| version 1.3, 2001/09/25 01:17:08 |
version 1.4, 2001/09/25 02:28:27 |
|
|
| %% $OpenXM: OpenXM/doc/ascm2001p/ohp.tex,v 1.2 2001/09/23 08:31:18 takayama Exp $ |
%% $OpenXM: OpenXM/doc/ascm2001p/ohp.tex,v 1.3 2001/09/25 01:17:08 takayama Exp $ |
| \documentclass{slides} |
\documentclass{slides} |
| %%\documentclass[12pt]{article} |
%%\documentclass[12pt]{article} |
| \usepackage{color} |
\usepackage{color} |
|
|
| \noindent |
\noindent |
| {\color{green} Example 1} \\ |
{\color{green} Example 1} \\ |
| Theorem (Cantor-Zassenhaus) \\ |
Theorem (Cantor-Zassenhaus) \\ |
| Let $f_1$ and $f_2$ be degree $d$ polynomials in $F_q[x]$. |
Let $f_1$ and $f_2$ be degree $d$ irreducible polynomials in $F_q[x]$. |
| For a random degree $2d-1$ polynomial $g \in F_q[x]$, |
For a random degree $2d-1$ polynomial $g \in F_q[x]$, |
| the chance of |
the chance of |
| $$ GCD(g^{(q^d-1)/2}-1,f_1 f_2) = f_1 \,\mbox{or}\, f_2 $$ |
$$ GCD(g^{(q^d-1)/2}-1,f_1 f_2) = f_1 \,\mbox{or}\, f_2 $$ |
| Line 205 def c_z(F,E,Level) |
|
| Line 205 def c_z(F,E,Level) |
|
| \end{verbatim} |
\end{verbatim} |
| \newpage |
\newpage |
| |
|
| |
\epsfxsize=17cm |
| |
\epsffile{cz.ps} |
| |
|
| |
\noindent |
| |
{\color{blue} Performance of parallel CZ algorithm} \\ |
| |
$d=1$, $k=200$ : product of $200$ linear forms. \\ |
| |
$d=2$, $k=50$ : product of $50$ irreducible degree $2$ polynomials. \\ |
| |
|
| |
\newpage |
| {\color{green} Example 2} \\ |
{\color{green} Example 2} \\ |
| Shoup's algorithm to multyply polynomials. |
Shoup's algorithm to multiply polynomials. \\ |
| |
{\color{green} Example 3} \\ |
| |
Competitive Gr\"obner basis computation. \\ |
| \newpage |
\newpage |
| |
|
| \noindent |
\noindent |
| {\color{red} 5. e-Bateman project} \\ |
{\color{red} 5. e-Bateman project} (Electronic mathematical formula book)\\ |
| First Step: \\ |
First Step: \\ |
| Gauss Hypergeometric function: |
Gauss Hypergeometric function: |
| $$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty |
$$ {\color{blue} F(a,b,c;x)} = \sum_{n=1}^\infty |
| \frac{(a)_n (b)_n}{(1)_n}{(c)_n} x^n |
\frac{(a)_n (b)_n}{(1)_n (c)_n} x^n |
| $$ |
$$ |
| where |
where |
| $$ (a)_n = a(a+1) \cdots (a+n-1). $$ |
$$ (a)_n = a(a+1) \cdots (a+n-1). $$ |
| |
{\color{green} |
| $$ \log (1+x) = x F(1,1,2;-x) $$ |
$$ \log (1+x) = x F(1,1,2;-x) $$ |
| $$ \arcsin x = x F(1/2,1/2,3/2;x^2) $$ |
$$ \arcsin x = x F(1/2,1/2,3/2;x^2) $$ |
| |
} |
| |
|
| \noindent |
\noindent |
| Appell's $F_1$: |
Appell's $F_1$: |
| Line 270 for GKZ hypergeometric systems. |
|
| Line 283 for GKZ hypergeometric systems. |
|
| |
|
| \newpage |
\newpage |
| \noindent |
\noindent |
| {\color{green} Competitive Gr\"obner Basis Computation} |
{\color{green} Example 3. Competitive Gr\"obner Basis Computation} |
| \begin{verbatim} |
\begin{verbatim} |
| extern Proc1,Proc2$ |
extern Proc1,Proc2$ |
| Proc1 = -1$ Proc2 = -1$ |
Proc1 = -1$ Proc2 = -1$ |