[BACK]Return to genkou19991125.tex CVS log [TXT][DIR] Up to [local] / OpenXM / doc

Diff for /OpenXM/doc/Attic/genkou19991125.tex between version 1.35 and 1.79

version 1.35, 1999/12/21 16:00:56 version 1.79, 1999/12/24 21:56:37
Line 1 
Line 1 
 \documentclass{jarticle}  \documentclass{jarticle}
   
 \title{タイトル未定}  %% $OpenXM: OpenXM/doc/genkou19991125.tex,v 1.78 1999/12/24 21:01:21 tam Exp $
 \author{  
 前川 将秀\thanks{神戸大学理学部数学科},  \usepackage{jssac}
 野呂 正行\thanks{富士通研究所},  \title{
 小原 功任\thanks{金沢大学理学部計算科学科}, \\  1. 意味もない修飾過剰な語句は排除しましょう。\\
 奥谷 幸夫  2. せっかく fill しているのをいじらないでくれ。\\
 %\thanks{神戸大学大学院自然科学研究科博士課程前期課程数学専攻},  3. 田村が遊んでばかりでおればかり仕事をしているのはどう考えても不公平だ。
 \thanks{神戸大学大学院自然科学研究科数学専攻},  なんで仕事をしないのか、いい加減仕事をしろ、田村。
 高山 信毅\thanks{神戸大学理学部数学教室},  %↑すみません、家で御飯食べてました。
 田村 恭士  
 %\thanks{神戸大学大学院自然科学研究科博士課程後期課程情報メディア科学専攻計算システム講座}  
 \thanks{神戸大学大学院自然科学研究科情報メディア科学専攻}  
 }  }
 \date{1999年11月25日}  
 %\pagestyle{empty}  
   
   \author{奥 谷   行 央\affil{神戸大学大学院自然科学研究科}
                   \mail{okutani@math.sci.kobe-u.ac.jp}
     \and  小 原   功 任\affil{金沢大学理学部}
                   \mail{ohara@kappa.s.kanazawa-u.ac.jp}
     \and  高 山   信 毅\affil{神戸大学理学部}
                   \mail{takayama@math.sci.kobe-u.ac.jp}
     \and  田 村   恭 士\affil{神戸大学大学院自然科学研究科}
                   \mail{tamura@math.sci.kobe-u.ac.jp}
     \and  野 呂   正 行\affil{富士通研究所}
                   \mail{noro@para.flab.fujitsu.co.jp}
     \and  前 川   将 秀\affil{神戸大学理学部}
                   \mail{maekawa@math.sci.kobe-u.ac.jp}
   }
   \art{}
   
 \begin{document}  \begin{document}
 \maketitle  \maketitle
   
 \section{OpenXMとは}  \section{OpenXMとは}
   
 OpenXM は数学プロセス間でメッセージを交換するための規約である。数学プロ  OpenXM は数学プロセス間でメッセージを交換するための規約である。
 セス間でメッセージをやりとりさせることにより、ある数学プロセスから他の数  数学プロセス間でメッセージをやりとりすることにより、
 学プロセスを呼び出して計算を行なったり、他のマシンで計算を行なわせたりす  ある数学プロセスから他の数学プロセスを呼び出して計算を行なったり、
 ることが目的である。なお、 OpenXM とは Open message eXchange protocol  他のマシンで計算を行なわせたりすることが目的である。
 for Mathematics の略である。  なお、 OpenXM とは Open message eXchange protocol for Mathematics の略である。
 OpenXM の開発の発端は野呂正行と高山信毅により、 asir と kan/sm1 を  OpenXM の開発の発端は野呂と高山により、
 相互に呼び出す機能を実装したことである。  asir と kan/sm1 を相互に呼び出す機能を実装したことである。
 %\footnote{この段落必要?}  
   
 発端となった asir と kan/sm1 での実装時には、  初期の実装では、相手側のローカル言語の文法に従った文字列を送っていた。
 お互いに相手側のコマンド文字列を送っていた。  この方法では相手側のソフトが asir なのか kan/sm1 なのかを判別するなどして、
 この方法は現在の OpenXM 規約でも形を変えて可能ではあるが、  相手側のローカル言語の文法に合わせた文字列を作成しなければならない。
 使いやすい反面、効率的であるとはいい難い。  このローカル言語の文法に従った文字列を送る方法は、
 さらに、この方法では相手側のソフトが asir なのか kan/sm1 なのかを  効率的であるとはいい難いが、使いやすいとも言える。
 判別して、相手側に合わせてコマンド文字列を作成する必要がある。  
   
 これ以外の方法として、  現在の OpenXM 規約では共通表現形式によるメッセージを用いている。
 OpenXM 規約では共通表現形式によるメッセージも用意している。  上記の文字列を送る方法の利点を生かすため、
 OpenXM 規約独自のデータ形式である CMO 形式(Common Mathematical Object format)  OpenXM 規約では共通表現形式の中の文字列として、
 以外にも、 MP や OpenMath の XML, binary 表現形式といった他の形式をも  ローカル言語の文法に従った文字列を用いたメッセージの交換も可能となっている。
 扱えるようにしてある。  
 なお、現在の OpenXM 規約では、  
 前述のコマンド文字列も CMO 形式などの何らかのデータ形式の中の  
 文字列として表現して送る必要がある。  
   
 \section{OpenXM の計算モデル}  OpenXM 規約では通信の方法に幾らかの自由度があるが、
   現在のところは TCP/IP を用いた通信しか実装されていない。
   そこで、この論文では具体的な実装は TCP/IP を用いていると仮定する。
   
 {\Huge この節では計算モデルの話をしなければいけませんよ、田村君}  \section{OpenXM のメッセージの構造}
   
 OpenXM 規約での計算とはメッセージを交換することである。  通信の方法によってメッセージの構造は変わる。
 そして、そのメッセージの交換はサーバとクライアントの間で行なわれる。  前節で仮定したとおり、この論文では TCP/IP の場合についてのみ説明を行なう。
 クライアントからサーバへメッセージを送り、  
 サーバからクライアントがメッセージを受け取ることによって  
 計算の結果が得られる。  
   
