ,2r$N0l0U@-(B} |
|
|
$BBN>e$NB?9`<04D$N@-<A(B |
$BBN>e$NB?9`<04D$N@-<A(B |
|
|
\item $BM-8BBN>e$G$N0x?tJ,2r%"%k%4%j%:%`(B |
\item {\eec $BM-8BBN>e$G$N0x?tJ,2r%"%k%4%j%:%`(B} |
|
|
Berlekamp $B%"%k%4%j%:%`(B |
Berlekamp $B%"%k%4%j%:%`(B |
|
|
\item $\bmod p$ $B$+$i(B $\bmod p^k$ $B$X$N;}$A>e$2(B |
\item {\eec $\bmod p$ $B$+$i(B $\bmod p^k$ $B$X$N;}$A>e$2(B} |
|
|
Euclid $B$N8_=|K!(B, Hensel $B$NJdBj(B |
Euclid $B$N8_=|K!(B, Hensel $B$NJdBj(B |
\end{itemize} |
\end{itemize} |
|
|
$\Rightarrow$ $B7W;;5!$N%Q%o!<$@$1$G$O%@%a(B. $B?t3X$r$&$^$/MxMQ$7$?(B |
$\Rightarrow$ $B7W;;5!$N%Q%o!<$@$1$G$O%@%a(B. |
$B%"%k%4%j%:%`@_7W$,I,MW$H$$$&$3$H(B. |
|
|
|
|
{\ec $B?t3X$r$&$^$/;H$C$?%"%k%4%j%:%`@_7W$,I,MW(B} |
|
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\fbox{\bf 6. $BM-8BBN$N1~MQNc(B : $B0E9f(B} |
\fbox{\sc 6. $BM-8BBN$N1~MQNc(B : $B0E9f(B} |
|
|
\underline{\bf $B%M%C%H%o!<%/>e$G$NDL?.$O4pK\E*$KE{H4$1(B} |
\underline{\uc $B%M%C%H%o!<%/>e$G$NDL?.$O4pK\E*$KE{H4$1(B} |
|
|
$B<+J,$N?H$O<+J,$G<i$k(B $\Rightarrow$ $BDL?.FbMF$r(B{\bf $B0E9f(B}$B2=(B |
$B<+J,$N?H$O<+J,$G<i$k(B $\Rightarrow$ $BDL?.FbMF$r(B{\ec $B0E9f(B}$B2=(B |
|
|
\underline{\bf $B0E9f2=DL?.$N0lNc(B} |
\underline{\uc $B0E9f2=DL?.$N0lNc(B} |
|
|
\begin{enumerate} |
\begin{enumerate} |
\item $B6&DL$N0E9f2=(B/$BI|9f2=80$r6&M-$9$k(B. |
\item $B0E9f2=(B/$BI|9f2=(B{\ec $B80(B}$B$r(B{\ec $B6&M-(B}$B$9$k(B. |
|
|
\item $BAw?.B&(B : $B80$G0E9f2=(B $\Rightarrow$ $B<u?.B&(B : $B80$GI|9f2=(B |
\item $BAw?.B&(B : $B80$G0E9f2=(B $\Rightarrow$ $B<u?.B&(B : $B80$GI|9f2=(B |
\end{enumerate} |
\end{enumerate} |
|
|
\underline{\bf $BLdBj(B : $BDL?.O)$,E{H4$1$N$H$-$K(B, $B$I$&$d$C$F80$r6&M-(B?} |
\underline{\uc $BLdBj(B : $BDL?.O)$,E{H4$1$N$H$-$K(B,} |
|
|
|
\underline{\uc $B$I$&$d$C$F80$r6&M-(B?} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf A $B$5$s$H(B B $B$5$s$,80$r6&M-(B --- Diffie-Hellman} |
{\Large\parskip 0pt |
|
\underline{\uc A $B$5$s$H(B B $B$5$s$,80$r6&M-(B --- Diffie-Hellman} |
|
|
\begin{itemize} |
\begin{itemize} |
\item $B8x3+>pJs(B |
\item {\eec $B8x3+>pJs(B} |
|
|
