| version 1.7, 2001/10/10 06:32:10 |
version 1.9, 2001/10/11 08:43:08 |
|
|
| % $OpenXM: OpenXM/doc/Papers/dagb-noro.tex,v 1.6 2001/10/09 11:44:43 noro Exp $ |
% $OpenXM: OpenXM/doc/Papers/dagb-noro.tex,v 1.8 2001/10/11 01:34:42 noro Exp $ |
| \setlength{\parskip}{10pt} |
\setlength{\parskip}{10pt} |
| |
|
| \begin{slide}{} |
\begin{slide}{} |
|
|
| \end{center} |
\end{center} |
| \end{slide} |
\end{slide} |
| |
|
| |
%\begin{slide}{} |
| |
%\fbox{Integration of mathematical software systems} |
| |
% |
| |
%\begin{itemize} |
| |
%\item Data integration |
| |
% |
| |
%\begin{itemize} |
| |
%\item OpenMath ({\tt http://www.openmath.org}) , MP [GRAY98] |
| |
%\end{itemize} |
| |
% |
| |
%Standards for representing mathematical objects |
| |
% |
| |
%\item Control integration |
| |
% |
| |
%\begin{itemize} |
| |
%\item MCP [WANG99], OMEI [LIAO01] |
| |
%\end{itemize} |
| |
% |
| |
%Protocols for remote subroutine calls or session management |
| |
% |
| |
%\item Combination of two integrations |
| |
% |
| |
%\begin{itemize} |
| |
%\item MathLink, OpenMath+MCP, MP+MCP |
| |
% |
| |
%and OpenXM ({\tt http://www.openxm.org}) |
| |
%\end{itemize} |
| |
% |
| |
%Both are necessary for practical implementation |
| |
% |
| |
%\end{itemize} |
| |
%\end{slide} |
| \begin{slide}{} |
\begin{slide}{} |
| \fbox{Integration of mathematical software systems} |
|
| |
|
| \begin{itemize} |
|
| \item Data integration |
|
| |
|
| \begin{itemize} |
|
| \item OpenMath ({\tt http://www.openmath.org}) , MP [GRAY98] |
|
| \end{itemize} |
|
| |
|
| Standards for representing mathematical objects |
|
| |
|
| \item Control integration |
|
| |
|
| \begin{itemize} |
|
| \item MCP [WANG99], OMEI [LIAO01] |
|
| \end{itemize} |
|
| |
|
| Protocols for remote subroutine calls or session management |
|
| |
|
| \item Combination of two integrations |
|
| |
|
| \begin{itemize} |
|
| \item MathLink, OpenMath+MCP, MP+MCP |
|
| |
|
| and OpenXM ({\tt http://www.openxm.org}) |
|
| \end{itemize} |
|
| |
|
| Both are necessary for practical implementation |
|
| |
|
| \end{itemize} |
|
| \end{slide} |
|
| \begin{slide}{} |
|
| \fbox{OpenXM (Open message eXchange protocol for Mathematics) } |
|
| |
|
| \begin{itemize} |
|
| \item An environment for parallel distributed computation |
|
| |
|
| Both for interactive, non-interactive environment |
|
| |
|
| \item Client-server architecture |
|
| |
|
| Client $\Leftarrow$ OX (OpenXM) message $\Rightarrow$ Server |
|
| |
|
| OX (OpenXM) message : command and data |
|
| |
|
| \item Data |
|
| |
|
| Encoding : CMO (Common Mathematical Object format) |
|
| |
|
| Serialized representation of mathematical object |
|
| |
|
| --- Main idea was borrowed from OpenMath |
|
| \item Command |
|
| |
|
| stack machine command --- server is a stackmachine |
|
| |
|
| + server's own command sequences --- hybrid server |
|
| \end{itemize} |
|
| \end{slide} |
|
| |
|
| \begin{slide}{} |
|
| \fbox{A computer algebra system Risa/Asir} |
\fbox{A computer algebra system Risa/Asir} |
| |
|
| ({\tt http://www.math.kobe-u.ac.jp/Asir/asir.html}) |
({\tt http://www.math.kobe-u.ac.jp/Asir/asir.html}) |
| |
|
| \begin{itemize} |
\begin{itemize} |
| \item Traditional style software for polynomial computation |
\item Software mainly for polynomial computation |
| |
|
| No domain specification, automatic expansion |
|
| |
|
| \item User language with C-like syntax |
\item User language with C-like syntax |
| |
|
| C language without type declaration, with list processing |
