[BACK]Return to jsiamb-noro.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc / Papers

Diff for /OpenXM/doc/Papers/jsiamb-noro.tex between version 1.1 and 1.3

version 1.1, 2001/10/04 08:16:27 version 1.3, 2001/10/04 08:30:17
Line 1 
Line 1 
 % $OpenXM$  % $OpenXM: OpenXM/doc/Papers/jsiamb-noro.tex,v 1.2 2001/10/04 08:22:20 noro Exp $
 \setlength{\parskip}{10pt}  \setlength{\parskip}{10pt}
   
 \begin{slide}{}  \begin{slide}{}
Line 190  Faug\`ere $B$N(B FGb : $B$3$N7W;;$r(B 53 $BIC$G<B
Line 190  Faug\`ere $B$N(B FGb : $B$3$N7W;;$r(B 53 $BIC$G<B
   
 $BM-8BBN>e$NBJ1_6J@~$NM-M}E@8D?t7W;;MQ(B  $BM-8BBN>e$NBJ1_6J@~$NM-M}E@8D?t7W;;MQ(B
   
 --- $B$3$N%W%m%0%i%`$O%U%j!<$G$O$J$$$,(B, $B4X78$9$k4X?t(B  --- $B$3$N%W%m%0%i%`$O%U%j!<$G$O$J$$$,(B, $B4X78$9$k4X?t$O%U%j!<(B
 $B$O%U%j!<(B  
 \end{itemize}  \end{itemize}
 \end{itemize}  \end{itemize}
   
Line 238  Visual C++ $B$G5-=R(B
Line 237  Visual C++ $B$G5-=R(B
 \begin{itemize}  \begin{itemize}
 \item $BLnO$$,IY;NDL8&$h$j?@8MBg$K0\@R(B  \item $BLnO$$,IY;NDL8&$h$j?@8MBg$K0\@R(B
   
 Started Kobe branch $B$N%9%?!<%H(B  Kobe branch $B$N%9%?!<%H(B
 \end{itemize}  \end{itemize}
   
 \item OpenXM  \item OpenXM
Line 341  Singular [Singular] $B$OB?9`<0$N8zN($h$$I=8=$K$h$j(B
Line 340  Singular [Singular] $B$OB?9`<0$N8zN($h$$I=8=$K$h$j(B
 \fbox{$B1~MQ;vNc(B}  \fbox{$B1~MQ;vNc(B}
   
 \begin{itemize}  \begin{itemize}
 \item $BBJ1_6J@~0E9f%Q%i%a%?@8@.(B  \item $BBJ1_6J@~0E9f%Q%i%a%?@8@.(B [IKNY]
   
 $BM-8BBN>e$NB?9`<00x?tJ,2r$N1~MQ(B  $BM-8BBN>e$NB?9`<00x?tJ,2r$N1~MQ(B
   
Line 435  Journal of Pure and Applied Algebra (139) 1-3 (1999), 
Line 434  Journal of Pure and Applied Algebra (139) 1-3 (1999), 
 [Hoeij] M. van Heoij, Factoring polynomials and the knapsack problem,  [Hoeij] M. van Heoij, Factoring polynomials and the knapsack problem,
 to appear in Journal of Number Theory (2000).  to appear in Journal of Number Theory (2000).
   
   [IKNY] Izu et al. Efficient implementation of Schoof's algorithm, LNCS 1514
   (Proc. of ASIACRYPT'98) (1998), 66-79.
   
   [Noro] M. Noro, J. McKay,
   Computation of replicable functions on Risa/Asir.
   Proc. of PASCO'97, ACM Press (1997), 130-138.
   
 [NY] M. Noro, K. Yokoyama,  [NY] M. Noro, K. Yokoyama,
 A Modular Method to Compute the Rational Univariate  A Modular Method to Compute the Rational Univariate
 Representation of Zero-Dimensional Ideals.  Representation of Zero-Dimensional Ideals.
 J. Symb. Comp. {\bf 28}/1 (1999), 243-263.  J. Symb. Comp. {\bf 28}/1 (1999), 243-263.
   
   \end{slide}
   
   \begin{slide}{}
   
 [Oaku] T. Oaku, Algorithms for $b$-functions, restrictions and algebraic  [Oaku] T. Oaku, Algorithms for $b$-functions, restrictions and algebraic
 local cohomology groups of $D$-modules.  local cohomology groups of $D$-modules.
 Advancees in Applied Mathematics, 19 (1997), 61-105.  Advancees in Applied Mathematics, 19 (1997), 61-105.
   
 \end{slide}  
   
 \begin{slide}{}  
 [OpenMath] {\tt http://www.openmath.org}  [OpenMath] {\tt http://www.openmath.org}
   
 [OpenXM] {\tt http://www.openxm.org}  [OpenXM] {\tt http://www.openxm.org}

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.3

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>