 サーバはスタックマシンであると仮定されており、  OpenXM 規約で規定されているメッセージはバイトストリームとなっており、
 サーバがクライアントから受け取ったメッセージはすべてスタックに積まれる。  次のような構造になっている。
 ただし、OpenXM のメッセージの中にはサーバに行なわせたい動作に  
 対応するデータがあり、  
 このメッセージを受け取ったサーバはそれに対応する動作を  
 行なうことが期待されている。  
 しかし、サーバは命令されない限り何も動作を行なおうとはしない。  
 このため、クライアントはサーバへ送ったメッセージの結果を  
 サーバから  
   
 これはクライアントがサーバへ一旦メッセージを送付し終えると、  \begin{tabular}{|c|c|}
 あとはサーバ側の状態を気にせずにクライアントは  \hline
 クライアント自身の仕事に戻れることを意味する。  ヘッダ  & \hspace{10mm} ボディ \hspace{10mm} \\
   \hline
   \end{tabular}
   
   ヘッダの長さは 8 バイトであると定められている。
   ボディの長さはメッセージごとに異なっているが、
   長さは $0$ でもよい。
   
 \section{OpenXM のメッセージの構造}  ヘッダは次の二つの情報を持っている。
   \begin{enumerate}
   \item   前半の 4 バイト。メッセージの種類を表わす識別子であり、
           タグと呼ばれる。
   \item   後半の 4 バイト。メッセージにつけられた通し番号である。
   \end{enumerate}
   それぞれの 4 バイトは 32 ビット整数とみなされて扱われる。
   この場合に用いられる整数の表現方法については後述するが、
   基本的に表現方法はいくつかの選択肢から選ぶことが可能となっており、
   またその選択は通信路の確立時に一度だけなされることに注意しなければならない。
   現在のOpenXM 規約では、タグ(整数値)として
   以下のものが定義されている。
   
 {\Huge この節では構造の話をしなければいけませんよ、田村君}  
   
 OpenXM のメッセージはバイトストリームであり、次のような構造を持つ。  
 \begin{verbatim}  \begin{verbatim}
 ヘッダ  ボディ  #define OX_COMMAND              513
   #define OX_DATA                 514
   #define OX_SYNC_BALL            515
   #define OX_DATA_WITH_LENGTH     521
   #define OX_DATA_OPENMATH_XML    523
   #define OX_DATA_OPENMATH_BINARY 524
   #define OX_DATA_MP              525
 \end{verbatim}  \end{verbatim}
 ヘッダの長さは8バイトであると定められている。ボディの長さはメッセージご  
 とに異なる($0$でもよい)。  ボディの構造はメッセージの種類によって異なる。
 ヘッダは次の二つの情報を持つ。  タグが OX\_COMMAND となっているメッセージはスタックマシンへの命令であり、
   それ以外のメッセージは何らかのオブジェクトを表している。
   この論文では OX\_DATA と OX\_COMMAND で識別される
   メッセージについてのみ、説明する。
   
   既存のメッセージでは対応できない場合は、新しい識別子を定義することで新し
   い種類のメッセージを作成することができる。この方法は各数学ソフトウェアの
   固有の表現を含むメッセージを作成したい場合などに有効である。新しい識別子
   の定義方法については、\cite{OpenXM-1999} を参照すること。
   
   \section{OpenXM の計算モデル}
   
   OpenXM 規約での計算とはメッセージを交換することである。また、 OpenXM 規
   約ではクライアント・サーバモデルを採用しているので、メッセージの交換はサー
   バとクライアントの間で行なわれる。クライアントからサーバへメッセージを送
   り、クライアントがサーバからメッセージを受け取ることによって計算の結果が
   得られる。このメッセージのやりとりはクライアントの主導で行われる。つまり、
   クライアントは自由にメッセージをサーバに送付してもよいが、サーバからは自
   発的にメッセージが送付されることはない。この原理はサーバはスタックマシン
   であることで実現される。スタックマシンの構造については \ref{sec:oxsm} 節
   で述べる。
   
   サーバがクライアントから受け取ったオブジェクト(つまり OX\_COMMAND でない
   メッセージのボディ)はすべてスタックに積まれる。スタックマシンへの命令
   (OX\_COMMAND で識別されるメッセージのボディ)を受け取ったサーバは命令に対
   応する動作を行なう。このとき、命令によってはスタックからオブジェクトを取
   り出すことがあり、また(各数学システムでの)計算結果をスタックに積むことが
   ある。もし、与えられたデータが正しくないなどの理由でエラーが生じた場合に
   はサーバはエラーオブジェクトをスタックに積む。計算結果をクライアントが得
   る場合にはスタックマシンの命令 SM\_popCMO または SM\_popString をサーバ
   に送らなければならない。これらの命令を受け取ってはじめて、サーバからクラ
   イアントへメッセージが送られる。
   
   {\Huge 以下、書き直し}
   
   まとめると、クライアントがサーバへメッセージを送り、
   計算の結果を得るという手順は以下のようになる。
   
 \begin{enumerate}  \begin{enumerate}
 \item 前半の4バイト。タグと呼ばれ、メッセージの種類を表わす識別子である。  \item
 \item 後半の4バイト。メッセージにつけられた通し番号である。  まず、クライアントがサーバへオブジェクトを送る。サーバは送られてきたオブ
   ジェクトをスタックに積む。
   \item
   クライアントがサーバに命令を送ると、サーバは必要なだけスタックからデータ
   を取り出し、実行した結果をスタックに積む。
   %って書いてるけど、命令がSM\_popCMO とか SM\_shutdown の場合は?
   \item
   最後に SM\_popCMO もしくは SM\_popString をサーバへ送ると、
   サーバはスタックから計算結果の入っているデータを取り出し、
   クライアントへ送出する。
 \end{enumerate}  \end{enumerate}
   
 それぞれの4バイトは32ビット整数とみなされて処理される。  
 この場合に用いられる整数の表現方法については後述するが、基本的に  
 表現方法はいくつかの選択肢から選ぶことが可能であり、  
 また選択は通信路の確立時に一度だけなされることに注意しておこう。  
   
