version 1.39, 1999/12/21 20:02:51 |
version 1.90, 1999/12/25 14:59:50 |
|
|
\documentclass{jarticle} |
\documentclass{jarticle} |
|
|
\title{タイトル未定} |
%% $OpenXM: OpenXM/doc/genkou19991125.tex,v 1.89 1999/12/25 13:58:52 tam Exp $ |
\author{ |
|
前川 将秀\thanks{神戸大学理学部数学科}, |
\usepackage{jssac} |
野呂 正行\thanks{富士通研究所}, |
\title{ |
小原 功任\thanks{金沢大学理学部計算科学科}, \\ |
1. 意味もない修飾過剰な語句は排除しましょう. \\ |
奥谷 幸夫 |
2. せっかく fill しているのをいじらないでくれ. \\ |
%\thanks{神戸大学大学院自然科学研究科博士課程前期課程数学専攻}, |
3. 田村が遊んでばかりでおればかり仕事をしているのはどう考えても不公平だ. |
\thanks{神戸大学大学院自然科学研究科数学専攻}, |
なんで仕事をしないのか, いい加減仕事をしろ, 田村. \\ |
高山 信毅\thanks{神戸大学理学部数学教室}, |
3.5 そういうご飯とかつまらない話じゃなくて, commit の情報をみれば田村が |
田村 恭士 |
如何に仕事をしていないのかよくわかるよ. \\ |
%\thanks{神戸大学大学院自然科学研究科博士課程後期課程情報メディア科学専攻計算システム講座} |
|
\thanks{神戸大学大学院自然科学研究科情報メディア科学専攻} |
|
} |
} |
\date{1999年11月25日} |
|
%\pagestyle{empty} |
|
|
|
|
\author{奥 谷 行 央\affil{神戸大学大学院自然科学研究科} |
|
\mail{okutani@math.sci.kobe-u.ac.jp} |
|
\and 小 原 功 任\affil{金沢大学理学部} |
|
\mail{ohara@kappa.s.kanazawa-u.ac.jp} |
|
\and 高 山 信 毅\affil{神戸大学理学部} |
|
\mail{takayama@math.sci.kobe-u.ac.jp} |
|
\and 田 村 恭 士\affil{神戸大学大学院自然科学研究科} |
|
\mail{tamura@math.sci.kobe-u.ac.jp} |
|
\and 野 呂 正 行\affil{富士通研究所} |
|
\mail{noro@para.flab.fujitsu.co.jp} |
|
\and 前 川 将 秀\affil{神戸大学理学部} |
|
\mail{maekawa@math.sci.kobe-u.ac.jp} |
|
} |
|
\art{} |
|
|
\begin{document} |
\begin{document} |
\maketitle |
\maketitle |
|
|
|
|
\section{OpenXMとは} |
\section{OpenXMとは} |
|
|
OpenXM は数学プロセス間でメッセージを交換するための規約である。数学プロ |
OpenXM は数学プロセス間でメッセージを交換するための規約である. 数学プロ |
セス間でメッセージをやりとりさせることにより、ある数学プロセスから他の数 |
セス間でメッセージをやりとりすることにより, ある数学プロセスから他の数学 |
学プロセスを呼び出して計算を行なったり、他のマシンで計算を行なわせたりす |
プロセスを呼び出して計算を行なったり, 他のマシンで計算を行なわせたりする |
ることが目的である。なお、 OpenXM とは Open message eXchange protocol |
ことが目的である. なお, OpenXM とは Open message eXchange protocol for |
for Mathematics の略である。 |
Mathematics の略である. OpenXM の開発の発端は野呂と高山により, asir と |
OpenXM の開発の発端は野呂正行と高山信毅により、 asir と kan/sm1 を |
kan/sm1 を相互に呼び出す機能を実装したことである. |
相互に呼び出す機能を実装したことである。 |
|
%\footnote{この段落必要?} |
|
|
|
発端となった asir と kan/sm1 での実装時には、 |
初期の実装では, 相手側のローカル言語の文法に従った文字列を送っていた. |
お互いに相手側のコマンド文字列を送っていた。 |
