=================================================================== RCS file: /home/cvs/OpenXM/doc/compalg/effgr.tex,v retrieving revision 1.1.1.1 retrieving revision 1.2 diff -u -p -r1.1.1.1 -r1.2 --- OpenXM/doc/compalg/effgr.tex 2000/03/01 02:25:51 1.1.1.1 +++ OpenXM/doc/compalg/effgr.tex 2000/03/28 01:59:21 1.2 @@ -409,7 +409,7 @@ $<_h$ $B$O(B $BNc(B \ref{horder} $B$G=R$Y$?(B or \section{$F_4$ $B%"%k%4%j%:%`(B} $BBe?tJ}Dx<05a2r$K8B$i$:(B, $BBe?t4v2?$K$*$1$kITJQNL$N7W;;$J$I$K$*$$$F$b(B -$BG$0UF~NOB?9`<0=89g$+$i$N(B \gr $B4pDl$N7W;;$O(B, $B7W;;NLE*$K$_$F(B dominant +$BG$0UF~NOB?9`<0=89g$+$i$N%0%l%V%J4pDl$N7W;;$O(B, $B7W;;NLE*$K$_$F(B dominant step $B$H$J$k$3$H$,B?$$(B. $B$3$N$h$&$J>l9g$N7W;;K!$H$7$F$O(B Buchberger $B%"%k%4%j%:%`$,$[$\M#0l$NJ}K!$G$"$C$?$,(B, $B:G6a(B Faug\`ere $B$K$h$j(B $F_4$ ($B$"$k$$$O(B $F_5$) $B%"%k%4%j%:%`$,Ds0F$5$l(B, $B$=$N9bB.@-$,(B @@ -536,7 +536,7 @@ return $Red$ $B$r4^$^$J$$(B. \end{itemize} $B$3$l$O(B, $t_1 > t_2 > \cdots$ $B$r?7$?$JJQ?t$H$_$F(B, $B$3$N=g=x$G(B reduced $B$J(B -\gr $B4pDl$r7W;;$7$?7k2L$KBP1~$9$k(B. +$B%0%l%V%J4pDl$r7W;;$7$?7k2L$KBP1~$9$k(B. $$F' = \{h=poly(B_i) \mid h\neq 0, HT(h)\notin \{HT(r)\mid r\in Red\}\}$$ $$Red' = \{h=poly(B_i) \mid h\neq 0, HT(h)\in \{HT(r)\mid r\in Red\}\}$$ @@ -578,9 +578,9 @@ S-$BB?9`<0$N(B sugar $B$N:G>.$N$b$N$rA4$FA*$V(B. $B$"$k(B sugar $B$N(B S-$BB?9`<0$r=8$a$F7W;;$7$?>l9g(B, $B@8@.$5$l$?4pDl$N(B sugar $B$b(B $B$=$NCM$G$"$k$H$7$F(B, $B:F5"E*$K(B sugar $B$NCM$rDj$a$k$3$H$H$9$k(B. $BFC$K(B, $BF~NOB?9`<0=89g$,(B homogeneous $B$N>l9g(B, $B$3$N(B strategy $B$K$h$j(B, -$B3F%9%F%C%W$G7W;;$5$l$k4pDl$O(B, $Bl9g(B, {\bf reduced} $B$J(B \gr +$B3F%9%F%C%W$G7W;;$5$l$k4pDl$O(B, $Bl9g(B, {\bf reduced} $B$J%0%l%V%J(B $B4pDl$N$&$A$N(B, $d$ $Bl9g(B, +$B>l9ge$2$k>l9g$H$$$&$N$O(B, $det(A'')$ $B$KHf$Y$F2r$N78?t$,>.$5$$>l9g$G$"$k(B. $B$3$l$O0lHL$K4|BT(B $B$G$-$k$3$H$G$O$J$$$,(B, $BA0@a$G=R$Y$?$h$&$K(B, homogeneous $B$N>l9g$K(B $F_4$ -$B$,(B reduced $B$J(B \gr $B4pDl$N0lIt$r@8@.$9$k(B, $B$H$$$&$3$H$+$i(B, reduced $B$K(B +$B$,(B reduced $B$J%0%l%V%J4pDl$N0lIt$r@8@.$9$k(B, $B$H$$$&$3$H$+$i(B, reduced $B$K(B $B$7$?>l9g$K78?t$,>.$5$/$J$k$h$&$JLdBj$G$O(B modular $B7W;;$,8zN($r8~>e(B $B$5$;$k$3$H$,4|BT$G$-$k(B. @@ -637,13 +637,15 @@ $det(A'')$ $B$KHf$Y$F2r$N78?t$,>.$5$$>l9g$G$"$k(B.  order $BJ}Dx<0$r7W;;$9$k>l9g(B, $B:G8e$K78?t$,BgJQ>.$5$$4pDl$,2?K\$+=P$F=*N;(B $B$9$k(B. $BFC$K(B, $B:G=i$K8=$l$k(B, $B78?t$N>.$5$$4pDl$,(B, 16 $B.$5$/$J$C$?$?$a(B, $B$=$NA`:n$r4pDlA4$F$KE,MQ$7$?$H$3$m(B, 16 $B.$5$/$G$-$k$3$H$,J,$+$C$?$N$G$"$k(B. -$B4{$K=R$Y$?