 {\Huge 以下、書き直してね。}  \section{OpenXM スタックマシン}\label{sec:oxsm}
   
 ボディの中のデータがどのように格納されているかは  OpenXM 規約ではサーバはスタックマシンであると定義している。以下、OpenXM
 各データ形式がそれぞれ独立に決められるようになっている。  スタックマシンと呼ぶ。この節ではOpenXM スタックマシンの構造について説明
 もし、 OpenXM 規約でメッセージのやりとりを行ないたいが、  しよう。
 まだ規約で定義されていないデータ形式を使いたい場合は、  
 タグをまだ使われてなさそうな値  
 (システム固有の表現のために推奨されている値がある)  
 に設定し、 ボディの部分にデータを埋め込めばよい。  
 なお、すべてのメッセージに ボディが必要というわけではなく、  
 ボディのないメッセージも OpenXM 規約には存在することに  
 注意しなければならない。  
   
 サーバに対する動作に対応したデータは SM 形式として定義されている。  まず、OpenXM 規約は通信時にやりとりされる共通のデータ形式については規定
 SM 形式以外のデータでは、サーバは受け取ったデータをスタックに積む  するが、OpenXM スタックマシンがスタックに積む、オブジェクトの構造までは
 以外の動作をしないことになっている。  規定しない。つまり、オブジェクトの構造は各数学システムごとに異なっている
 つまり、 SM 形式のデータがデータを受け取る以外の動作を  ということである。このことは通信路からデータを受け取った際に、各数学シス
 サーバに行なわせる唯一のデータ形式である。  テムが固有のデータ構造に変換してからスタックに積むことを意味する。この変
 このデータを受け取る以外の動作の中には、  換は1対1対応である必要はない。
 データになんらかの加工を施す動作も入っている。  
 このデータになんらかの加工を施す動作の中には  
 数学的な演算を行なう動作も含まれている。  
 以後、データになんらかの加工を施す動作のことを計算と呼ぶことにする。  
   
 \section{OpenXM の計算の進行方法}  次に OpenXM スタックマシンの命令コードについて説明する。OpenXM スタック
   マシンにおけるすべての命令は4バイトの長さを持つ。OpenXM 規約の他の規定と
   同様に、4バイトのデータは32ビット整数と見なされるので、この論文でもその
   表記にしたがう。OpenXM スタックマシンに対する命令はスタックに積まれるこ
   とはない。現在のところ、OpenXM 規約では以下の命令が定義されている。
   
 OpenXM における計算とはメッセージの交換のことである。既に計算モデルの節  \begin{verbatim}
 で説明したが(説明されているはずである)、OpenXM はサーバ・クライアントモ  #define SM_popSerializedLocalObject               258
 デルを採用していて、サーバはスタックマシンの構造を持つ。サーバが行うのは  #define SM_popCMO                                 262
 基本的に次の事柄に限られる。クライアントからメッセージを送られるとサーバ  #define SM_popString                              263
 は、まずメッセージの識別子を調べ、OX\_COMMAND でなければスタックに積む。  
 OX\_COMMAND であればメッセージのボディからスタックマシンのオペコードを取  
 りだし、あらかじめ規約で定められたアクションを起こす。  
   
 上の説明でわかるように、サーバはクライアントからの指示なしに、自らメッセー  #define SM_mathcap                                264
 ジを送ることはない(例外? ox\_asir の mathcap)。  #define SM_pops                                   265
   #define SM_setName                                266
   #define SM_evalName                               267
   #define SM_executeStringByLocalParser             268
   #define SM_executeFunction                        269
   #define SM_beginBlock                             270
   #define SM_endBlock                               271
   #define SM_shutdown                               272
   #define SM_setMathCap                             273
   #define SM_executeStringByLocalParserInBatchMode  274
   #define SM_getsp                                  275
   #define SM_dupErrors                              276
   
 {\Huge 以下、書き直してね、田村君}  #define SM_DUMMY_sendcmo                          280
   #define SM_sync_ball                              281
   
   #define SM_control_kill                          1024
   #define SM_control_to_debug_mode                 1025
   #define SM_control_exit_debug_mode               1026
   #define SM_control_ping                          1027
   #define SM_control_start_watch_thread            1028
   #define SM_control_stop_watch_thread             1029
   #define SM_control_reset_connection              1030
   \end{verbatim}
   
 % クライアントがサーバへなんらかの計算を行なわせる場合、  %以下、どういうときに結果をスタックに積むかエラーの場合どうするかの説明が
 % クライアントからサーバへ計算させたいデータをメッセージとして送り、  %必要であろう。
 % そしてその結果をサーバからメッセージで受け取ることによって計算は行なわれる。  
 % ただし、サーバは結果の送信すらも命令されなければ行なうことはなく、  
 % クライアントは結果を受け取らずにサーバに次々と  
 % 計算を行なわせることも可能である。  
   
 サーバがクライアントから受け取ったメッセージはすべてスタックに積まれる。  スタックマシンに対する命令の中には実行によって結果が返ってくるものがある。
 ただし、このままでは受け取ったメッセージに含まれるデータを  結果が返ってくる命令を実行した場合、サーバはその結果をスタックに積む。
 スタックに積み上げていくだけで、サーバは計算を行なおうとはしない。  たとえば、 SM\_executeStringByLocalParser は
 次いでサーバに行なわせたい動作に対応したデータを送ると、  スタックに積まれているオブジェクトを
 初めてサーバは計算などの、なんらかの動作を行なう。  サーバ側のローカル言語の文法に従った文字列とみなして計算を行なうが、
 このとき、必要があればサーバはスタックから必要なだけデータを取り出す。  行なった計算の結果はローカル言語で記述した文字列でスタックに積まれる。
 ここで、クライアントからの命令による動作中にたとえエラーが発生したとしても  なお、命令の実行中にエラーが起こり、結果が得られなかった場合には、
 サーバはエラーオブジェクトをスタックに積むだけで、  エラーオブジェクトがスタックに積まれる。
 明示されない限りエラーを返さないことに注意しなければならない。  
   
 結果が生じる動作をサーバが行なった場合、  
 サーバは動作の結果をスタックに積んでいる。  
 サーバに行なわせた動作の結果をクライアントが知りたい場合、  
 スタックからデータを取り出し送信を行なう命令に対応した SM 形式のデータを  
 サーバ側へ送ればよい。  
   