この方法では相手側のソフトが asir なのか kan/sm1 なのかを判別するなどし |
この方法は現在の OpenXM 規約でも形を変えて可能ではあるが、 |
て, 相手側のローカル言語の文法に合わせた文字列を作成しなければならない. |
使いやすい反面、効率的であるとはいい難い。 |
このローカル言語の文法に従った文字列を送る方法は, 効率的であるとはいい難 |
さらに、この方法では相手側のソフトが asir なのか kan/sm1 なのかを |
いが, 使いやすいとも言える. |
判別して、相手側に合わせてコマンド文字列を作成する必要がある。 |
|
|
|
これ以外の方法として、 |
現在の OpenXM 規約では共通表現形式によるメッセージを用いている. 上記の |
OpenXM 規約では共通表現形式によるメッセージも用意している。 |
文字列を送る方法の利点を生かすため, OpenXM 規約では共通表現形式の中の文 |
OpenXM 規約独自のデータ形式である CMO 形式(Common Mathematical Object format) |
字列として, ローカル言語の文法に従った文字列を用いたメッセージの交換も可 |
以外にも、 MP や OpenMath の XML, binary 表現形式といった他の形式をも |
能となっている. |
扱えるようにしてある。 |
|
なお、現在の OpenXM 規約では、 |
|
前述のコマンド文字列も CMO 形式などの何らかのデータ形式の中の |
|
文字列として表現して送る必要がある。 |
|
|
|
\section{OpenXM の計算モデル} |
OpenXM 規約では通信の方法に幾らかの自由度があるが, 現在のところは TCP/IP |
|
を用いた通信しか実装されていない. \footnote{asir には MPI を用いた実装 |
|
もある.} そこで, この論文では具体的な実装は TCP/IP を用いていると仮定す |
|
る. |
|
|
{\Huge この節では計算モデルの話をしなければいけません} |
|
|
|
OpenXM 規約での計算とはメッセージを交換することである。 |
|
そして、そのメッセージの交換はサーバとクライアントの間で行なわれる。 |
|
クライアントからサーバへメッセージを送り、 |
|
サーバからクライアントがメッセージを受け取ることによって |
|
計算の結果が得られる。 |
|
|
|
サーバはスタックマシンであると仮定されており、 |
|
サーバがクライアントから受け取ったメッセージはすべてスタックに積まれる。 |
|
ただし、OpenXM のメッセージの中にはサーバに行なわせたい動作に |
|
対応するデータがあり、 |
|
このメッセージを受け取ったサーバはそれに対応する動作を |
|
行なうことが期待されている。 |
|
しかし、サーバは命令されない限り何も動作を行なおうとはしない。 |
|
このため、クライアントはサーバの状態を気にせずにメッセージを送り、 |
|
一旦メッセージを送付し終えた後、 |
|
サーバへ送ったメッセージの結果を |
|
サーバから待つことなしに次の動作に移ることができる。 |
|
|
|
なお、サーバに対する動作に対応したデータは SM 形式として定義されている。 |
|
SM 形式以外のデータでは、サーバは受け取ったデータをスタックに積む |
|
以外の動作をしないことになっている。 |
|
つまり、 SM 形式のデータがサーバにデータを受け取る以外の動作を |
|
行なわせる唯一のデータ形式である。 |
|
|
|
|
|
\section{OpenXM のメッセージの構造} |
\section{OpenXM のメッセージの構造} |
|
|
%{\Huge この節では構造の話をしなければいけません} |
通信の方法によってメッセージの構造は変わる. この論文では TCP/IP の場合 |
|
についてのみ説明を行なう. |
|
|
OpenXM で規定されているメッセージはバイトストリームであり、 |
OpenXM 規約で規定されているメッセージはバイトストリームとなっており, 次 |
次のような構造になっている。 |
のような構造になっている. |
|
|
\begin{tabular}{|c|c|} \hline |
\begin{tabular}{|c|c|} |
ヘッダ & \hspace{10mm} ボディ \hspace{10mm} \\ \hline |
\hline |
|
ヘッダ & \hspace{10mm} ボディ \hspace{10mm} \\ |
|
\hline |
\end{tabular} |
\end{tabular} |
|
|
ヘッダの長さは 8 バイトであると定められている。 |
ヘッダの長さは 8 バイトであると定められている. ボディの長さはメッセージ |
