version 1.4, 2000/10/03 01:23:58 |
version 1.5, 2001/02/07 07:17:46 |
|
|
%$OpenXM: OpenXM/doc/compalg/factor.tex,v 1.3 2000/03/28 02:02:29 noro Exp $ |
%$OpenXM: OpenXM/doc/compalg/factor.tex,v 1.4 2000/10/03 01:23:58 noro Exp $ |
\chapter{$BB?9`<0$N0x?tJ,2r(B} |
\chapter{$BB?9`<0$N0x?tJ,2r(B} |
|
|
\section{$BM-8BBN(B} |
\section{$BM-8BBN(B} |
Line 423 $Q \leftarrow \pi$ $B$N9TNsI=8=(B\\ |
|
Line 423 $Q \leftarrow \pi$ $B$N9TNsI=8=(B\\ |
|
$\{e_1 = 1, e_2, \cdots, e_r\} \leftarrow \Ker(Q-I)$ $B$N(B $K$-$B4pDl(B\\ |
$\{e_1 = 1, e_2, \cdots, e_r\} \leftarrow \Ker(Q-I)$ $B$N(B $K$-$B4pDl(B\\ |
if ($r = 1$) then return $F$\\ |
if ($r = 1$) then return $F$\\ |
while\= ($|F| < r$) do \{\\ |
while\= ($|F| < r$) do \{\\ |
\> $g \leftarrow F$ $B$N85(B, \quad $F \leftarrow F \backslash \{g\}$\\ |
|
\> $(c_1,\cdots,c_r) \leftarrow$ $BMp?t%Y%/%H%k(B ($c_i \in GF(q)$)\\ |
\> $(c_1,\cdots,c_r) \leftarrow$ $BMp?t%Y%/%H%k(B ($c_i \in GF(q)$)\\ |
\> $e \leftarrow \sum c_ie_i$ \\ |
\> $e \leftarrow \sum c_ie_i$ \\ |
\> if \= $p=2$\\ |
\> if \= $p=2$\\ |
\>\> $E \leftarrow \Tr(e)$\\ |
\>\> $E \leftarrow \Tr(e) \bmod f$\\ |
\>else\\ |
\>else\\ |
\>\> $E \leftarrow e^{(q-1)/2}-1$\\ |
\>\> $E \leftarrow e^{(q-1)/2}-1 \bmod f$\\ |
\> $h \leftarrow \GCD(g,E)$\\ |
\> $F_1 \leftarrow \emptyset$\\ |
\> if $h \neq 1,g$\\ |
\> while \= ($F \neq \emptyset$) do \{\\ |
\>\> $F \leftarrow F \cup \{h,g/h\}$\\ |
\> \> $g \leftarrow F$ $B$N85(B, \quad $F \leftarrow F \backslash \{g\}$\\ |
|
\> \> $h \leftarrow \GCD(g,E)$\\ |
|
\> \> if \= $h \neq 1,g$\\ |
|
\> \> \> $F_1 \leftarrow F_1 \cup \{h,g/h\}$\\ |
|
\> \> else \\ |
|
\> \> \> $F_1 \leftarrow F_1 \cup \{g\}$\\ |
|
\> \}\\ |
|
\> $F \leftarrow F_1$ \\ |
\}\\ |
\}\\ |
return F |
return F |
\end{tabbing} |
\end{tabbing} |
Line 554 Input : $f(x) \in GF(q)[x]$, $q=p^n$, $f$ $B$OL5J?J}$ |
|
Line 560 Input : $f(x) \in GF(q)[x]$, $q=p^n$, $f$ $B$OL5J?J}$ |
|
Output : $f(x) = \prod f_i$, $f$ $B$N(B $B4{Ls0x;RJ,2r(B\\ |
Output : $f(x) = \prod f_i$, $f$ $B$N(B $B4{Ls0x;RJ,2r(B\\ |
$r \leftarrow \deg(f)/d,\quad F \leftarrow \{f\}$\\ |
$r \leftarrow \deg(f)/d,\quad F \leftarrow \{f\}$\\ |
while\= ($|F| < r$) do \{\\ |
while\= ($|F| < r$) do \{\\ |
\> $h \leftarrow F$ $B$N(B $\deg(h)>d$ $B$J$k85(B,\quad $F \leftarrow F \backslash \{h\}$\\ |
|
\> $g \leftarrow 2d-1$ $B<!$N%i%s%@%`$JB?9`<0(B\\ |
\> $g \leftarrow 2d-1$ $B<!$N%i%s%@%`$JB?9`<0(B\\ |
\> if \= $p=2$\\ |
\> if \= $p=2$\\ |
\>\>$G \leftarrow \sum_{j=0}^{rd-1}g^{2^i}$\\ |
\>\>$G \leftarrow \sum_{j=0}^{rd-1}g^{2^i} \bmod f$\\ |
\> else\\ |
\> else\\ |
\>\> $G \leftarrow g^{(q^d-1)/2}-1$\\ |
\>\> $G \leftarrow g^{(q^d-1)/2}-1 \bmod f$\\ |
\> $z \leftarrow \GCD(h,G)$\\ |
\> $F_1 \leftarrow \emptyset$\\ |
\> if $z \neq 1,h$ \\ |
\> while \= ($F \neq \emptyset$) do \{\\ |
\>\> $F \leftarrow F \cup \{z,h/z\}$\\ |
\> \> $h \leftarrow F$ $B$N(B $\deg(h)>d$ $B$J$k85(B,\quad $F \leftarrow F \backslash \{h\}$\\ |
|
\> \> $z \leftarrow \GCD(h,G)$\\ |
|
\> \> if \= $z \neq 1,h$\\ |
|
\> \> \> $F_1 \leftarrow F_1 \cup \{z,h/z\}$\\ |
|
\> \> else \\ |
|
\> \> \> $F_1 \leftarrow F_1 \cup \{h\}$\\ |
|
\> \}\\ |
|
\> $F \leftarrow F_1$ \\ |
\}\\ |
\}\\ |
return $F$\\ |
return $F$\\ |
\end{tabbing} |
\end{tabbing} |