===================================================================
RCS file: /home/cvs/OpenXM/doc/ascm2001p/design-outline.tex,v
retrieving revision 1.2
retrieving revision 1.4
diff -u -p -r1.2 -r1.4
--- OpenXM/doc/ascm2001p/design-outline.tex 2001/06/20 02:09:45 1.2
+++ OpenXM/doc/ascm2001p/design-outline.tex 2001/06/20 03:08:05 1.4
@@ -1,8 +1,8 @@
-% $OpenXM: OpenXM/doc/ascm2001p/design-outline.tex,v 1.1 2001/06/19 07:32:58 noro Exp $
+% $OpenXM: OpenXM/doc/ascm2001p/design-outline.tex,v 1.3 2001/06/20 02:40:09 takayama Exp $
-\section{Design Outline and OpenXM Request for Comments (OpenXM-RFC)}
+\section{Design Outline and OpenXM Request For Comments}
-As Schefstr\"om clarified in \cite{schefstrom},
+As Schefstr\"om\cite{schefstrom} clarified,
integration of tools and software has three dimensions:
data, control, and user interface.
@@ -11,11 +11,11 @@ software or same software.
OpenMath \cite{OpenMath} and MP (Multi Protocol) \cite{GKW} are,
for example, general purpose mathematical data protocols.
They provide standard ways to express mathematical objects.
-For example,
-\begin{verbatim}
- 123
-\end{verbatim}
-means the (OpenMath) integer $123$ in OpenMath/XML expression.
+%For example,
+%\begin{verbatim}
+% 123
+%\end{verbatim}
+%means the (OpenMath) integer $123$ in OpenMath/XML expression.
Control integration concerns with the establishment and management of
inter-software communications.
@@ -34,64 +34,35 @@ Each integration method has their own features determi
own design goals.
OpenXM (Open message eXchange protocol for Mathematics)
is a project aiming to integrate data, control and user interfaces
-with design goals motivated by the followings.
-\begin{enumerate}
-\item We should test the proposed standards mentioned above on
-various mathematical software systems, but the testing has not been
-enough.
-\item Noro has been involved in the development of
+started by Noro and Takayama.
+
+Noro has been involved in the development of
a computer algebra system Risa/Asir \cite{asir}.
An interface for interactive distributed computations was introduced
-to Risa/Asir
-%% version 950831 released
-in 1995.
-The model of computation was RPC (remote procedure call).
+to Risa/Asir in 1995.
+The model of computation was RPC.
A robust interruption protocol was provided
-by two communication channels
-like the File Transfer Protocol (ftp).
+by two communication channels like ftp.
As an application of this protocol,
a parallel speed-up was achieved for a Gr\"obner basis computation
to determine all odd order replicable functions
(Noro and McKay \cite{noro-mckay}).
-However, the protocol was local in Asir and we thought that we should
-design an open protocol.
-\item Takayama has developed
+Takayama has developed
a special purpose system Kan/sm1 \cite{kan},
-which is a Gr\"obner engine for the ring of differential operators $D$.
-In order to implement algorithms in $D$-modules due to Oaku
-(see, e.g., \cite{sst-book}),
-factorizations and primary ideal decompositions are necessary.
-Kan/sm1 does not have an implementation for these and called
-Risa/Asir as a UNIX external program.
-This approach was not satisfactory.
-Especially, we could not write a clean interface code between these
-two systems.
-We thought that it is necessary to provide a data and control protocol
-for Risa/Asir to work as a server of factorization and primary ideal
-decomposition.
-\item We have been profited from increasing number
-of mathematical software.
-These are usually ``expert'' systems in one area of mathematics
-such as ideals, groups, numbers, polytopes, and so on.
-They have their own interfaces and data formats,
-which are fine for intensive users of these systems.
-However, a unified system will be more convenient.
-%for users who want to explore a new area of mathematics with these
-%software or users who need these systems only occasionally.
+which is a Gr\"obner engine for the ring of differential operators $D$
+and designed as a component of a larger system.