 クライアントがサーバへ計算を行なわせ、結果を得るという手順を追っていくと、  \section{CMO のデータ構造}\label{sec:cmo}
 次のようになる。  
   
 \begin{enumerate}  OpenXM 規約では、数学的オブジェクトを表現する方法として CMO 形式(Common
 \item   まず、クライアントがサーバへ計算させたいデータを送る。  Mathematical Object format)を定義している。この CMO 形式にしたがったデー
         サーバは送られてきたデータをスタックに積む。  タは、識別子が OX\_DATA であるようなメッセージのボディになることを想定し
 \item   クライアントがサーバに「計算を行なう動作に対応したデータ」を  ている。
         送ると、サーバは必要なだけスタックからデータを取り出し、  
         実行した計算の結果をスタックに積む。  
 \item   最後に「データを取り出し送信を行なう命令に対応したデータ」を  
         サーバへ送ると、サーバはスタックから計算結果の入っている  
         データを取り出し、クライアントへ送出する。  
 \end{enumerate}  
   
   CMO 形式におけるデータ構造は次のような構造をもつ。
   
 \section{CMO のデータ構造}  \begin{tabular}{|c|c|} \hline
   ヘッダ        & \hspace{10mm} ボディ \hspace{10mm} \\ \hline
   \end{tabular}
   
 OpenXM 間でやりとりされるメッセージを実際に作成する場合、  ヘッダは4バイトである。ボディの長さはそれぞれのデータによって異なるが、
 CMO 形式で定義されている多倍長整数を理解しておくと、  0でもよい。
 CMO 形式の他のデータ構造だけでなく、 OX 形式、 SM 形式のデータを  
 理解する助けになると思えるので、 CMO 形式の多倍長整数の  
 データ構造について説明する。  
   
 CMO 形式で定義されているデータは多倍長整数以外にも  メッセージと同様にヘッダは4バイト単位に管理される。すなわち、CMO ではヘッ
 文字列やリスト構造などがある。どのようなデータであるかは  ダは一つだけの情報を含む。この4バイトのヘッダのことをタグともいう。さて、
 データの先頭にあるタグを見れば判別できるようになっている。  CMO では、タグによってボディの論理的構造が決定する。すなわち、タグはそれ
 これはメッセージのデータの判別の仕方とおなじである。  ぞれのデータ構造と1対1に対応する識別子である。それぞれの論理的構造は
 なお、タグは各データ毎に 32 bit の整数で表されており、  \cite{OpenXM-1999} に詳述されている。現在の OpenXM 規約では以下の CMO が
 多倍長整数は 20 となっている。  定義されている。
 ここで 32 bit の整数の表現方法について説明する必要がある。  
 OpenXM ではバイト列で 32 bit の整数 20 を  
 {\tt 00 00 00 14} と表す方法と {\tt 14 00 00 00} と表す方法がある。  
 この表現方法の違いはクライアントとサーバの最初の接続時に  
 双方の合意で決定することになっている。  
 なお、合意がない場合には  
 前者の表現方法(以後、この表現方法を network byte order と呼ぶ)を  
 使うことになっている。  
 また、負の数を表現する必要があるときには、  
 2 の補数表現を使うことになっている。  
   
 表現したい多倍長整数の絶対値を 2 進数で表した場合の桁数を $n$ と  \begin{verbatim}
 したとき、次にくるデータは $[(n+31)/32]$ を 32 bit の整数となる。  #define CMO_ERROR2  0x7f000002
 これは多倍長整数の絶対値を $2^{32}$ 進数で表した場合の桁数ととってもよい。  #define CMO_NULL    1
 ただし、表現したい数が負の場合は $[(n+31)/32]$ を 32 bit の整数で表した値を  #define CMO_INT32   2
  2 の補数表現で負にして、正の場合と区別する。  #define CMO_DATUM   3
   #define CMO_STRING  4
   #define CMO_MATHCAP 5
   
 表現したい多倍長整数の絶対値が $2^{32}$ 進数で $(b_0 b_1 ... b_k)_{2^{32}}$  #define CMO_START_SIGNATURE      0x7fabcd03
 と表せるとき、次にくるデータは $b_0$, $b_1$, $\cdots$, $b_k$ を  #define CMO_ARRAY                16
 それぞれ 32 bit の整数で表現した値となる。  #define CMO_LIST                 17
 %以下は書き直しの必要があるかも...  #define CMO_ATOM                 18
 なお、 GNU MP LIBRARY を用いると、  #define CMO_MONOMIAL32           19
 C 言語から多倍長整数や任意精度浮動小数を扱うことができる。  #define CMO_ZZ                   20
 $b_0$, $b_1$, $\cdots$, $b_k$ をそれぞれ 32 bit 整数で表現した値は  #define CMO_QQ                   21
 この GNU MP LIBRARY で用いられている多倍長整数で使われている形式を  #define CMO_ZERO                 22
 参考にして合わせてある。  #define CMO_DMS_GENERIC          24
   #define CMO_DMS_OF_N_VARIABLES   25
   #define CMO_RING_BY_NAME         26
   #define CMO_RECURSIVE_POLYNOMIAL 27
   #define CMO_LIST_R               28
   
 ここで具体例をだそう。  #define CMO_INT32COEFF                 30
 $4294967298 = 1 \times 2^{32} + 2$ を network byte order の多倍長整数で  #define CMO_DISTRIBUTED_POLYNOMIAL     31
 表現すると、  #define CMO_POLYNOMIAL_IN_ONE_VARIABLE 33
 \begin{center}  #define CMO_RATIONAL                   34
         {\tt 00 00 00 14 00 00 00 02 00 00 00 02 00 00 00 01}  
 \end{center}  
 となる。また、同じ表現方法で $-1$ を表現すると、  
 \begin{center}  
         {\tt 00 00 00 14 ff ff ff ff 00 00 00 01}  
 \end{center}  
 となる。  
   
   #define CMO_64BIT_MACHINE_DOUBLE           40
   #define CMO_ARRAY_OF_64BIT_MACHINE_DOUBLE  41
   #define CMO_128BIT_MACHINE_DOUBLE          42
   #define CMO_ARRAY_OF_128BIT_MACHINE_DOUBLE 43
   
 \section{MathCap について}  #define CMO_BIGFLOAT          50
   #define CMO_IEEE_DOUBLE_FLOAT 51
   
 サーバおよびクライアント双方ともに OpenXM で規定されている  #define CMO_INDETERMINATE 60
 メッセージの中のデータ形式をすべて受け取れるわけではない。  #define CMO_TREE          61
 しかも、 OpenXM 規約で規定されているデータ形式だけが  #define CMO_LAMBDA        62
 受渡しに使われるというわけではない。  \end{verbatim}
 そこで、 OpenXM では相手側が受け取ることができるデータ形式を  
 収得する方法を用意している。  
   
