| version 1.4, 2001/09/25 02:28:27 |
version 1.5, 2001/09/29 08:33:41 |
|
|
| %% $OpenXM: OpenXM/doc/ascm2001p/ohp.tex,v 1.3 2001/09/25 01:17:08 takayama Exp $ |
%% $OpenXM: OpenXM/doc/ascm2001p/ohp.tex,v 1.4 2001/09/25 02:28:27 takayama Exp $ |
| \documentclass{slides} |
\documentclass{slides} |
| %%\documentclass[12pt]{article} |
%%\documentclass[12pt]{article} |
| \usepackage{color} |
\usepackage{color} |
| Line 44 OpenXM-RFC 100 \\ |
|
| Line 44 OpenXM-RFC 100 \\ |
|
| OpenXM {\color{red} stackmachine}. |
OpenXM {\color{red} stackmachine}. |
| \item execute\_string |
\item execute\_string |
| \begin{verbatim} |
\begin{verbatim} |
| P = ox_launch(0,"ox_asir"); |
Pid = ox_launch(0,"ox_asir"); |
| ox_execute_string(Pid," poly_factor(x^10-1);"); |
ox_execute_string(Pid," poly_factor(x^10-1);"); |
| \end{verbatim} |
\end{verbatim} |
| \end{enumerate} |
\end{enumerate} |
|
|
| \end{picture} |
\end{picture} |
| \newpage |
\newpage |
| |
|
| \noindent{\color{red} 4. Easy to try and evaluate distributed algorithms} \\ |
\noindent |
| |
{\color{red} 4. e-Bateman project} (Electronic mathematical formula book)\\ |
| |
First Step: \\ |
| |
Gauss Hypergeometric function: |
| |
$$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty |
| |
\frac{(a)_n (b)_n}{(1)_n (c)_n} x^n |
| |
$$ |
| |
where |
| |
$$ (a)_n = a(a+1) \cdots (a+n-1). $$ |
| |
{\color{green} |
| |
$$ \log (1+x) = x F(1,1,2;-x) $$ |
| |
$$ \arcsin x = x F(1/2,1/2,3/2;x^2) $$ |
| |
} |
| |
|
| \noindent |
\noindent |
| |
Appell's $F_1$: |
| |
$$ {\color{blue} F_1(a,b,b',c;x,y)} = \sum_{m,n=1}^\infty |
| |
\frac{(a)_{m+n} (b)_m (b')_n}{(c)_{m+n}(1)_m (1)_n} x^m y^n. |
| |
$$ |
| |
\newpage |
| |
Mathematical formula book, e.g., |
| |
Erdelyi: {\color{green} Higher Transcendental Functions} \\ |
| |
{\color{blue} Formula (type A)}\\ |
| |
The solution space of the ordinary differential equation |
| |
$$ x(1-x) \frac{d^2f}{dx^2} -\left( c-(a+b+1)x \right) \frac{df}{dx} - a b f = 0$$ |
| |
is spanned by |
| |
$$ F(a,b,c;x) = {\color{red}1} + O(x), \ |
| |
x^{1-c} F(a,b,c;x) = {\color{red}x^{1-c}}+O(x^{2-c}))$$ |
| |
|
| |
when $c \not\in {\bf Z}$. \\ |
| |
{\color{blue} Formula (type B)}\\ |
| |
\begin{eqnarray*} |
| |
&\ & F(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ |
| |
&+& \frac{z}{e_2}\, F'(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ |
| |
&-& \frac{z}{e_2}\, F(a_1, a_2, b_2;z) \, F'(-a_1,-a_2,2-b_2;z) \\ |
| |
&-& \frac{a_1+a_2-e_2}{a_1 a_2 e_2}z^2\, |
| |
F'(a_1, a_2, b_2;z)\,F'(-a_1,-a_2,2-b_2;z) \\ |
| |
&=& 1 |
| |
\end{eqnarray*} |
| |