$h$&$K(B, $B$3$N$h$&$J>l9g$K$O(B, modular $B7W;;$K$h$k2r8uJd$N7W;;$,(B -$BM-8z$H$J$k(B. $B$7$+$7(B, 15 $Be$N$h$&$JGX7J$N$b$H$K(B, -$B8=:_$N.$5$/$J$C$?(B. $B$=$NA`:n$r4pDlA4$F$KE,MQ$7$?$H$3$m(B, 16 $B.$5$/$G$-$k$3$H$,J,$+$C$?$N$G$"$k(B. $B4{$K(B +$B=R$Y$?$h$&$K(B, $B$3$N$h$&$J>l9g$K$O(B, modular $B7W;;$K$h$k2r8uJd$N7W;;$,M-8z(B +$B$H$J$k(B. $B$7$+$7(B, 15 $Be$N$h$&$JGX7J$N$b$H$K(B, $B8=:_(B +$B$N$l(B Gauss $B>C5n(B, $BCf9q>jM>DjM}(B, +$B@0?t(B-$BM-M}?tJQ49(B, $B7k2L$N%A%'%C%/$K$+$+$C$?;~4V$r<($9(B. \begin{table}[hbtp] \caption{$B7W;;;~4V$NHf3S(B} @@ -722,7 +724,7 @@ $F_4$ $B$OK\.$5$/$J$k>l9g$K$O(B, modular $B7W;;$K$h$k(B $B8zN(2=$,4|BT$G$-$k(B. $B$?$@$7(B, $B$3$N>l9g$K$O(B, $B9TNs$N3F9T$N(B 0 $B4JLs%A%'%C%/(B $B$,I,?\$G$"$k(B. @@ -731,16 +733,17 @@ $F_4$ $B$OK\e$G(B 54 $BIC$HJs9p$5$l$F$$$k(B. $B$7$+$7(B, -Faug\`ere\cite{F} $B$K(B, -Moreover, since big integer computations could be done by means of p-adic -or multi modular arithmetics it means that the cost of an integer computation is roughly +$B$K$"$k%G!<%?$K5Z$V$Y$/$b$J$$(B. $B$?$H$($P(B, odd order $BJ}Dx<0$G(B, P6-200MHz +PC $B>e$G(B 54 $BIC$HJs9p$5$l$F$$$k(B. $B$7$+$7(B, Faug\`ere\cite{F} $B$K(B, +Moreover, since big integer computations could be done by means of +p-adic or multi modular arithmetics it means that the cost of an +integer computation is roughly + \centerline{time of modular computation * size of the output coeffs} \noi $B$H=q$+$l$F$$$k$3$H$+$i(B, $BCf4V4pDl$KBP$9$k@5Ev@-%A%'%C%/$I$3$m$+(B, $BC1$J$k(B -modular \gr $B4pDl7W;;$r(B, $BCf9q>jM>DjM}$K$h$k7k2L$,(B stable $B$K$J$k$^$G7+$jJV$7$F(B +modular $B%0%l%V%J4pDl7W;;$r(B, $BCf9q>jM>DjM}$K$h$k7k2L$,(B stable $B$K$J$k$^$G7+$jJV$7$F(B $B$$$k$@$1(B, $B$H$$$&2DG=@-$b/$7$s$G$$$k(B. Faug\`ere $B$O(B, @@ -751,9 +754,9 @@ $F_4$ $B$G$O(B ``make no choice'' $B$G$O$J$$(B. \end{enumerate} $B$H=q$$$F$$$k$,(B, 1. $B$K4X$7$F$O(B, critcal pair $B$N(Bsubset $B$r$I$&A*$V$+$G(B, -$B8zN($KBg$-$/:9$,=P$k$3$H$O(B, McKay $B$NNc$+$iL@$i$+$G$"$k(B. $B$^$?(B, 2. $B$K4X(B -$B$7$F$O(B, $B%"%k%4%j%:%`$N4pK\9=B$$OL@$i$+$K(B Buchberger$B%"%k%4%j%:%`$G$"$j(B -$B5?Ld$G$"$k(B. $B$H$O$$$((B, $B=>Mh$N(B Buchberger$B%"%k%4%j%:%`$h$j8zN($h$/7W;;$G(B -$B$-$k>l9g$,$"$k$3$H$O3N$+$G$"$j(B, $B3FIt$N2~NI$r4^$a$F(B, $B$h$j8zN($h$$e=EMW$G$"$k$H9M$($i$l$k(B. +$B8zN($KBg$-$/:9$,=P$k$3$H$O(B, odd order $BJ}Dx<0$NNc$+$iL@$i$+$G$"$k(B. $B$^$?(B, +2. $B$K4X$7$F$O(B, $B%"%k%4%j%:%`$N4pK\9=B$$OL@$i$+$K(B Buchberger$B%"%k%4%j%:%`(B +$B$G$"$j5?Ld$G$"$k(B. $B$H$O$$$((B, $B=>Mh$N(B Buchberger$B%"%k%4%j%:%`$h$j8zN($h$/(B +$B7W;;$G$-$k>l9g$,$"$k$3$H$O3N$+$G$"$j(B, $B3FIt$N2~NI$r4^$a$F(B, $B$h$j8zN($h$$(B +$Be=EMW$G$"$k$H9M$($i$l$k(B.