 CMO 形式で定義されている MathCap データは  この中で CMO\_ERROR2, CMO\_NULL, CMO\_INT32, CMO\_DATUM, CMO\_STRING,
 %理解可能なメッセージの  CMO\_MATHCAP, CMO\_LIST で識別されるオブジェクトは最も基本的なオブジェ
 受け取ることができるデータ形式を表すデータであり、  クトであって、すべての OpenXM 対応システムに実装されていなければならない。
 要求されればサーバはサーバ自身の MathCap データをスタックに積む。  
 また、クライアントから MathCap データをサーバへ送ることもでき、  
 MathCap データをサーバとクライアントの間で交換することによって、  
 お互いに相手側が受け取ることができないデータ形式で  
 メッセージを送ってしまうのを防ぐことができる。  
 なお、 MathCap データの中では CMO 形式で定義されている  
 32 bit 整数、文字列、リスト構造が使われており、  
 MathCap データに含まれている内容を理解できるためには  
 必然的にこれらも理解できる必要がある。  
   
 OpenXM 対応版の asir サーバである ox\_asir が返す MathCap を以下に示す。  これらについての解説を行う前に記法について、少し説明しておく。
   この論文では、大文字で CMO\_INT32 と書いた場合には、上記で定義した識別子
   を表わす。また CMO\_INT32 で識別されるオブジェクトのクラス(あるいはデー
   タ構造)を cmo\_int32 と小文字で表わすことにする。
   
 %なお、 $a_1$, $a_2$, $\cdots$, $a_n$ を要素に  さて cmo を表現するための一つの記法を導入する。この記法は CMO expression
 %持つリスト構造を {\tt [$a_1$, $a_2$, $\cdots$, $a_n$]} 、  と呼ばれている。その正確な形式的定義は \cite{OpenXM-1999} を参照すること。
 %文字列 ``string'' を {\tt "string"} 、 32 bit 整数を  
 %それに対応する 10 進数の整数で示す。  
   
 %↓手で作ったので間違えている可能性あり。  まず CMO expssion は Lisp 風表現の一種で、 cmo を括弧で囲んだリストとし
 %%古いバージョン。差し替えの必要あり。  て表現する。それぞれの要素はカンマで区切る。
 \begin{verbatim}  例えば、
 [ [199901160,"ox_asir"],  \begin{quote}
   [276,275,258,262,263,266,267,268,274  (17, {\sl int32}, (CMO\_NULL), (2, {\sl int32} $n$))
     ,269,272,265,264,273,300,270,271],  \end{quote}
   [ [514,[1,2,3,4,5,2130706433,2130706434  は CMO expression である。ここで、小文字の斜体で表された``{\sl int32}''
           ,17,19,20,21,22,24,25,26,31,27,33,60]],  は 4バイトの任意のデータを表す記号であり、``{\sl int32} $n$'' は同じく 4
     [2144202544,[0,1]]  バイトのデータであるが以下の説明で $n$ と表すことを示す。また数字 17, 2
   ]  などは 4バイトのデータで整数値としてみたときの値を意味する。CMO\_NULL は
 ]  識別子(すなわち数字 1 と等価)である。この記法から上記のデータは 20 バイ
 \end{verbatim}  トの大きさのデータであることが分かる。
   なお、このデータは CMO ではないことに注意してほしい。
   %なお、 CMO expression で表現できていても、
   %それが CMO であることとは無関係である。
   
 この MathCap データのリスト構造は大きく分けて 3 つの部分に分かれる。  さて、この記法のもとで cmo\_int32 を次のデータ構造を持つと定義する。
 最初の {\tt [199901160,"ox\_asir"]} の部分にはサーバの情報が入っている。  \begin{quote}
 %この最初の要素がまたリスト構造となっており、  cmo\_int32 := (CMO\_INT32,  {\sl int32} $a$)
 最初の要素はバージョンナンバーを、次の要素はサーバの名前を表している。  \end{quote}
   
 次の {\tt [276,275,$\cdots$,271]} の部分は  %{\Huge 同様に cmo\_string, cmo\_list などを定義}
 サーバに対する動作に対応した理解可能なデータの種類を表している。  
 サーバの動作に対するデータはすべて 32 bit の整数で表しており、  
 このリストは理解可能なデータに対応する 32 bit 整数のリストとなっている。  
   
 最後の {\tt [ [514,[1,2,3,$\cdots$,60]],[2144202544,[0,1]] ]} の部分は  これは CMO の 32 ビット整数 $a$ を表す。
 理解可能なデータの形式を表している。  他のオブジェクトも定義するために、
 この部分はさらに {\tt [514,[1,2,3,$\cdots$,60]]} と  以後 ``{\sl string} $s$'' を文字列 $s$ 、
 {\tt [2144202544,[0,1]]} にの部分に分けることができ、  ``{\sl cmo} $ob$'' を CMO の $ob$ とする。
 それぞれが一つのデータ形式についての情報となっている。  これを用いて、 cmo\_string, cmo\_list を定義する。
 どのデータ形式についての情報かは最初の要素にある整数値をみれば  
 分かるようになっている。  
 この整数値は CMO 形式では 514 となっている。  
 最初のデータ形式を区別する整数値以後の要素は  
 各データ形式によってどのように使われるか定まっている。  
 CMO 形式では理解可能なデータの tag がリストの中に収まっている。  
 前節で CMO 形式では多倍長整数を表す tag が 20 であることを述べたが、  
 このリストに 20 が含まれているので、  
 ox\_asir は CMO 形式の多倍長整数を受け取れることがわかる。  
   
 %%このリストの要素はまたリストとなっており、  \begin{quote}
 %この最後の部分もまたリストとなっており、  cmo\_string := (CMO\_STRING, {\sl int32} $len$, {\sl string} $str$) \\
 %あるデータ形式で理解可能なものを表現したリストを要素としている。  cmo\_list := (CMO\_LIST, {\sl int32} $n$, {\sl cmo} $ob_1$,
 %{\tt [514,[1, 2, $\cdots$]]} の最初の 514 はこのリストが CMO 形式                  {\sl cmo} $ob_2$, $\cdots$,{\sl cmo} $ob_n$)
 %での理解可能なデータを表していることを示しており、  \end{quote}
 %その後のリストでは CMO 層で定義されているデータのうち、  
 %理解可能なデータの tag が並んでいる。  
   