C language without type declaration, with list processing |
| Line 88 C language without type declaration, with list process |
|
| Line 57 C language without type declaration, with list process |
|
| |
|
| Whole source tree is available via CVS |
Whole source tree is available via CVS |
| |
|
| |
The latest version : see {\tt http://www.openxm.org} |
| |
|
| \item OpenXM interface |
\item OpenXM interface |
| |
|
| \begin{itemize} |
\begin{itemize} |
| |
\item OpenXM |
| |
|
| |
An infrastructure for exchanging mathematical data |
| \item Risa/Asir is a main client in OpenXM package. |
\item Risa/Asir is a main client in OpenXM package. |
| \item An OpenXM server {\tt ox\_asir} |
\item An OpenXM server {\tt ox\_asir} |
| \item A library with OpenXM library interface {\tt libasir.a} |
\item A library with OpenXM library interface {\tt libasir.a} |
| Line 102 Whole source tree is available via CVS |
|
| Line 76 Whole source tree is available via CVS |
|
| \fbox{Goal of developing Risa/Asir} |
\fbox{Goal of developing Risa/Asir} |
| |
|
| \begin{itemize} |
\begin{itemize} |
| \item Efficient implementation in specific area |
\item Testing new algorithms |
| |
|
| \begin{itemize} |
\begin{itemize} |
| \item Polynomial factorization |
\item Development started in Fujitsu labs |
| |
|
| \item Groebner basis related computation |
Polynomial factorization, Groebner basis related computation, |
| |
cryptosystems , quantifier elimination , $\ldots$ |
| Main target : coefficient swells in characteristic 0 cases |
|
| |
|
| Main tool : modular method |
|
| \end{itemize} |
\end{itemize} |
| |
|
| \item Front-end or server of a general purpose math software |
\item To be a general purpose, open system |
| |
|
| We do not persist in self-containedness |
Since 1997, we have been developing OpenXM package |
| |
containing various servers and clients |
| |
|
| \begin{itemize} |
Risa/Asir is a component of OpenXM |
| |
|
| \item contains PARI library ({\tt http://www.parigp-home.de}) from the very beginning |
\item Environment for parallel and distributed computation |
| |
|
| \item also acts as a main client of OpenXM package |
|
| |
|
| One can use various OpenXM servers |
|
| |
|
| \end{itemize} |
\end{itemize} |
| |
|
| \end{itemize} |
|
| \end{slide} |
\end{slide} |
| |
|
| \begin{slide}{} |
%\begin{slide}{} |
| \fbox{Capability for polynomial computation} |
%\fbox{Capability for polynomial computation} |
| |
% |
| |
%\begin{itemize} |
| |
%\item Fundamental polynomial arithmetics |
| |
% |
| |
%recursive representation and distributed representation |
| |
% |
| |
%\item Polynomial factorization |
| |
% |
| |
%\begin{itemize} |
| |
%\item Univariate : over {\bf Q}, algebraic number fields and finite fields |
| |
% |
| |
%\item Multivariate : over {\bf Q} |
| |
%\end{itemize} |
| |
% |
| |
%\item Groebner basis computation |
| |
% |
| |
%\begin{itemize} |
| |
%\item Buchberger and $F_4$ [FAUG99] algorithm |
| |
% |
| |
%\item Change of ordering/RUR [ROUI96] of 0-dimensional ideals |
| |
% |
| |
%\item Primary ideal decomposition |
| |
% |
| |
%\item Computation of $b$-function (in Weyl Algebra) |
| |
%\end{itemize} |
| |
%\end{itemize} |
| |
%\end{slide} |
| |
|
| \begin{itemize} |
|
| \item Fundamental polynomial arithmetics |
|
| |
|
| recursive representation and distributed representation |
|
| |
|
| \item Polynomial factorization |
|
| |
|
| \begin{itemize} |
|
| \item Univariate : over {\bf Q}, algebraic number fields and finite fields |
|
| |
|
| \item Multivariate : over {\bf Q} |
|