$BBg$-$$AG?t(B $p$, $0 < g < p$ $B$J$k@0?t(B $g$ |
$BBg$-$$AG?t(B $p$, $0 < g < p$ $B$J$k@0?t(B $g$ |
|
|
\item A $B$5$s$N;E;v(B |
\item {\eec A $B$5$s$N;E;v(B} |
|
|
\begin{enumerate} |
\begin{enumerate} |
\item $0 < s_A < p$ $B$J$k@0?t(B $s_A$ ($BHkL)(B) $B$r:n$k(B. |
\item $0 < s_A < p$ $B$J$k@0?t(B {\eec $s_A$} ($BHkL)(B) $B$r:n$k(B. |
\item $w_A = g^{s_A} \bmod p$ $B$r(B B $B$5$s$KAw$k(B. |
\item $w_A =$ {\eec $g^{s_A} \bmod p$} $B$r(B B $B$5$s$KAw$k(B. |
\item $s = w_B^{s_A} \bmod p$ $B$r:n$k(B. |
\item $s =$ {\eec $w_B^{s_A} \bmod p$} $B$r:n$k(B. |
\end{enumerate} |
\end{enumerate} |
|
|
\item B $B$5$s$N;E;v(B |
\item {\eec B $B$5$s$N;E;v(B} |
|
|
\begin{enumerate} |
\begin{enumerate} |
\item $0 < s_B < p$ $B$J$k@0?t(B $s_B$ ($BHkL)(B) $B$r:n$k(B. |
\item $0 < s_B < p$ $B$J$k@0?t(B {\eec $s_B$} ($BHkL)(B) $B$r:n$k(B. |
\item $w_B = g^{s_B} \bmod p$ $B$r(B A $B$5$s$KAw$k(B. |
\item $w_B =$ {\eec $g^{s_B} \bmod p$} $B$r(B A $B$5$s$KAw$k(B. |
\item $s = w_A^{s_B} \bmod p$ $B$r:n$k(B. |
\item $s =$ {\eec $w_A^{s_B} \bmod p$} $B$r:n$k(B. |
\end{enumerate} |
\end{enumerate} |
|
|
\end{itemize} |
\end{itemize}} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $BBg;v$JE@(B} |
\underline{\uc $BBg;v$JE@(B} |
|
|
\begin{itemize} |
\begin{itemize} |
\item $w_B^{s_A} = w_A^{s_B} \bmod p$ |
\item {\eec $w_B^{s_A} = w_A^{s_B} \bmod p$} |
|
|
$B$3$l$G80$,6&M-$G$-$?(B |
$B$3$l$G80$,6&M-$G$-$?(B |
|
|
\item $w_A$, $w_B$ $B$O0E9f2=$5$l$J$$(B |
\item {\eec $w_A$, $w_B$ $B$O0E9f2=$5$l$J$$(B} |
|
|
$g^{s_A} \bmod p$ $B$+$i(B $s_A$ $B$r5a$a$k$N$OFq$7$$(B |
$g^{s_A} \bmod p$ $B$+$i(B $s_A$ $B$r5a$a$k$N$OFq$7$$(B |
|
|
($BM-8BBN$N>hK!72$K$*$1$kN%;6BP?tLdBj(B) |
{\ec ($BM-8BBN$N>hK!72$K$*$1$kN%;6BP?tLdBj(B)} |
|
|
\item $\overline{a^b} = a^b \bmod p$ $B$O(B $p$ $BDxEY$N?t$N$+$1;;3d;;$K5"Ce(B |
\item $\overline{a^b} = a^b \bmod p$ $B$O(B {\eec $p$ $BDxEY$N?t$N$+$1;;3d;;$K5"Ce(B} |
|
|
$\overline{a^{100}} = \overline{(\overline{a^{50}})^2}$, |
$\overline{a^{100}} = \overline{(\overline{a^{50}})^2}$, |
$\overline{a^{50}} = \overline{(\overline{a^{25}})^2}$, |