 なお、データが受け取れることと、  これはそれぞれ長さ $len$ の文字列 $str$ と、
 データの論理構造が理解できることとはまったく別物であるので  $ob_1$, $ob_2$, $\cdots$, $ob_n$ からなる長さ $n$ のリストを表す。
 注意する必要がある。  
   
   
   % ここで 32 bit の整数の表現方法について触れておく。
   % OpenXM 規約ではバイトストリームで 32 bit の整数 20 を
   % {\tt 00 00 00 14} と表す方法と {\tt 14 00 00 00} と表す方法がある。
   % この表現方法の違いはクライアントとサーバの最初の接続時に
   % 双方の合意で決定することになっている。
   % なお、合意がない場合には前者の表現方法
   % (以後、この表現方法をネットワークバイトオーダーと呼ぶ)を
   % 使うことになっている。
   % また、負の数を表現する必要があるときには、
   % 2 の補数表現を使うことになっている。
   
   % 先ほどの、 (CMO\_INT32, 123456789) をネットワークバイトオーダーで
   % バイト列に直すと、
   % \begin{center}
   %       {\tt 00 00 00 02 07 5b cd 15}
   % \end{center}
   % となり、
   % (CMO\_STRING, 6, ``OpenXM'') は
   % \begin{center}
   %       {\tt 00 00 00 04 00 00 00 06 4f 70 65 6e 58 4d}
   % \end{center}
   % となる。
   
   % CMO 形式の多倍長整数は、 Gnu MPライブラリ等を参考にしており、
   % 符号付き絶対値表現を用いている。
   % タグ以降の形式は次のようになる。
   
   % \begin{tabular}{|c|c|c|c|c|} \hline
   % $f$ & $b_0$ & $b_1$ & $\cdots$ & $b_{n-1}$ \\ \hline
   % \end{tabular}
   
   % ここで、 1 つの枠は 4 バイトを表し、
   % $f$ は符号付き 32 ビット整数を、
   % $b_0$, $b_1$, $\cdots$, $b_{n-1}$ は符号なし 32 ビット整数を表している。
   % さらに、 $|f| = n$ が成り立たなければならない。
   % このオブジェクトは
   % \[ \mbox{sgn}(f) \times \{ b_0 (2^{32})^0 + b_1 (2^{32})^1 + \cdots
   %       + b_{n-1} (2^{32})^{n-1} \}     \]
   % という整数であると定義されている。
   % ただし、
   % \[ \mbox{sgn}(f) = \left\{ \begin{array}{ll}
   %         1       & f>0 \\
   %         0       & f=0 \\
   %         -1      & f<0 \\ \end{array} \right.  \]
   % である。
   
   % ここで具体例をだそう。
   % $4294967298 = 1 \times 2^{32} + 2$ を CMO 形式の
   % ネットワークバイトオーダー、多倍長整数で表現すると、
   % \begin{center}
   %       {\tt 00 00 00 14 00 00 00 02 00 00 00 02 00 00 00 01}
   % \end{center}
   % となる。また、同じ表現方法で $-1$ を表現すると、
   % \begin{center}
   %       {\tt 00 00 00 14 ff ff ff ff 00 00 00 01}
   % \end{center}
   % となる。
   
   
   \section{mathcap について}
   
   OpenXM 規約では、通信時に用いられるメッセージの種類を各ソフトウェアが制
   限する方法を用意している。これは各ソフトウェアの実装によってはすべてのメッ
   セージをサポートするのが困難な場合があるからである。また、各ソフトウェア
   でメッセージの種類を拡張したい場合にも有効である。この制限(あるいは拡張)
   は mathcap と呼ばれるデータ構造によって行われる。この節では mathcap のデー
   タ構造と、具体的なメッセージの制限の手続きについて説明する。
   
   では、手続きについて説明しよう。
   
   第一にサーバの機能を制限するには次のようにする。クライアントが mathcap
   オブジェクトをサーバへ送ると、サーバは受け取ったmathcap をスタックに積む。
   次にクライアントが命令 SM\_setMathCap を送ると、サーバはスタックの最上位
   に積まれている mathcap オブジェクトを取り出し、mathcap で設定されていな
   いメッセージをクライアントへ送らないように制限を行う。
   
   第二にクライアントを制限するには次のようにする。クライアントがサーバに命
   令 SM\_mathcap を送ると、サーバは mathcap オブジェクトをスタックに積む。
   さらに命令 SM\_popCMO を送ると、サーバはスタックの最上位のオブジェクト
   (すなわち mathcap オブジェクト)をボディとするメッセージをクライアントに
   送付する。クライアントはそのオブジェクトを解析して、制限をかける。
   
   次に mathcap のデータ構造について説明する。
   mathcap は CMO の一種であるので、すでに説明したように \\
   \begin{tabular}{|c|c|} \hline
   ヘッダ        & \hspace{10mm} ボディ \hspace{10mm} \\ \hline
   \end{tabular} \\
   の構造を持ちヘッダの値は 5 である(\ref{sec:cmo} 節を参照のこと)。
   ボディは cmo\_list オブジェクトでなければならない。
   
   %\begin{quote}
   %       cmo\_mathcap := (CMO\_MATHCAP,{\sl cmo} obj)
   %\end{quote}
   
   さて、mathcap オブジェクトのボディの cmo\_list オブジェクトは以下の条件を
   満たすことを要求される。
   
   まず、その cmo\_list オブジェクトは少なくともリスト長が 3 以上でなければ
   ならない。
   
   \begin{quote}
           (CMO\_LIST, {\sl int32} $3$,
                   {\sl cmo} $A$, {\sl cmo} $B$, {\sl cmo} $C$)
   \end{quote}
   %\[     \begin{tabular}{|c|c|c|} \hline
   %       $A$ & $B$ & $C$ \\ \hline
   %       \end{tabular}   \]
   