ボディの長さはメッセージごとに異なっているが、 |
ごとに異なっているが, 長さは $0$ でもよい. |
長さは $0$ でもよいことになっている |
|
%なお、すべてのメッセージに ボディが必要というわけではなく、 |
|
%ボディのないメッセージも OpenXM 規約には存在することに |
|
%注意しなければならない。 |
|
|
|
ヘッダは次の二つの情報を持っている。 |
ヘッダは次の二つの情報を持っている. |
\begin{enumerate} |
\begin{enumerate} |
\item 前半の 4 バイトにある、メッセージの種類を表わす識別子。 |
\item |
タグと呼ばれる。 |
前半の 4 バイト. メッセージの種類を表わす識別子であり, タグと呼ばれる. |
\item 後半の 4 バイトにある、メッセージにつけられた通し番号。 |
\item |
|
後半の 4 バイト. メッセージにつけられた通し番号である. |
\end{enumerate} |
\end{enumerate} |
それぞれの 4 バイトは 32 ビット整数とみなされて扱われる。 |
それぞれの 4 バイトは 32 ビット整数とみなされて扱われる. |
この場合に用いられる整数の表現方法の説明については後述するが、 |
|
基本的に表現方法はいくつかの選択肢から選ぶことが可能となっており、 |
|
またその選択は通信路の確立時に一度だけなされることに注意しなければならない。 |
|
|
|
%{\Huge 以下、書き直し} |
この場合に用いられる 32 ビット整数の表現方法について説明しておこう. 問 |
|
題になるのは負数の表現とバイトオーダーの問題である. まず, 負数を表す必 |
|
要があるときには2の補数表現を使うことになっている. 次にバイトオーダーで |
|
あるが, OpenXM 規約は複数のバイトオーダーを許容する. ただし一つの通信路 |
|
ではひとつのバイトオーダーのみが許され, 通信路の確立時に一度だけ選ばれる. |
|
|
ボディの中身は各データ形式によって |
現在のOpenXM 規約では, タグ(整数値)として以下のものが定義されている. |
それぞれ独立に決められるようになっている。 |
|
もし、 OpenXM 規約でまだ定義されていないデータ形式を使いたい場合は、 |
|
メッセージのヘッダのタグをまだ使われてない整数値に設定し、 |
|
ボディにデータを埋め込めばよい。 |
|
なお、このような用途にも使えるように、 |
|
タグにはシステム固有の表現用に推奨されている整数の範囲がある。 |
|
|
|
|
\begin{verbatim} |
|
#define OX_COMMAND 513 |
|
#define OX_DATA 514 |
|
#define OX_SYNC_BALL 515 |
|
#define OX_DATA_WITH_LENGTH 521 |
|
#define OX_DATA_OPENMATH_XML 523 |
|
#define OX_DATA_OPENMATH_BINARY 524 |
|
#define OX_DATA_MP 525 |
|
\end{verbatim} |
|
|
\section{OpenXM の計算の進行方法} |
ボディの構造はメッセージの種類によって異なる. OX\_COMMAND で識別される |
|
メッセージはスタックマシンへの命令であり, それ以外のメッセージは何らかの |
|
オブジェクトを表している. この論文では OX\_DATA と OX\_COMMAND で識別さ |
|
れるメッセージについてのみ, 説明する. |
|
|
OpenXM における計算とはメッセージの交換のことである。 |
既存のメッセージでは対応できない場合は, 新しい識別子を定義することで新し |
既に計算モデルの節で説明したが、 |
い種類のメッセージを作成することができる. この方法は各数学ソフトウェアの |
OpenXM はサーバ・クライアントモデルを採用していて、 |
固有の表現を含むメッセージを作成したい場合などに有効である. 新しい識別子 |
サーバはスタックマシンの構造を持つ。 |
の定義方法については, \cite{OpenXM-1999} を参照すること. |
サーバが行うのは基本的に次の事柄に限られる。 |
|
クライアントからメッセージを受け取るとサーバは、 |
|
まずメッセージの識別子を調べ、 SM 形式のデータでなければスタックに積む。 |
|
SM 形式のデータであればメッセージのボディから |
|
スタックマシンのオペコードを取りだし、 |
|
あらかじめ規約で定められた動作を行なう。 |
|
|
|
%上の説明でわかるように、 |
|
サーバはクライアントからの指示なしに、 |
|