| \end{itemize} |
|
| |
|
| \item Groebner basis computation |
|
| |
|
| \begin{itemize} |
|
| \item Buchberger and $F_4$ [FAUG99] algorithm |
|
| |
|
| \item Change of ordering/RUR [ROUI96] of 0-dimensional ideals |
|
| |
|
| \item Primary ideal decomposition |
|
| |
|
| \item Computation of $b$-function (in Weyl Algebra) |
|
| \end{itemize} |
|
| \end{itemize} |
|
| \end{slide} |
|
| |
|
| \begin{slide}{} |
\begin{slide}{} |
| \fbox{History of development : Polynomial factorization} |
\fbox{History of development : Polynomial factorization} |
| |
|
| Line 185 Intensive use of successive extension, non-squarefree |
|
| Line 151 Intensive use of successive extension, non-squarefree |
|
| |
|
| Univariate factorization over large finite fields |
Univariate factorization over large finite fields |
| |
|
| |
Motivated by a reseach project in Fujitsu on cryptography |
| |
|
| \item 2000-current |
\item 2000-current |
| |
|
| Multivariate factorization over small finite fields (in progress) |
Multivariate factorization over small finite fields (in progress) |
| Line 205 Trace lifting with homogenization |
|
| Line 173 Trace lifting with homogenization |
|
| |
|
| Omitting GB check by compatible prime [NOYO99] |
Omitting GB check by compatible prime [NOYO99] |
| |
|
| Modular change of ordering/RUR [NOYO99] |
Modular change of ordering/RUR[ROUI96] [NOYO99] |
| |
|
| Primary ideal decomposition [SHYO96] |
Primary ideal decomposition [SHYO96] |
| |
|
| Line 216 Solved {\it McKay} system for the first time |
|
| Line 184 Solved {\it McKay} system for the first time |
|
| |
|
| \item 1998-2000 |
\item 1998-2000 |
| |
|
| Test implementation of $F_4$ |
Test implementation of $F_4$ [FAUG99] |
| |
|
| \item 2000-current |
\item 2000-current |
| |
|
| Buchberger algorithm in Weyl algebra [TAKA90] |
Buchberger algorithm in Weyl algebra |
| |
|
| Efficient $b$-function computation by a modular method |
Efficient $b$-function computation[OAKU97] by a modular method |
| \end{itemize} |
\end{itemize} |
| \end{slide} |
\end{slide} |
| |
|
| \begin{slide}{} |
\begin{slide}{} |
| \fbox{Performance --- Factorizer} |
|
| |
|
| \begin{itemize} |
|
| \item 4 years ago |
|
| |
|
| Over {\bf Q} : fine compared with existing software |
|
| like REDUCE, Mathematica, maple |
|
| |
|
| Univariate, over algebraic number fields : |
|
| fine because of some tricks for polynomials |
|
| derived from norms. |
|
| |
|
| \item Current |
|
| |
|
| Multivariate : moderate |
|
| |
|
| Univariate : completely obsoleted by M. van Hoeij's new algorithm |
|
| [HOEI00] |
|
| \end{itemize} |
|
| |
|
| \end{slide} |
|
| |
|
| \begin{slide}{} |
|
| \fbox{Timing data --- Factorization} |
\fbox{Timing data --- Factorization} |
| |
|
| \underline{Univariate; over {\bf Q}} |
\underline{Univariate; over {\bf Q}} |
| |
|
| $N_i$ : a norm of a poly, $\deg(N_i) = i$ |
$N_i$ : a norm of a polynomial, $\deg(N_i) = i$ |
| \begin{center} |
\begin{center} |
| \begin{tabular}{|c||c|c|c|c|} \hline |
\begin{tabular}{|c||c|c|c|c|} \hline |
| & $N_{105}$ & $N_{120}$ & $N_{168}$ & $N_{210}$ \\ \hline |
& $N_{105}$ & $N_{120}$ & $N_{168}$ & $N_{210}$ \\ \hline |
| Asir & 0.86 & 59 & 840 & hard \\ \hline |
Asir & 0.86 & 59 & 840 & hard \\ \hline |
| Asir NormFactor & 1.6 & 2.2& 6.1& hard \\ \hline |
Asir NormFactor & 1.6 & 2.2& 6.1& hard \\ \hline |
| Singular& hard? & hard?& hard? & hard? \\ \hline |
%Singular& hard? & hard?& hard? & hard? \\ \hline |
| CoCoA 4 & 0.2 & 7.1 & 16 & 0.5 \\ \hline\hline |
CoCoA 4 & 0.2 & 7.1 & 16 & 0.5 \\ \hline\hline |