   第一要素 $A$ はまた cmo\_list であり、リスト長は 4 以上、
   $a_1$ は 32 ビット整数でバージョンナンバーを、
   $a_2$, $a_3$, $a_4$ は文字列で
   それぞれシステムの名前、、 CPU の種類を表すことになっている。
   \begin{quote}
           (CMO\_LIST, {\sl int32} $4$,
                   {\sl cmo\_int32} $a_1$, {\sl cmo\_string} $a_2$,
                   {\sl cmo\_string} $a_3$, {\sl cmo\_string} $a_4$)
   \end{quote}
   
   2 番目の要素 $B$ の部分は次のようなリスト構造をしている。
   この $b_1$, $b_2$, $\cdots$, $b_n$ はすべて 32 ビットの整数である。
   \ref{sec:oxsm} 節でみたように、
   スタックマシンへの命令はすべて 32 ビットの整数で表しており、
   各 $b_i$ は利用可能な命令に対応する 32 ビットの整数となっている。
   \begin{quote}
           (CMO\_LIST, {\sl int32} $n$,
                   {\sl cmo\_int32} $b_1$, {\sl cmo\_int32} $b_2$,
                   $\cdots$, {\sl cmo\_int32} $b_n$)
   \end{quote}
   
   3 番目の要素 $C$ は以下のようなリスト構造をしている。
   \begin{quote}
     (CMO\_LIST, {\sl int32} $m$, \\
     \hspace{10mm} (CMO\_LIST, {\sl int32} $l_1$, {\sl cmo\_int32} $c_{11}$,
                   {\sl cmo} $c_{12}$, $\cdots$, {\sl cmo} $c_{1l_1}$) \\
     \hspace{10mm} (CMO\_LIST, {\sl int32} $l_2$, {\sl cmo\_int32} $c_{21}$,
                   {\sl cmo} $c_{22}$, $\cdots$, {\sl cmo} $c_{1l_2}$) \\
     \hspace{10mm} $\vdots$ \\
     \hspace{10mm} (CMO\_LIST, {\sl int32} $l_m$, {\sl cmo\_int32} $c_{m1}$,
                   {\sl cmo} $c_{m2}$, $\cdots$, {\sl cmo} $c_{1l_m}$))
   \end{quote}
   %%$n$ は OX\_COMMAND 以外の受け取れるメッセージのタグの種類の数に等しい。
   %%要素数は 1 でももちろん構わない。
   どの $c_{i1}$ にも 32 ビットの整数が入っており、
   OX\_COMMAND 以外の、受け取れるメッセージのタグが入っている。
   $c_{i2}$ 以降については最初の $c_{i1}$ の値によってそれぞれ異なる。
   ここでは、最初の要素が OX\_DATA の場合についてのみ説明する。
   この $c_{i1}$ が OX\_DATA の場合、
   $c_{i1}$, $c_{i2}$, $\cdots$, $c_{il_i}$ を要素とする cmo\_list は
   CMO 形式についての情報を表しており、 $l_i=2$ と決められている。
   $c_{i1}$ にはもちろんのこと OX\_DATA が入っており、
   $c_{i2}$ は以下の図のような cmo\_list になっている。
   各要素は 32 ビットの整数であり、
   受け取ることが可能な CMO 形式のタグが入る。
   \begin{quote}
           (CMO\_LIST, {\sl int32} $k$,
                   {\sl cmo\_int32} $c_{i21}$, {\sl cmo\_int32} $c_{i22}$,
                           $\cdots$, {\sl cmo\_int32} $c_{i2k}$)
   \end{quote}
   %\[  \overbrace{
   %       \begin{tabular}{|c|c|c|c|c|} \hline
   %       $c_{i21}$ & $c_{i22}$ & $\cdots$ & $c_{i2l}$    \\ \hline
   %       \end{tabular}
   %   }^{c_{i2}}  \]
   
   %なお、 mathcap データの中では CMO 形式で定義されている
   %32 bit 整数、文字列、リスト構造が使われており、
   %mathcap データに含まれている内容を理解できるためには
   %必然的にこれらも理解できる必要がある
   %(ってことは CMO 形式のところでこれらを
   %説明しなければならないってことです)。
   
   具体的な mathcap の例をあげよう。
   名前が ``ox\_test''、バージョンナンバーが 199911250 のサーバで、
   PC-UNIX 上で動いていれば、
   $A$ の部分は
   \begin{quote}
   (CMO\_LIST, 4, {\sl cmo\_int32} $199911250$, {\sl cmo\_string} "ox\_test",
           {\sl cmo\_string} "Version=199911250",
           {\sl cmo\_string} "HOSTTYPE=i386")
   \end{quote}
   となる。
   さらに、このサーバのスタックマシンが
   命令コード 2, 3, 5, 7, 11 番を利用可能
   (実際にはこのような命令コードは存在しない)であれば、 $B$ の部分は
   \begin{quote}
           (CMO\_LIST, {\sl int32} $5$,
                   {\sl cmo\_int32} $2$, {\sl cmo\_int32} $3$,
                   {\sl cmo\_int32} $5$, {\sl cmo\_int32} $7$,
                   {\sl cmo\_int32} $11$)
   \end{quote}
   となり、
   CMO 形式の 32 ビット整数、文字列、 mathcap 、リスト構造のみが
   受け取れるときには、 $C$ の部分は
   \begin{quote}
     (CMO\_LIST, {\sl int32} $1$, \\
     \ \   (CMO\_LIST, {\sl int32} $4$,
                   {\sl cmo\_int32} $2$, {\sl cmo\_int32} $4$,
                   {\sl cmo\_int32} $5$, {\sl cmo\_int32} $17$))
   \end{quote}
   となる。
   %CMO\_ZZ がないので、このサーバは多倍長整数が送られてこないことを
   %期待している。
   
   なお、データが受け取れることと、データの論理構造が理解できることとはまっ
   たく別物であるので注意する必要がある。
   
   {\Huge ってなんででしょうか? データの論理構造を知らないと受け取れないと
   思うんですが$\ldots$}
   
   
 \section{セキュリティ対策}  \section{セキュリティ対策}
   
 OpenXM では幾らかのセキュリティ対策を考えている。  OpenXM 規約は TCP/IP を用いて通信を行うことを考慮している。ネットワーク
 OpenXM に対応したソフトウェアをクラックしても  によって接続される現代の多くのソフトウェアと同様、OpenXM 規約もまた通信
 大した利点はないと思えるが、それは設計上の話であって、  時のセキュリティについて注意している。以下、このことについて説明しよう。
 予期せぬ手段で攻撃を受けた場合にどのような事態を  
 招くかは想像し難い。  
   
