version 1.1, 2001/02/06 07:54:18 |
version 1.3, 2001/02/07 09:29:45 |
|
|
% $OpenXM$ |
% $OpenXM: OpenXM/doc/Papers/bfct.tex,v 1.2 2001/02/06 08:38:31 noro Exp $ |
\documentclass{jarticle} |
\documentclass{jarticle} |
\usepackage[theorem,useeps,FVerb]{jssac} |
\usepackage[theorem,useeps,FVerb]{jssac} |
\title{Risa/Asir $B$K$*$1$k(B Weyl Algebra $B>e$N%0%l%V%J4pDl7W;;$*$h$S$=$N1~MQ(B} |
\title{Risa/Asir $B$K$*$1$k(B Weyl Algebra $B>e$N%0%l%V%J4pDl7W;;$*$h$S$=$N1~MQ(B} |
|
|
|
|
\section{Weyl Algebra} |
\section{Weyl Algebra} |
|
|
|
$B$5$^$6$^$J7W;;5!Be?t%7%9%F%`>e$G(B Weyl Algebra $B$K4X$9$k1i;;$,<BAu$5$l$F(B |
|
$B$$$k(B. $BBeI=E*$J$b$N$H$7$F(B, Kan/sm1 \cite{Kan}, Macaulay2 |
|
\cite{Mac2}\cite{Tsai}, Maple Ore algebra package, |
|
Singular \cite{Singular}$B$J$I$,$"$k(B. $B0J2<$G$O(B Risa/Asir $B$K$*$1$k(B Weyl |
|
Algebra $B4XO"5!G=$N<BAu$K$D$$$F=R$Y$k$,(B, $B$3$3$G=R$Y$i$l$F$$$k2~NI$=$NB>(B |
|
$B$O(B, $BJ88%$H$7$F;2>H$9$k$3$H$O$G$-$J$$$b$N$N(B, $B>e5-%7%9%F%`$=$l$>$l$K$*$$(B |
|
$B$F:N$jF~$l$i$l$F$$$k$H9M$($i$l$k(B. |
|
|
\subsection{Leibnitz rule} |
\subsection{Leibnitz rule} |
|
|
$BBN(B $K$ $B>e$N(B $n$ $B<!85(B Weyl Algebra |
$BBN(B $K$ $B>e$N(B $n$ $B<!85(B Weyl Algebra |
|
|
|
|
\begin{Th} |
\begin{Th} |
$$I=Id(t-y_1f,\partial_1+y_1 (\partial f/\partial x_1) \partial_t, \cdots, |
$$I=Id(t-y_1f,\partial_1+y_1 (\partial f/\partial x_1) \partial_t, \cdots, |
\partial_n+ y_1 (\partial f/\partial x_n) f_n \partial_t)$$ |
\partial_n+ y_1 (\partial f/\partial x_n) \partial_t)$$ |
$B$KBP$7(B, $G_1$ $B$r(B $I_1 = I \cap D$ $B$N%0%l%V%J4pDl$H$9$k(B. $B$3$N;~(B, |
$B$KBP$7(B, $G_1$ $B$r(B $I_1 = I \cap D$ $B$N%0%l%V%J4pDl$H$9$k(B. $B$3$N;~(B, |
$$Id(\psi(G_1)) \cap K[s] = Id(b(-s-1))$$ |
$$Id(\psi(G_1)) \cap K[s] = Id(b(-s-1))$$ |
\end{Th} |
\end{Th} |
Line 151 b-function $B$N$_$r5a$a$k>l9g$K$O(B, $BD>@\(B $K[s |
|
Line 159 b-function $B$N$_$r5a$a$k>l9g$K$O(B, $BD>@\(B $K[s |
|
\subsection{\Q $B>e$N(B Weyl Algebra $B$K$*$1$k:G>.B?9`<0$N(B modular $B7W;;(B} |
\subsection{\Q $B>e$N(B Weyl Algebra $B$K$*$1$k:G>.B?9`<0$N(B modular $B7W;;(B} |