| NTL-5.2 & 0.16 & 0.9 & 1.4 & 0.4 \\ \hline |
NTL-5.2 & 0.16 & 0.9 & 1.4 & 0.4 \\ \hline |
| \end{tabular} |
\end{tabular} |
| Line 273 $W_{i,j,k} = Wang[i]\cdot Wang[j]\cdot Wang[k]$ in {\t |
|
| Line 218 $W_{i,j,k} = Wang[i]\cdot Wang[j]\cdot Wang[k]$ in {\t |
|
| \begin{tabular}{|c||c|c|c|c|c|} \hline |
\begin{tabular}{|c||c|c|c|c|c|} \hline |
| & $W_{1,2,3}$ & $W_{4,5,6}$ & $W_{7,8,9}$ & $W_{10,11,12}$ & $W_{13,14,15}$ \\ \hline |
& $W_{1,2,3}$ & $W_{4,5,6}$ & $W_{7,8,9}$ & $W_{10,11,12}$ & $W_{13,14,15}$ \\ \hline |
| Asir & 0.2 & 4.7 & 14 & 17 & 0.4 \\ \hline |
Asir & 0.2 & 4.7 & 14 & 17 & 0.4 \\ \hline |
| Singular& $>$15min & --- & ---& ---& ---\\ \hline |
%Singular& $>$15min & --- & ---& ---& ---\\ \hline |
| CoCoA 4 & 5.2 & $>$15min & $>$15min & $>$15min & 117 \\ \hline\hline |
CoCoA 4 & 5.2 & $>$15min & $>$15min & $>$15min & 117 \\ \hline\hline |
| Mathematica& 0.2 & 16 & 23 & 36 & 1.1 \\ \hline |
Mathematica 4& 0.2 & 16 & 23 & 36 & 1.1 \\ \hline |
| |
Maple 7& 0.5 & 18 & 967 & 48 & 1.3 \\ \hline |
| \end{tabular} |
\end{tabular} |
| \end{center} |
\end{center} |
| |
|
| --- : not tested |
%--- : not tested |
| \end{slide} |
\end{slide} |
| \begin{slide}{} |
|
| \fbox{Performance --- Groebner basis related computation} |
|
| |
|
| \begin{itemize} |
|
| \item 7 years ago |
|
| |
|
| Trace lifting : rather fine but coefficient swells often occur |
|
| |
|
| Homogenization+trace lifting : robust and fast in the above cases |
|
| |
|
| \item 4 years ago |
|
| |
|
| Modular RUR was comparable with Rouillier's implementation. |
|
| |
|
| DRL basis of {\it McKay}: |
|
| |
|
| 5 days on Risa/Asir, 53 seconds on Faug\`ere FGb |
|
| \item Current |
|
| |
|
| $F_4$ in FGb : much more efficient than $F_4$ in Risa/Asir |
|
| |
|
| Buchberger in Singular ({\tt http://www.singular.uni-kl.de}) |
|
| : faster than Risa/Asir |
|
| |
|
| |
|
| $\Leftarrow$ efficient monomial and polynomial computation |
|
| |
|
| \end{itemize} |
|
| \end{slide} |
|
| |
|
| \begin{slide}{} |
\begin{slide}{} |
| \fbox{Timing data --- DRL Groebner basis computation} |
\fbox{Timing data --- DRL Groebner basis computation} |
| |
|
| Line 320 $\Leftarrow$ efficient monomial and polynomial computa |
|
| Line 237 $\Leftarrow$ efficient monomial and polynomial computa |
|
| & $C_7$ & $C_8$ & $K_7$ & $K_8$ & $K_9$ & $K_{10}$ & $K_{11}$ \\ \hline |
& $C_7$ & $C_8$ & $K_7$ & $K_8$ & $K_9$ & $K_{10}$ & $K_{11}$ \\ \hline |
| Asir $Buchberger$ & 31 & 1687 & 2.6 & 27 & 294 & 4309 & --- \\ \hline |
Asir $Buchberger$ & 31 & 1687 & 2.6 & 27 & 294 & 4309 & --- \\ \hline |
| Singular & 8.7 & 278 & 0.6 & 5.6 & 54 & 508 & 5510 \\ \hline |
Singular & 8.7 & 278 & 0.6 & 5.6 & 54 & 508 & 5510 \\ \hline |
| CoCoA 4 & 241 & & 3.8 & 35 & 402 & & --- \\ \hline\hline |
CoCoA 4 & 241 & $>$ 5h & 3.8 & 35 & 402 &7021 & --- \\ \hline\hline |
| Asir $F_4$ & 5.3 & 129 & 0.5 & 4.5 & 31 & 273 & 2641 \\ \hline |
Asir $F_4$ & 5.3 & 129 & 0.5 & 4.5 & 31 & 273 & 2641 \\ \hline |
| FGb(estimated) & 0.9 & 23 & 0.1 & 0.8 & 6 & 51 & 366 \\ \hline |
FGb(estimated) & 0.9 & 23 & 0.1 & 0.8 & 6 & 51 & 366 \\ \hline |
| \end{tabular} |
\end{tabular} |
| Line 340 FGb(estimated) & 8 &11 & 0.6 & 5 & 10 \\ \hline |
|
| Line 257 FGb(estimated) & 8 &11 & 0.6 & 5 & 10 \\ \hline |
|
| \end{center} |
\end{center} |
| --- : not tested |
--- : not tested |
| \end{slide} |
\end{slide} |
| |
|
| \begin{slide}{} |
\begin{slide}{} |
| \fbox{How do we proceed?} |
\fbox{Summary of performance} |
| |
|
| \underline{Total performance : not excellent, but not so bad} |