where $e_2 = b_2-1$ and $a_1, a_2, e_2, e_2-a_2 \not\in {\bf Z}$. \\ |
| |
(generalization of $\sin^2 x + \cos^2 x =1$.) |
| |
|
| |
\noindent |
| |
Project in progress: \\ |
| |
We are trying to generate or verify type A formulas and type B formulas |
| |
for {\color{blue} GKZ hypergeometric systems}. |
| |
|
| |
\begin{tabular}{|c|c|c|} |
| |
\hline |
| |
& type A & type B \\ \hline |
| |
Algorithm & {\color{red} OK} (SST book) & in progress \\ \hline |
| |
Implementation & partially done & NO \\ \hline |
| |
\end{tabular} |
| |
|
| |
\noindent |
| |
Our ox servers |
| |
{\tt ox\_asir}, {\tt ox\_sm1}, {\tt ox\_tigers}, {\tt ox\_gnuplot}, |
| |
{\tt ox\_mathematica}, {\tt OpenMathproxy} (JavaClasses), {\tt ox\_m2} |
| |
are used to generate, verify and present formulas of type A |
| |
for GKZ hypergeometric systems. |
| |
|
| |
\newpage |
| |
|
| |
\noindent{\color{red} 5. Easy to try and evaluate distributed algorithms} \\ |
| |
|
| |
\noindent |
| {\color{green} Example 1} \\ |
{\color{green} Example 1} \\ |
| Theorem (Cantor-Zassenhaus) \\ |
Theorem (Cantor-Zassenhaus) \\ |
| Let $f_1$ and $f_2$ be degree $d$ irreducible polynomials in $F_q[x]$. |
Let $f_1$ and $f_2$ be degree $d$ irreducible polynomials in $F_q[x]$. |
| Line 151 $$ \frac{1}{2}-\frac{1}{(2q)^d}. $$ |
|
| Line 214 $$ \frac{1}{2}-\frac{1}{(2q)^d}. $$ |
|
| \begin{picture}(20,14)(0,0) |
\begin{picture}(20,14)(0,0) |
| \put(7,12){\framebox(4,1.5){client}} |
\put(7,12){\framebox(4,1.5){client}} |
| \put(2,6){\framebox(4,1.5){server}} |
\put(2,6){\framebox(4,1.5){server}} |
| \put(7,6){\framebox(4,1.5){server}} |
%%\put(7,6){\framebox(4,1.5){server}} |
| \put(12,6){\framebox(4,1.5){server}} |
\put(12,6){\framebox(4,1.5){server}} |
| \put(0,0){\framebox(4,1.5){server}} |
\put(0,0){\framebox(4,1.5){server}} |
| \put(5,0){\framebox(4,1.5){server}} |
\put(5,0){\framebox(4,1.5){server}} |
| \put(13.5,0){\framebox(4,1.5){server}} |
\put(13.5,0){\framebox(4,1.5){server}} |
| |
|
| \put(9,12){\vector(-1,-1){4.3}} |
\put(9,12){\vector(-1,-1){4.3}} |
| \put(9,12){\vector(0,-1){4.3}} |
%%\put(9,12){\vector(0,-1){4.3}} |
| \put(9,12){\vector(1,-1){4.3}} |
\put(9,12){\vector(1,-1){4.3}} |
| \put(4,6){\vector(-1,-2){2.2}} |
\put(4,6){\vector(-1,-2){2.2}} |
| \put(4,6){\vector(1,-2){2.2}} |
\put(4,6){\vector(1,-2){2.2}} |
| Line 220 Shoup's algorithm to multiply polynomials. \\ |
|
| Line 283 Shoup's algorithm to multiply polynomials. \\ |
|
| Competitive Gr\"obner basis computation. \\ |
Competitive Gr\"obner basis computation. \\ |
| \newpage |
\newpage |
| |
|
