| version 1.2, 2001/10/04 04:12:29 | version 1.3, 2001/10/04 08:16:26 | 
|  |  | 
| % $OpenXM: OpenXM/doc/Papers/dagb-noro.tex,v 1.1 2001/10/03 08:32:58 noro Exp $ | % $OpenXM: OpenXM/doc/Papers/dagb-noro.tex,v 1.2 2001/10/04 04:12:29 noro Exp $ | 
| \setlength{\parskip}{10pt} | \setlength{\parskip}{10pt} | 
|  |  | 
| \begin{slide}{} | \begin{slide}{} | 
| 
| Line 228  Started Kobe branch [Risa/Asir] |  | 
| Line 228  Started Kobe branch [Risa/Asir] |  | 
| \item OX-RFC102 : communications between servers via MPI | \item OX-RFC102 : communications between servers via MPI | 
| \end{itemize} | \end{itemize} | 
|  |  | 
| \item Rings of differential operators | \item Weyl algebra | 
|  |  | 
| \begin{itemize} | \begin{itemize} | 
| \item Buchberger algorithm [Takayama] | \item Buchberger algorithm [Takayama] | 
|  |  | 
| \item $b$-function computation [OT] | \item $b$-function computation [Oaku] | 
|  |  | 
| Minimal polynomial computation by modular method | Minimal polynomial computation by modular method | 
| \end{itemize} | \end{itemize} | 
| 
| Line 290  Modular RUR was comparable with Rouillier's implementa |  | 
| Line 290  Modular RUR was comparable with Rouillier's implementa |  | 
|  |  | 
| FGb seems much more efficient than our $F_4$ implementation. | FGb seems much more efficient than our $F_4$ implementation. | 
|  |  | 
| Singular's Groebner basis computation is also several times | Singular [Singular] is also several times | 
| faster than Risa/Asir, because Singular seems to have efficient | faster than Risa/Asir, because Singular seems to have efficient | 
| monomial and polynomial representation. | monomial and polynomial representation. | 
|  |  | 
| 
| Line 534  Journal of Pure and Applied Algebra (139) 1-3 (1999), |  | 
| Line 534  Journal of Pure and Applied Algebra (139) 1-3 (1999), |  | 
| [Hoeij] M. van Heoij, Factoring polynomials and the knapsack problem, | [Hoeij] M. van Heoij, Factoring polynomials and the knapsack problem, | 
| to appear in Journal of Number Theory (2000). | to appear in Journal of Number Theory (2000). | 
|  |  | 
| [SY] T. Shimoyama, K. Yokoyama, Localization and Primary Decomposition of Polynomial Ideals.  J. Symb. Comp. {\bf 22} (1996), 247-277. |  | 
|  |  | 
| [NY] M. Noro, K. Yokoyama, | [NY] M. Noro, K. Yokoyama, | 
| A Modular Method to Compute the Rational Univariate | A Modular Method to Compute the Rational Univariate | 
| Representation of Zero-Dimensional Ideals. | Representation of Zero-Dimensional Ideals. | 
| J. Symb. Comp. {\bf 28}/1 (1999), 243-263. | J. Symb. Comp. {\bf 28}/1 (1999), 243-263. | 
|  |  | 
|  | [Oaku] T. Oaku, Algorithms for $b$-functions, restrictions and algebraic | 
|  | local cohomology groups of $D$-modules. | 
|  | Advancees in Applied Mathematics, 19 (1997), 61-105. | 
|  | \end{slide} | 
|  |  | 
|  | \begin{slide}{} | 
|  |  | 
| [OpenMath] {\tt http://www.openmath.org} | [OpenMath] {\tt http://www.openmath.org} | 
|  |  | 
| [OpenXM] {\tt http://www.openxm.org} | [OpenXM] {\tt http://www.openxm.org} | 
| 
| Line 553  J. Symb. Comp. {\bf 28}/1 (1999), 243-263. |  | 
| Line 558  J. Symb. Comp. {\bf 28}/1 (1999), 243-263. |  | 
| R\'esolution des syst\`emes z\'ero-dimensionnels. | R\'esolution des syst\`emes z\'ero-dimensionnels. | 
| Doctoral Thesis(1996), University of Rennes I, France. | Doctoral Thesis(1996), University of Rennes I, France. | 
|  |  | 
|  | [SY] T. Shimoyama, K. Yokoyama, Localization and Primary Decomposition of Polynomial Ideals.  J. Symb. Comp. {\bf 22} (1996), 247-277. | 
|  |  | 
|  | [Singular] {\tt http://www.singular.uni-kl.de} | 
|  |  | 
| [Traverso] C. Traverso, \gr trace algorithms. Proc. ISSAC '88 (LNCS 358), 125-138. | [Traverso] C. Traverso, \gr trace algorithms. Proc. ISSAC '88 (LNCS 358), 125-138. | 
|  |  | 
| \end{slide} | \end{slide} | 
| 
| Line 645  Guess of a groebner basis by detecting zero reduction |  | 
| Line 654  Guess of a groebner basis by detecting zero reduction |  | 
| Homogenization+guess+dehomogenization+check | Homogenization+guess+dehomogenization+check | 
| \end{itemize} | \end{itemize} | 
|  |  | 
| \item Rings of differential operators | \item Weyl Algebra | 
|  |  | 
| \begin{itemize} | \begin{itemize} | 
| \item Groebner basis of a left ideal | \item Groebner basis of a left ideal | 
| 
| Line 730  An ideal whose radical is prime |  | 
| Line 739  An ideal whose radical is prime |  | 
| \begin{slide}{} | \begin{slide}{} | 
| \fbox{Computation of $b$-function} | \fbox{Computation of $b$-function} | 
|  |  | 
| $D$ : the ring of differential operators | $D=K\langle x,\partial \rangle$ : Weyl algebra | 
|  |  | 
| $b(s)$ : a polynomial of the smallest degree s.t. | $b(s)$ : a polynomial of the smallest degree s.t. | 
| there exists $P(s) \in D[s]$, $P(s)f^{s+1}=b(s)f^s$ | there exists $P(s) \in D[s]$, $P(s)f^{s+1}=b(s)f^s$ |