 そこで、 OpenXM では侵入者に攻撃の機会を  {\large\bf 意味不明なことを書いているが、}
 できるだけ与えないようにしている。  
 具体的には、接続が必要になった時のみ接続を待つようにし、  
 常に接続に関与するといったことは避けている。  
   
 しかし、これだけでは侵入者が接続を行なう一瞬のすきを  侵入者に攻撃の機会をできるだけ与えないようするた
 狙ってくる可能性もある。  めに、接続が必要になった時のみ接続を待つようにし、
 そこで接続を行なう時に、  常に接続に関与するといったことは避けている(やっぱり意味不明である)。
 接続を待つ port 番号をランダムに決めている。  
 こうすることで、特定の port 番号を狙って接続を行なう  
 瞬間を待つ手口を幾らか防ぐことができる。  
   
   また、侵入者が接続を行なう一瞬のすきを狙ってくる可能性もあるので、
   接続を行なう時に接続を待つポート番号をランダムに決めている(誰が決めてい
   るのかはやっぱり不明であるが)。
 さらにもう一段安全性を高めるために、  さらにもう一段安全性を高めるために、
 接続時に 1 回だけ使用可能なパスワードを作成し、  接続時に 1 回だけ使用可能なパスワードを作成し、
 そのパスワードを使って認証を行なう。  そのパスワードを使って認証を行なう(誰がパスワードを決めて誰が認証を行っ
   ているのかが不明だけど)。
 このパスワードは一旦使用されれば無効にするので、  このパスワードは一旦使用されれば無効にするので、
 もし仮になんらかの手段でパスワードが洩れたとしても安全である。  もし仮になんらかの手段でパスワードが洩れたとしても安全だと考えている。
   
 なお、上記の port 番号とパスワードは安全な手段で送られて  
 いると仮定している。  
 また、同一のコンピュータ上に悪意のあるユーザはいないと仮定している  
 ことに注意しなければならない。  
 なぜなら、現在の実装ではサーバ、およびクライアントの動作している  
 コンピュータ上ではこの port 番号とパスワードがわかってしまうためである。  
   
 なお、接続が確立した後のメッセージの送受信に関しては、  なお、接続が確立した後のメッセージの送受信に関しては、
 特に暗号化などの処置が行なわれているわけではない。  特に暗号化などの処置を行っているわけではない。
 もし必要があれば、通信路の暗号化を行なう機能がある  もし必要があれば、通信路の暗号化を行なう機能がある
 ソフトウェアを使うことを考えている。  ソフトウェア ssh を使うことを考えている。
   
   
 \section{他のプロジェクト}  \section{他のプロジェクト}
   
 他のプロジェクトについても触れておこう。  他のプロジェクトについても触れておこう。
   
 OpenMath プロジェクトは数学的なオブジェクトを  \begin{itemize}
 コンピュータ上で表現する方法を決定している。  \item OpenMath\\
 各ソフトウェア間でオブジェクトを交換する際の  OpenMath プロジェクトは数学的なオブジェクトをコンピュータ上で表現する方
 オブジェクトの変換手順についても述べられている。  法を規定している。各ソフトウェア間でオブジェクトを交換する際のオブジェク
 表現方法は一つだけでなく、 XML 表現や binary 表現などが  トの変換手順につても定められている。表現方法は幾つかの段階で定められて
 用意されている。  いて、XML 表現やバイナリ表現などが用意されている。詳細は
 詳細は  
   
 http://www.openmath.org/omsoc/index.html A.M.Cohen  http://www.openmath.org/omsoc/   A.M.Cohen
   
   \item NetSolve
   
 以下は書いてる途中。  
   
 NetSolve  
   
 http://www.cs.utk.edu/netsolve/  http://www.cs.utk.edu/netsolve/
   
   \item MP
   
 MP  
   
 http://symbolicNet.mcs.kent.edu/SN/areas/protocols/mp.html  http://symbolicNet.mcs.kent.edu/SN/areas/protocols/mp.html
   
   \item MCP
   
 MCP  
   
 http://horse.mcs.kent.edu/~pwang/  http://horse.mcs.kent.edu/~pwang/
   \end{itemize}
   
   
 \section{現在提供されているソフトウェア}  \section{現在提供されているソフトウェア}
   
 現在 OpenXM 規格に対応しているクライアントには  現在 OpenXM 規約に対応しているクライアントにはasir, sm1, Mathematica が
 asir, sm1, Mathematica がある。  ある。これらのクライアントから OpenXM 規約に対応したサーバを呼び出すこと
 これらのクライアントから  ができる。現在 OpenXM 規約に対応しているサーバソフトウェアには、asir,
 OpenXM 規格に対応したサーバを呼び出すことができる。  sm1, gnuplot, Mathematica などがあり、それぞれ ox\_asir, ox\_sm1,
 現在 OpenXM 規約に対応しているサーバソフトウェアには、  ox\_sm1\_gnuplot, ox\_math という名前で提供されている。また、 OpenMath
  asir, sm1, gnuplot, Mathematica などがあり、  規約の XML 表現で表現されたオブジェクトと CMO 形式のオブジェクトを変換す
 それぞれ ox\_asir, ox\_sm1, ox\_math という名前で提供されている。  るソフトウェアが JAVA によって実装されており、OMproxy という名前で提供さ
 また、 OpenMath 規格の XML 表現で表現されたデータと CMO 形式の  れている。
 データを変換するソフトウェアが JAVA によって実装されており、  
 OMproxy という名前で提供されている。  
   
   \begin{thebibliography}{99}
   \bibitem{Ohara-Takayama-Noro-1999}
   小原功任, 高山信毅, 野呂正行:
   {Open asir 入門}, 1999, 数式処理, Vol 7, No 2, 2--17. (ISBN4-87243-086-7, SEG 出版, Tokyo).
   \bibitem{OpenXM-1999}
   野呂正行, 高山信毅:
   {Open XM の設計と実装 --- Open message eXchange protocol for Mathematics},
   1999/11/22
   \end{thebibliography}
   
 \end{document}  \end{document}

Legend:
Removed from v.1.35  
changed lines
  Added in v.1.79

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>