| \noindent |
|
| {\color{red} 5. e-Bateman project} (Electronic mathematical formula book)\\ |
|
| First Step: \\ |
|
| Gauss Hypergeometric function: |
|
| $$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty |
|
| \frac{(a)_n (b)_n}{(1)_n (c)_n} x^n |
|
| $$ |
|
| where |
|
| $$ (a)_n = a(a+1) \cdots (a+n-1). $$ |
|
| {\color{green} |
|
| $$ \log (1+x) = x F(1,1,2;-x) $$ |
|
| $$ \arcsin x = x F(1/2,1/2,3/2;x^2) $$ |
|
| } |
|
| |
|
| \noindent |
|
| Appell's $F_1$: |
|
| $$ {\color{blue} F_1(a,b,b',c;x,y)} = \sum_{m,n=1}^\infty |
|
| \frac{(a)_{m+n} (b)_m (b')_n}{(c)_{m+n}(1)_m (1)_n} x^m y^n. |
|
| $$ |
|
| \newpage |
|
| Mathematical formula book, e.g., |
|
| Erdelyi: {\color{green} Higher Transcendental Functions} \\ |
|
| {\color{blue} Formula (type A)}\\ |
|
| The solution space of the ordinary differential equation |
|
| $$ x(1-x) \frac{d^2f}{dx^2} -\left( c-(a+b+1)x \right) \frac{df}{dx} - a b f = 0$$ |
|
| is spanned by |
|
| $$ F(a,b,c;x) = {\color{red}1} + O(x), \ |
|
| x^{1-c} F(a,b,c;x) = {\color{red}x^{1-c}}+O(x^{2-c}))$$ |
|
| |
|
| when $c \not\in {\bf Z}$. \\ |
|
| {\color{blue} Formula (type B)}\\ |
|
| \begin{eqnarray*} |
|
| &\ & F(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ |
|
| &+& \frac{z}{e_2}\, F'(a_1, a_2, b_2;z) \, F(-a_1,-a_2,2-b_2;z) \\ |
|
| &-& \frac{z}{e_2}\, F(a_1, a_2, b_2;z) \, F'(-a_1,-a_2,2-b_2;z) \\ |
|
| &-& \frac{a_1+a_2-e_2}{a_1 a_2 e_2}z^2\, |
|
| F'(a_1, a_2, b_2;z)\,F'(-a_1,-a_2,2-b_2;z) \\ |
|
| &=& 1 |
|
| \end{eqnarray*} |
|
| where $e_2 = b_2-1$ and $a_1, a_2, e_2, e_2-a_2 \not\in {\bf Z}$. \\ |
|
| (generalization of $\sin^2 x + \cos^2 x =1$.) |
|
| |
|
| \noindent |
|
| Project in progress: \\ |
|
| We are trying to generate or verify type A formulas and type B formulas |
|
| for {\color{blue} GKZ hypergeometric systems}. |
|
| |
|
| \begin{tabular}{|c|c|c|} |
|
| \hline |
|
| & type A & type B \\ \hline |
|
| Algorithm & {\color{red} OK} (SST book) & in progress \\ \hline |
|
| Implementation & partially done & NO \\ \hline |
|
| \end{tabular} |
|
| |
|
| \noindent |
|
| Our ox servers |
|
| {\tt ox\_asir}, {\tt ox\_sm1}, {\tt ox\_tigers}, {\tt ox\_gnuplot}, |
|
| {\tt ox\_mathematica}, {\tt OMproxy} (JavaClasses), {\tt ox\_m2} |
|
| are used to generate, verify and present formulas of type A |
|
| for GKZ hypergeometric systems. |
|
| |
|
| \newpage |
|
| \noindent |
\noindent |
| {\color{green} Example 3. Competitive Gr\"obner Basis Computation} |
{\color{green} Example 3. Competitive Gr\"obner Basis Computation} |
| \begin{verbatim} |
\begin{verbatim} |