=================================================================== RCS file: /home/cvs/OpenXM/doc/compalg/appgr.tex,v retrieving revision 1.1.1.1 retrieving revision 1.2 diff -u -p -r1.1.1.1 -r1.2 --- OpenXM/doc/compalg/appgr.tex 2000/03/01 02:25:51 1.1.1.1 +++ OpenXM/doc/compalg/appgr.tex 2000/03/28 01:59:21 1.2 @@ -55,7 +55,7 @@ $I\cap J = (yIR[y] + (1-y)JR[y])\cap R$ \proof $f \in I\cap J$ とすると, $f = yf+(1-y)f \in (yI + (1-y)J)\cap R$. 逆に $f=yg + (1-y)h$ ($g \in IR[y], h \in JR[y]$) とし, $f \in R$ とする. この時, $y=0$ を代入して, $f = h|_{y=0} \in J$. $y=1$ を -代入して, $f=g|_{y=1} \in I$ より OK. \qed +代入して, $f=g|_{y=1} \in I$. \qed \begin{co} \label{intersect}