\label{mod1} |
\label{mod1} |
|
|
$D$ $B$r(B $\Q$ $B>e$N(B Weyl Algebra, $J \subset D$, $P \in D$ $B$+$D(B $P$ $B$O@0(B |
$D$ $B$r(B $\Q$ $B>e$N(B Weyl Algebra, $J$ $B$r(B $D$ $B$N(B ideal, $P \in D$ $B$+$D(B $P$ $B$O@0(B |
$B?t78?t$H$7(B, $J\cap \Q[P] \neq \{0\}$ $B$H$9$k(B. $B$3$N;~(B, $J\cap \Q[P] = |
$B?t78?t$H$7(B, $J\cap \Q[P] \neq \{0\}$ $B$H$9$k(B. $B$3$N;~(B, $J\cap \Q[P] = |
Id(b(P))$ $B$H$9$l$P(B |
Id(b(P))$ $B$H$9$l$P(B |
$b(s)$ $B$O(B$D/J$ $B$K$*$1$k(B $P$ $B$N(B \Q $B>e$N:G>.B?9`<0$H$J$k(B. |
$b(s)$ $B$O(B$D/J$ $B$K$*$1$k(B $P$ $B$N(B \Q $B>e$N:G>.B?9`<0$H$J$k(B. |
$B$3$3$G(B, $b(s) \in \Z[s]$ $B$+$D(B \Z $B>e86;OE*$H<h$l$k(B. |
$B$3$3$G(B, $b(s) \in \Z[s]$ $B$+$D(B \Z $B>e86;OE*$H<h$l$k(B. |
|
|
$J$ $B$N(B, $B=g=x(B $<$ $B$K4X$9$k%0%l%V%J4pDl$G(B, $B3F85$NF,78?t$,(B 1 $B$G$"$k$b$N$r(B $G$ |
$J$ $B$N(B, $B=g=x(B $<$ $B$K4X$9$k%0%l%V%J4pDl$G(B, $B3F85$NF,78?t$,(B 1 $B$G$"$k$b$N$r(B $G$ |
$B$H$7(B, $G$ $B$N3F85$N(B $B$N78?t$,(B $\Z_{(p)} = \{a/b | a\in \Z, b \notin |
$B$H$7(B, $G$ $B$N3F85$N78?t$,(B $\Z_{(p)} = \{a/b | a\in \Z, b \notin |
p\Z\}$ $B$KB0$9$k$h$&$J(B $p$$B$rA*$V(B. $\phi_p$ $B$r(B $\Z_{(p)}$ $B$+$i(B $GF(p)$ |
p\Z\}$ $B$KB0$9$k$h$&$J(B $p$$B$rA*$V(B. $\phi_p$ $B$r(B $\Z_{(p)}$ $B$+$i(B $GF(p)$ |
$B$X$NI8=`E*<M1F(B ($B$*$h$S$=$N(B $D$ $B$X$N3HD%(B) $B$H$9$k(B. |
$B$X$NI8=`E*<M1F(B ($B$*$h$S$=$N(B $D$ $B$X$N3HD%(B) $B$H$9$k(B. |
|
|
Line 245 $Id(\psi(G_1))\cap K[s]$$B$r(B Section \ref{mod1} $ |
|
Line 253 $Id(\psi(G_1))\cap K[s]$$B$r(B Section \ref{mod1} $ |
|
$B$H$7$F5a$a$kJ}K!(B ($BJ}K!(B 2), $B$*$h$S(B Section \ref{mod2} $B$G=R$Y$?J}K!(B ($BJ}(B |
$B$H$7$F5a$a$kJ}K!(B ($BJ}K!(B 2), $B$*$h$S(B Section \ref{mod2} $B$G=R$Y$?J}K!(B ($BJ}(B |
$BK!(B 3)$B$K$h$k7W;;;~4V$r$5$^$6$^$JB?9`<0$KBP$7$FHf3S$9$k(B. $B$$$:$l$b(B, |
$BK!(B 3)$B$K$h$k7W;;;~4V$r$5$^$6$^$JB?9`<0$KBP$7$FHf3S$9$k(B. $B$$$:$l$b(B, |
$b$-function $B$N7W;;$O(Bmodular $B7W;;$G:G>.B?9`<05a$a$kJ}K!$K$h$j9T$C(B |
$b$-function $B$N7W;;$O(Bmodular $B7W;;$G:G>.B?9`<05a$a$kJ}K!$K$h$j9T$C(B |
