version 1.1, 2001/10/04 08:16:27 |
version 1.3, 2001/10/04 08:30:17 |
|
|
% $OpenXM$ |
% $OpenXM: OpenXM/doc/Papers/jsiamb-noro.tex,v 1.2 2001/10/04 08:22:20 noro Exp $ |
\setlength{\parskip}{10pt} |
\setlength{\parskip}{10pt} |
|
|
\begin{slide}{} |
\begin{slide}{} |
Line 190 Faug\`ere $B$N(B FGb : $B$3$N7W;;$r(B 53 $BIC$G<B |
|
Line 190 Faug\`ere $B$N(B FGb : $B$3$N7W;;$r(B 53 $BIC$G<B |
|
|
|
$BM-8BBN>e$NBJ1_6J@~$NM-M}E@8D?t7W;;MQ(B |
$BM-8BBN>e$NBJ1_6J@~$NM-M}E@8D?t7W;;MQ(B |
|
|
--- $B$3$N%W%m%0%i%`$O%U%j!<$G$O$J$$$,(B, $B4X78$9$k4X?t(B |
--- $B$3$N%W%m%0%i%`$O%U%j!<$G$O$J$$$,(B, $B4X78$9$k4X?t$O%U%j!<(B |
$B$O%U%j!<(B |
|
\end{itemize} |
\end{itemize} |
\end{itemize} |
\end{itemize} |
|
|
Line 238 Visual C++ $B$G5-=R(B |
|
Line 237 Visual C++ $B$G5-=R(B |
|
\begin{itemize} |
\begin{itemize} |
\item $BLnO$$,IY;NDL8&$h$j?@8MBg$K0\@R(B |
\item $BLnO$$,IY;NDL8&$h$j?@8MBg$K0\@R(B |
|
|
Started Kobe branch $B$N%9%?!<%H(B |
Kobe branch $B$N%9%?!<%H(B |
\end{itemize} |
\end{itemize} |
|
|
\item OpenXM |
\item OpenXM |
Line 341 Singular [Singular] $B$OB?9`<0$N8zN($h$$I=8=$K$h$j(B |
|
Line 340 Singular [Singular] $B$OB?9`<0$N8zN($h$$I=8=$K$h$j(B |
|
\fbox{$B1~MQ;vNc(B} |
\fbox{$B1~MQ;vNc(B} |
|
|
\begin{itemize} |
\begin{itemize} |
\item $BBJ1_6J@~0E9f%Q%i%a%?@8@.(B |
\item $BBJ1_6J@~0E9f%Q%i%a%?@8@.(B [IKNY] |
|
|
$BM-8BBN>e$NB?9`<00x?tJ,2r$N1~MQ(B |
$BM-8BBN>e$NB?9`<00x?tJ,2r$N1~MQ(B |
|
|
Line 435 Journal of Pure and Applied Algebra (139) 1-3 (1999), |
|
Line 434 Journal of Pure and Applied Algebra (139) 1-3 (1999), |
|
[Hoeij] M. van Heoij, Factoring polynomials and the knapsack problem, |
[Hoeij] M. van Heoij, Factoring polynomials and the knapsack problem, |
to appear in Journal of Number Theory (2000). |
to appear in Journal of Number Theory (2000). |
|
|
|
[IKNY] Izu et al. Efficient implementation of Schoof's algorithm, LNCS 1514 |
|
(Proc. of ASIACRYPT'98) (1998), 66-79. |
|
|
|
[Noro] M. Noro, J. McKay, |
|
Computation of replicable functions on Risa/Asir. |
|
Proc. of PASCO'97, ACM Press (1997), 130-138. |
|
|
[NY] M. Noro, K. Yokoyama, |
[NY] M. Noro, K. Yokoyama, |
A Modular Method to Compute the Rational Univariate |
A Modular Method to Compute the Rational Univariate |
Representation of Zero-Dimensional Ideals. |
Representation of Zero-Dimensional Ideals. |
J. Symb. Comp. {\bf 28}/1 (1999), 243-263. |
J. Symb. Comp. {\bf 28}/1 (1999), 243-263. |
|
|
|
\end{slide} |
|
|
|
\begin{slide}{} |
|
|
[Oaku] T. Oaku, Algorithms for $b$-functions, restrictions and algebraic |
[Oaku] T. Oaku, Algorithms for $b$-functions, restrictions and algebraic |
local cohomology groups of $D$-modules. |
local cohomology groups of $D$-modules. |
Advancees in Applied Mathematics, 19 (1997), 61-105. |
Advancees in Applied Mathematics, 19 (1997), 61-105. |
|
|
\end{slide} |
|
|
|
\begin{slide}{} |
|
[OpenMath] {\tt http://www.openmath.org} |
[OpenMath] {\tt http://www.openmath.org} |
|
|
[OpenXM] {\tt http://www.openxm.org} |
[OpenXM] {\tt http://www.openxm.org} |