\begin{itemize} |
| |
\item Factorizer |
| |
|
| \begin{itemize} |
\begin{itemize} |
| \item Trying to improve our implementation |
\item Multivariate : reasonable performance |
| |
|
| This is very important as a motivation of further development |
\item Univariate : obsoleted by M. van Hoeij's new algorithm [HOEI00] |
| |
\end{itemize} |
| |
|
| |
\item Groebner basis computation |
| |
|
| \begin{itemize} |
\begin{itemize} |
| |
\item Buchberger |
| |
|
| \item Computation of $b$-function |
Singular shows nice perfomance |
| |
|
| fast but not satisfactory |
Trace lifting is efficient in some cases over {\bf Q} |
| |
|
| $\Rightarrow$ Groebner basis computation in Weyl |
\item $F_4$ |
| algebra should be improved |
|
| |
FGb is much faster than Risa/Asir |
| |
|
| |
But we observe that {\it McKay} is computed efficiently by $F_4$ |
| \end{itemize} |
\end{itemize} |
| |
\end{itemize} |
| |
|
| \item Developing new OpenXM servers |
\end{slide} |
| |
|
| {ox\_NTL} for univariate factorization, |
\begin{slide}{} |
| |
\fbox{Summary} |
| |
|
| {ox\_???} for Groebner basis computation, etc. |
\begin{itemize} |
| |
\item Total performance is not excellent, but not so bad |
| |
|
| $\Rightarrow$ Risa/Asir can be a front-end of efficient servers |
\item A completely open system |
| |
|
| |
The whole source is available |
| |
|
| |
\item Interface compliant to OpenXM RFC-100 |
| |
|
| |
The interface is fully documented |
| \end{itemize} |
\end{itemize} |
| |
|
| \begin{center} |
|
| \underline{In both cases, OpenXM interface is important} |
|
| \end{center} |
|
| \end{slide} |
\end{slide} |
| |
|
| |
|
| Line 430 $\Rightarrow$ Risa/Asir can be a front-end of efficien |
|
| Line 361 $\Rightarrow$ Risa/Asir can be a front-end of efficien |
|
| %\end{slide} |
%\end{slide} |
| |
|
| \begin{slide}{} |
\begin{slide}{} |
| |
\fbox{OpenXM (Open message eXchange protocol for Mathematics) } |
| |
|
| |
\begin{itemize} |
| |
\item An environment for parallel distributed computation |
| |
|
| |
Both for interactive, non-interactive environment |
| |
|
| |
\item OpenXM RFC-100 = Client-server architecture |
| |
|
| |
Client $\Leftarrow$ OX (OpenXM) message $\Rightarrow$ Server |
| |
|
| |
OX (OpenXM) message : command and data |
| |
|
| |
\item Data |
| |
|
| |
Encoding : CMO (Common Mathematical Object format) |
| |
|
| |
Serialized representation of mathematical object |
| |
|
| |
--- Main idea was borrowed from OpenMath |
| |
|
| |
({\tt http://www.openmath.org}) |
| |
|
| |
\item Command |
| |
|
| |
stack machine command --- server is a stackmachine |
| |
|
| |
+ server's own command sequences --- hybrid server |
| |
\end{itemize} |
| |
\end{slide} |
| |
|
| |
\begin{slide}{} |
| \fbox{Example of distributed computation --- $F_4$ vs. $Buchberger$ } |
\fbox{Example of distributed computation --- $F_4$ vs. $Buchberger$ } |
| |
|
| \begin{verbatim} |
\begin{verbatim} |
| Line 470 Design and Implementation of MP, A Protocol for Effici |
|
| Line 433 Design and Implementation of MP, A Protocol for Effici |
|
| Mathematical Expression, |
Mathematical Expression, |
| J. Symb. Comp. {\bf 25} (1998), 213-238. |
J. Symb. Comp. {\bf 25} (1998), 213-238. |
| |
|
| [HOEI00] M. van Heoij, Factoring polynomials and the knapsack problem, |
[HOEI00] M. van Hoeij, Factoring polynomials and the knapsack problem, |
| to appear in Journal of Number Theory (2000). |
to appear in Journal of Number Theory (2000). |
| |
|
| [LIAO01] W. Liao et al, |
[LIAO01] W. Liao et al, |