$B$?(B. $BNcBj$O(B\cite{oaku-bfct}, \cite{yano-bfct} $B$+$i:N$C$?(B. $B8eH>$N(B |
$B$?(B. $BNcBj$O(B\cite{oaku-bfct}, \cite{yano-bfct} $B$+$i:N$C$?(B. $BI=(B 2 $B$N(B |
$x^a+xy^{b-1}+y^b$ $B$K4X$7$F$O(B, $BK\9V5fO?Cf$NBg0$5W(B, $B9b;3N>;a$K$h$k9F$r(B |
$x^a+xy^{b-1}+y^b$ $B$K4X$7$F$O(B, $BK\9V5fO?Cf$NBg0$5W(B, $B9b;3N>;a$K$h$k9F$r(B |
$B;2>H(B. $B7W;;$O(B, PentiumIII 1GHz $B>e$G9T$C$?(B. $BC10L$OIC$G%,!<%Y%C%8%3%l%/%7%g(B |
$B;2>H(B. $B7W;;$O(B, PentiumIII 1GHz $B>e$G9T$C$?(B. $BC10L$OIC$G%,!<%Y%C%8%3%l%/%7%g(B |
$B%s;~4V$O=|$$$F$"$k(B. ``--'' $B$O(B, $BB>$NJ}K!$HHf3S$7$F;~4V$,$+$+$j2a$.$k$?(B |
$B%s;~4V$O=|$$$F$"$k(B. ``--'' $B$O(B, $BB>$NJ}K!$HHf3S$7$F;~4V$,$+$+$j2a$.$k$?(B |
Line 303 $(x_1x_2)^2+(x_3x_4)^2+(x_5x_6)^2+(x_7x_8)^2$ &16 & -- |
|
Line 311 $(x_1x_2)^2+(x_3x_4)^2+(x_5x_6)^2+(x_7x_8)^2$ &16 & -- |
|
|
|
\section{$B$*$o$j$K(B} |
\section{$B$*$o$j$K(B} |
|
|
Risa/Asir $B$K$*$1$k(B, Weyl Algebra $B4XO"5!G=$N<BAu$*$h$S(B, $B$=$N1~MQ$H$7$F(B $b$-function |
Risa/Asir $B$K$*$1$k(B, Weyl Algebra $B4XO"5!G=$N<BAu$*$h$S(B, $B$=$N1~MQ$H$7$F(B |
$B$N7W;;J}K!$N2~NI$K$D$$$F=R$Y$?(B. $B$3$3$G=R$Y$?J}K!$K$h$j(B, $B$h$j9-$$HO0O$NB?9`<0$*$h$S(B |
$b$-function$B$N7W;;J}K!$N2~NI$K$D$$$F=R$Y$?(B. $b$-function $B7W;;$O(B |
$B%$%G%"%k$KBP$7$F(B $b$-function $B$,7W;;$G$-$k$h$&$K$J$C$?$3$H$O3N$+$G$"$k(B. $B$7$+$7(B, |
Kan/sm1, Macaulay 2 $B$K$b<BAu$5$l$$$F$k$,(B, $BK\9F$G=R$Y$?$h$&$J(B, $B:G>.B?9`(B |
$B4{$KB>$NJ}K!$G7k2L$,CN$i$l$F$$$k$b$N$G$b7W;;IT2DG=$JLdBj$OB8:_$7(B, $B$^$?(B |
$B<0$rL$Dj78?tK!$G5a$a$kJ}K!$rMQ$$$?Nc$O$J$$$h$&$G$"$k(B. $B0lJ}$G(B |
$B$$$o$f$kB?=E(B $b$-function $B$KBP$7$F$O(B, $B:G>.B?9`<0$K$h$kJ}K!$OL5NO$G$"$k(B. |
$b$-function $B$O(B$f$ $B$N6I=j%b%N%I%m%_!<$H4X78$9$k$3$H$,CN$i$l$F$$$k$,(B, |
$B$3$l$i$KBP=h$9$k$?$a$K$O$5$i$J$k2~NI(B, $B$"$k$$$O?7$7$$J}K!$,I,MW$G$"$m$&(B. |
Singular $B$K$*$$$F$O(B, $BA4$/0[$J$kN)>l$+$i(B isolated singularity $B$G$N%b%N(B |
|
$B%I%m%_!<9TNs$r5a$a$k5!G=$rDs6!$7$F$$$k(B. $B$3$l$K$D$$$F(B, $B8zN($NLL$+$i(B |
|
$B$NHf3S$bI,MW$H9M$($i$l$k$,(B, $BF@$i$l$k7k2L$,0[$J$k$3$H$b$"$j$^$@>\:Y(B |