自らメッセージを送らないことに注意しなければならない。 |
|
%(例外? ox\_asir の mathcap)。 |
|
|
|
サーバがクライアントから受け取ったメッセージはすべてスタックに積まれる。 |
\section{OpenXM の計算モデル} |
次いでサーバに SM 形式のデータを送ると、 |
|
初めてサーバはデータをスタックに積む以外のなんらかの動作を行なう。 |
|
このとき、必要があればサーバはスタックから必要なだけデータを取り出す。 |
|
ここで、クライアントからの命令による動作中にたとえエラーが発生したとしても |
|
サーバはエラーオブジェクトをスタックに積むだけで、 |
|
明示されない限りエラーを返さないことに注意しなければならない。 |
|
|
|
結果が生じる動作をサーバが行なった場合、 |
OpenXM 規約での計算とはメッセージを交換することである. また, OpenXM 規 |
サーバは動作の結果をスタックに積んでいる。 |
約ではクライアント・サーバモデルを採用しているので, メッセージの交換はサー |
サーバに行なわせた動作の結果をクライアントが知りたい場合、 |
バとクライアントの間で行なわれる. クライアントからサーバへメッセージを送 |
スタックからデータを取り出し送信を行なう命令に対応した SM 形式のデータを |
り, クライアントがサーバからメッセージを受け取ることによって計算の結果が |
サーバ側へ送ればよい。 |
得られる. このメッセージのやりとりはクライアントの主導で行われる. つまり, |
|
クライアントは自由にメッセージをサーバに送付してもよいが, サーバからは自 |
|
発的にメッセージが送付されることはない. この原理はサーバはスタックマシン |
|
であることで実現される. スタックマシンの構造については \ref{sec:oxsm} 節 |
|
で述べる. |
|
|
{\Huge 以下、書き直し} |
サーバがクライアントから受け取ったオブジェクト(つまり OX\_COMMAND でない |
|
メッセージのボディ)はすべてスタックに積まれる. スタックマシンへの命令 |
|
(OX\_COMMAND で識別されるメッセージのボディ)を受け取ったサーバは命令に対 |
|
応する動作を行なう. このとき, 命令によってはスタックからオブジェクトを取 |
|
り出すことがあり, また(各数学システムでの)計算結果をスタックに積むことが |
|
ある. もし, 与えられたデータが正しくないなどの理由でエラーが生じた場合に |
|
はサーバはエラーオブジェクトをスタックに積む. 計算結果をクライアントが得 |
|
る場合にはスタックマシンの命令 SM\_popCMO または SM\_popString をサーバ |
|
に送らなければならない. これらの命令を受け取ってはじめて, サーバからクラ |
|
イアントへメッセージが送られる. |
|
|
クライアントがサーバへ計算を行なわせ、結果を得るという手順を追っていくと、 |
まとめると, クライアントがサーバへメッセージを送り, 計算の結果を得るとい |
次のようになる。 |
う手順は以下のようになる. |
|
|
\begin{enumerate} |
\begin{enumerate} |
\item まず、クライアントがサーバへ計算させたいデータを送る。 |
\item |
サーバは送られてきたデータをスタックに積む。 |
まず, クライアントがサーバへオブジェクトを送る. サーバは送られてきたオ |
\item クライアントがサーバに「計算を行なう動作に対応したデータ」を |
ブジェクトをスタックに積む. |
送ると、サーバは必要なだけスタックからデータを取り出し、 |
\item |
実行した計算の結果をスタックに積む。 |
クライアントがサーバに計算の命令を送ると, サーバはあらかじめ定めれらた動 |
\item 最後に「データを取り出し送信を行なう命令に対応したデータ」を |
作を行う. 一部の命令はスタックの状態を変更する. 例えば |
サーバへ送ると、サーバはスタックから計算結果の入っている |
SM\_executeFunction, \\ SM\_executeStringByLocalParser などの命令は, ス |
データを取り出し、クライアントへ送出する。 |
タック上のオブジェクトから計算を行う. SM\_popCMO もしくは SM\_popString |
|
は, スタックの最上位のオブジェクトを取りだし, クライアントに送り返す. |
\end{enumerate} |
\end{enumerate} |
|
|
|
|
\section{CMO のデータ構造} |
\section{OpenXM スタックマシン}\label{sec:oxsm} |
|
|
OpenXM 間でやりとりされるメッセージを実際に作成する場合、 |