-\item We believe that an open integrated system is a future of mathematical
+Noro and Takayama firstly tried to integrate these existing two
+software systems.
+We believe that an open integrated system is a future of mathematical
software.
-However, it might be just a dream without realizability.
-We want to build a prototype of such an open system by using
-existing standards, technologies and several mathematical software.
-We want to see how far we can go with this approach.
-\end{enumerate}
-
-Motivated with these, we started the OpenXM project with the following
+However, we found that it might be just a dream without realizability
+and that it is an important research subject to
+build a prototype of such an integrated system. % Project X
+We started the OpenXM project with the following
fundamental architecture, which is currently described in
OpenXM-RFC 100 proposed standard %% ``draft standard'' and ``standard''
-``Design and Implementation of OpenXM client-server model and common
-mathematical object format'' \cite{ox-rfc-100}.
+\cite{ox-rfc-100}.
\begin{enumerate}
\item Communication is an exchange of messages. The messages are classified into
three types:
@@ -109,22 +80,20 @@ The stack machine is called the
Existing mathematical software systems are wrapped with this stack machine.
Minimal requirements for a target software wrapped with the OX stack machine
are as follows:
-\begin{enumerate}
-\item The target must have a serialized interface such as a character based
+(a) The target must have a serialized interface such as a character based
interface.
-\item An output of the target must be understandable for computer programs;
+(b) An output of the target must be understandable for computer programs;
it should follow a grammar that can be parsed with other software.
-\end{enumerate}
\item Any server may have a hybrid interface;
it may accept and execute not only stack machine commands,
but also its original command sequences.
For example,
if we send the following string to the {\tt ox\_asir} server
-(OpenXM server of Risa/Asir) \\
-\verb+ " fctr(x^100-y^100); " + \\
-and call the stack machine command \\
-\verb+ SM_executeStringByLocalParser + \\
-then the server executes the asir command \\
+(OpenXM server of Risa/Asir)
+\verb+" fctr(x^100-y^100); "+
+and call the stack machine command
+\verb+SM_executeStringByLocalParser+
+then the server executes the asir command
\verb+ fctr(x^100-y^100); +
(factorize $x^{100}-y^{100}$ over ${\bf Q}$)
and pushes the result onto the stack.
@@ -134,35 +103,23 @@ and 101 \cite{ox-rfc-101} based on
the above fundamental architecture.
In this paper, we discuss mainly on systems implementing
OpenXM-RFC 100 and 101 on TCP/IP.
-For example, the following is a command sequence to ask $1+1$ from
-the Asir client to the {\tt ox\_sm1} server through TCP/IP:
-\begin{verbatim}
- P = sm1_start();
- ox_push_cmo(P,1); ox_push_cmo(P,1);
- ox_execute_string(P,"add"); ox_pop_cmo(P);
-\end{verbatim}
-Here, {\tt ox\_sm1} is an OpenXM server of Kan/sm1.
+%For example, the following is a command sequence to ask $1+1$ from
+%the Asir client to the {\tt ox\_sm1} server through TCP/IP:
+%\begin{verbatim}
+% P = sm1_start(); ox_push_cmo(P,1); ox_push_cmo(P,1);
+% ox_execute_string(P,"add"); ox_pop_cmo(P);
+%\end{verbatim}
+%Here, {\tt ox\_sm1} is an OpenXM server of Kan/sm1.
Our project of integrating mathematical software
systems is taking the ``RFC'' approach, which has been
used to develop internet protocols.
-We think that ``RFC'' approach is an excellent way and
-we hope that other groups, who are working on standard protocols,
-take this ``RFC'' approach, too.
-
The OpenXM on MPI \cite{MPI} is currently running on Risa/Asir
as we will see in Section \ref{section:homog}.
We are now preparing the OpenXM-RFC 102 ``Mathematical communication
-on MPI'' (draft protocol)
-based on our experiments on MPI.
-
+on MPI'' (draft protocol).
In the rest of the paper, we abbreviate
OpenXM-RFC 100 and 101 to OpenXM if no confusion arises.
-
-
-
-
-