|
$B$JHf3S$O9T$C$F$$$J$$(B. |
|
|
|
$BK\9F$G=R$Y$?J}K!$K$h$j(B, $B$h$j9-$$HO0O$NB?9`<0$*$h$S%$%G%"%k$KBP$7$F(B |
|
$b$-function $B$,7W;;$G$-$k$h$&$K$J$C$?$3$H$O3N$+$G$"$k(B. $B$7$+$7(B, $B4{$KB>(B |
|
$B$NJ}K!$G7k2L$,CN$i$l$F$$$k$b$N$G$b7W;;IT2DG=$JLdBj$OB8:_$7(B, $B$^$?$$$o$f(B |
|
$B$kB?=E(B $b$-function $B$KBP$7$F$O(B, $B:G>.B?9`<0$K$h$kJ}K!$OL5NO$G$"$k(B. $B$3$l(B |
|
$B$i$KBP=h$9$k$?$a$K$O$5$i$J$k2~NI(B, $B$"$k$$$O?7$7$$J}K!$,I,MW$G$"$m$&(B. |
|
|
\begin{thebibliography}{99} |
\begin{thebibliography}{99} |
|
|
|
\bibitem{Mac2} Grayson, D., Stillman, M.: |
|
Macaulay 2, a software system for research in algebraic geometry. |
|
{\tt http://www.math.ucuc.edu/Macaulay2}. |
|
|
|
\bibitem{Singular} Greuel, G.-M., Pfister, G., Sch\"onemann, H.: |
|
SINGULAR, A Computer Algebra System for Polynomial Computations. |
|
{\tt http://www.singular.uni-kl.de/}. |
|
|
|
\bibitem{Tsai} Leykin, A., Tsai, H.: |
|
D-module package for Macaulay 2. |
|
{\tt http://www.math.cornell.edu/\verb+~+tsai}. |
|
|
\bibitem{RUR} Noro, M., Yokoyama, K.: |
\bibitem{RUR} Noro, M., Yokoyama, K.: |
A Modular Method to Compute the Rational Univariate |
A Modular Method to Compute the Rational Univariate |
Representation of Zero-Dimensional Ideals. |
Representation of Zero-Dimensional Ideals. |
Line 336 J. Pure Appl.\ Algebra (in press). |
|
Line 365 J. Pure Appl.\ Algebra (in press). |
|
Saito, M., Sturmfels, B., Takayama, N.: |
Saito, M., Sturmfels, B., Takayama, N.: |
Gr\"obner Deformations of Hypergeometric Differential Equations. |
Gr\"obner Deformations of Hypergeometric Differential Equations. |
Algorithms and Computation in Mathematics {\bf 6}, Springer (2000). |
Algorithms and Computation in Mathematics {\bf 6}, Springer (2000). |
|
|
|
\bibitem{Kan} Takayama, N.: |
|
Kan --- A system for doing algebraic analysis by computer. |
|
{\tt http://www.math.kobe-u.ac.jp/KAN}. |
|
|
\bibitem{yano-bfct} Yano, T.: |
\bibitem{yano-bfct} Yano, T.: |
On the theory of $b$-functions. |
On the theory of $b$-functions. |