$\overline{a^{50}} = \overline{(\overline{a^{25}})^2}$, |
Line 585 $\overline{a^{3}} = \overline{\overline{(\overline{a}) |
|
Line 627 $\overline{a^{3}} = \overline{\overline{(\overline{a}) |
|
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\underline{\bf $BB>$K$b$$$m$$$m$"$k(B} |
\underline{\uc $BB>$K$b$$$m$$$m$"$k(B} |
|
|
\begin{itemize} |
\begin{itemize} |
\item RSA $B0E9f(B |
\item {\eec RSA $B0E9f(B} |
|
|
$BBg$-$J@0?t$NAG0x?tJ,2r$NFq$7$5$rMxMQ(B |
{\eec $BBg$-$J@0?t$NAG0x?tJ,2r$NFq$7$5(B}$B$rMxMQ(B |
|
|
\item $BBJ1_6J@~0E9f(B |
\item {\eec $BBJ1_6J@~0E9f(B} |
|
|
$BM-8BBN>e$G(B $y^2=x^3+ax+b$ $B$N2r(B $P=(x,y)$ $B$r9M$($k$H(B, |
$BM-8BBN>e$G(B $y^2=x^3+ax+b$ $B$N2r(B $P=(x,y)$ $B$r9M$($k$H(B, |
$k$ $BG\;;(B $kP$ $B$,Dj5A$G$-$k(B. |
$k$ $BG\;;(B $kP$ $B$,Dj5A$G$-$k(B. |
|
|
$kP$ $B$+$i(B $k$ $B$r5a$a$k7W;;$NFq$7$5$rMxMQ(B |
{\eec $kP$ $B$+$i(B $k$ $B$r5a$a$k7W;;$NFq$7$5(B}$B$rMxMQ(B |
\end{itemize} |
\end{itemize} |
|
|
$\Rightarrow$ {\bf $B$$$:$l$b(B, $BD>@\(B, $B4V@\$K@0?t$N>jM>1i;;$,4XM?(B} |
$\Rightarrow$ {\ec $BD>@\(B, $B4V@\$K@0?t$N>jM>1i;;$,4XM?(B} |
\end{slide} |
\end{slide} |
|
|
\begin{slide}{} |
\begin{slide}{} |
\fbox{\bf 7. $B$^$H$a(B} |
\fbox{\sc 7. $B$^$H$a(B} |
|
|
\begin{enumerate} |
\begin{enumerate} |
\item {\bf $BB?9`<00x?tJ,2rDxEY$G$b(B, $B8zN($h$$<B8=$OBgJQ(B} |
\item {\eec $BB?9`<00x?tJ,2rDxEY$G$b(B, $B8zN($h$$<B8=$OBgJQ(B} |
|
|
$B?t3X$,0U30$KLr$KN)$D(B $\cdots$ $BFC$KM-8BBN(B |
$B?t3X$,0U30$KLr$KN)$D(B $\cdots$ $BFC$K(B{\ec $BM-8BBN(B} |
|
|
\item {\bf $B$G$bM-8BBN$J$s$FB>$K2?$NLr$KN)$D$N(B?} |
\item {\eec $B$G$bM-8BBN$J$s$FB>$K2?$NLr$KN)$D$N(B?} |
|
|
$B<B$O(B IT $B<R2q$rN"$G;Y$($F$$$k(B. |
$B<B$O(B IT $B<R2q$rN"$G;Y$($F$$$?$j$9$k(B. |
|
|
\item {\bf $B?t3X$N1|?<$5(B} |
\item {\eec $B?t3X$N2{$N?<$5(B} |
|
|
$B8e$K$J$C$F$H$s$G$b$J$$$H$3$m$K1~MQ$5$l$k2DG=@-$,$"$k(B |
$B8e$K$J$C$F$H$s$G$b$J$$$H$3$m$K1~MQ$5$l$k2DG=@-(B |
$B$H$$$&3Z$7$5(B, $B1|?<$5(B |
|
|
$B7W;;$NFq$7$5$,Lr$KN)$D$3$H$b$"$k$H$$$&IT;W5D(B |
|
|
|
|
\end{enumerate} |
\end{enumerate} |
|
|
\end{slide} |
\end{slide} |