OpenXM 規約ではサーバはスタックマシンであると定義している. 以下, OpenXM |
CMO 形式で定義されている多倍長整数を理解しておくと、 |
スタックマシンと呼ぶ. この節ではOpenXM スタックマシンの構造について説明 |
CMO 形式の他のデータ構造だけでなく、 OX 形式、 SM 形式のデータを |
しよう. |
理解する助けになると思えるので、 CMO 形式の多倍長整数の |
|
データ構造について説明する。 |
|
|
|
CMO 形式で定義されているデータは多倍長整数以外にも |
まず, OpenXM 規約は通信時にやりとりされる共通のデータ形式については規定 |
文字列やリスト構造などがある。どのようなデータであるかは |
するが, OpenXM スタックマシンがスタックに積む, オブジェクトの構造までは |
データの先頭にあるタグを見れば判別できるようになっている。 |
規定しない. つまり, オブジェクトの構造は各数学システムごとに異なっている |
これはメッセージのデータの判別の仕方とおなじである。 |
ということである. このことは通信路からデータを受け取った際に, 各数学シス |
なお、タグは各データ毎に 32 bit の整数で表されており、 |
テムが固有のデータ構造に変換してからスタックに積むことを意味する. この変 |
多倍長整数は 20 となっている。 |
換は1対1対応である必要はない. |
ここで 32 bit の整数の表現方法について説明する必要がある。 |
|
OpenXM ではバイト列で 32 bit の整数 20 を |
|
{\tt 00 00 00 14} と表す方法と {\tt 14 00 00 00} と表す方法がある。 |
|
この表現方法の違いはクライアントとサーバの最初の接続時に |
|
双方の合意で決定することになっている。 |
|
なお、合意がない場合には |
|
前者の表現方法(以後、この表現方法を network byte order と呼ぶ)を |
|
使うことになっている。 |
|
また、負の数を表現する必要があるときには、 |
|
2 の補数表現を使うことになっている。 |
|
|
|
表現したい多倍長整数の絶対値を 2 進数で表した場合の桁数を $n$ と |
次に OpenXM スタックマシンの命令コードについて説明する. OpenXM スタック |
したとき、次にくるデータは $[(n+31)/32]$ を 32 bit の整数となる。 |
マシンにおけるすべての命令は4バイトの長さを持つ. OpenXM 規約の他の規定と |
これは多倍長整数の絶対値を $2^{32}$ 進数で表した場合の桁数ととってもよい。 |
同様に, 4バイトのデータは32ビット整数と見なされるので, この論文でもその |
ただし、表現したい数が負の場合は $[(n+31)/32]$ を 32 bit の整数で表した値を |
表記にしたがう. OpenXM スタックマシンに対する命令はスタックに積まれるこ |
2 の補数表現で負にして、正の場合と区別する。 |
とはない. 現在のところ, OpenXM 規約では以下の命令が定義されている. |
|
|
表現したい多倍長整数の絶対値が $2^{32}$ 進数で $(b_0 b_1 ... b_k)_{2^{32}}$ |
\begin{verbatim} |
と表せるとき、次にくるデータは $b_0$, $b_1$, $\cdots$, $b_k$ を |
#define SM_popSerializedLocalObject 258 |
それぞれ 32 bit の整数で表現した値となる。 |
#define SM_popCMO 262 |
%以下は書き直しの必要があるかも... |
#define SM_popString 263 |
なお、 GNU MP LIBRARY を用いると、 |
|
C 言語から多倍長整数や任意精度浮動小数を扱うことができる。 |
|
$b_0$, $b_1$, $\cdots$, $b_k$ をそれぞれ 32 bit 整数で表現した値は |
|
この GNU MP LIBRARY で用いられている多倍長整数で使われている形式を |
|
参考にして合わせてある。 |
|
|
|
ここで具体例をだそう。 |
#define SM_mathcap 264 |
$4294967298 = 1 \times 2^{32} + 2$ を network byte order の多倍長整数で |
#define SM_pops 265 |
表現すると、 |
#define SM_setName 266 |
\begin{center} |
#define SM_evalName 267 |
{\tt 00 00 00 14 00 00 00 02 00 00 00 02 00 00 00 01} |
#define SM_executeStringByLocalParser 268 |
\end{center} |
#define SM_executeFunction 269 |
となる。また、同じ表現方法で $-1$ を表現すると、 |
#define SM_beginBlock 270 |
\begin{center} |
#define SM_endBlock 271 |
{\tt 00 00 00 14 ff ff ff ff 00 00 00 01} |
#define SM_shutdown 272 |
\end{center} |
#define SM_setMathCap 273 |
となる。 |
#define SM_executeStringByLocalParserInBatchMode 274 |
|
#define SM_getsp 275 |
|
#define SM_dupErrors 276 |
|
|
|
#define SM_DUMMY_sendcmo 280 |
|
#define SM_sync_ball 281 |
|
|
\section{MathCap について} |
#define SM_control_kill 1024 |
|
#define SM_control_to_debug_mode 1025 |
|
#define SM_control_exit_debug_mode 1026 |
|
#define SM_control_ping 1027 |
|
#define SM_control_start_watch_thread 1028 |
|
#define SM_control_stop_watch_thread 1029 |
|
#define SM_control_reset_connection 1030 |
|
\end{verbatim} |
|
|
サーバおよびクライアント双方ともに OpenXM で規定されている |
スタックマシンに対する命令の中には実行によって結果が返ってくるものがある. |
メッセージの中のデータ形式をすべて受け取れるわけではない。 |
結果が返ってくる命令を実行した場合, サーバはその結果をスタックに積む. |
しかも、 OpenXM 規約で規定されているデータ形式だけが |
たとえば, 命令 SM\_executeStringByLocalParser はスタックに積まれているオ |
受渡しに使われるというわけではない。 |
ブジェクトをサーバ側のローカル言語の文法に従った文字列とみなして計算を行 |
そこで、 OpenXM では相手側が受け取ることができるデータ形式を |
なうが, 行なった計算の結果はスタックに積まれる. |
収得する方法を用意している。 |
|
|
|
CMO 形式で定義されている MathCap データは |
なお, 命令の実行中にエラーが起こり, 結果が得られなかった場合には, |
%理解可能なメッセージの |
エラーオブジェクトがスタックに積まれる. |
受け取ることができるデータ形式を表すデータであり、 |
|
要求されればサーバはサーバ自身の MathCap データをスタックに積む。 |
|
また、クライアントから MathCap データをサーバへ送ることもでき、 |
|
MathCap データをサーバとクライアントの間で交換することによって、 |
|
お互いに相手側が受け取ることができないデータ形式で |
|
メッセージを送ってしまうのを防ぐことができる。 |
|
なお、 MathCap データの中では CMO 形式で定義されている |
|
32 bit 整数、文字列、リスト構造が使われており、 |
|
MathCap データに含まれている内容を理解できるためには |
|
必然的にこれらも理解できる必要がある。 |
|
|
|
OpenXM 対応版の asir サーバである ox\_asir が返す MathCap を以下に示す。 |
\section{CMO のデータ構造}\label{sec:cmo} |
|
|
%なお、 $a_1$, $a_2$, $\cdots$, $a_n$ を要素に |
OpenXM 規約では, 数学的オブジェクトを表現する方法として CMO 形式(Common |
%持つリスト構造を {\tt [$a_1$, $a_2$, $\cdots$, $a_n$]} 、 |
Mathematical Object format)を定義している. この CMO 形式にしたがったデー |
%文字列 ``string'' を {\tt "string"} 、 32 bit 整数を |
タは, 識別子が OX\_DATA であるようなメッセージのボディになることを想定し |
%それに対応する 10 進数の整数で示す。 |
ている. |
|
|
%↓手で作ったので間違えている可能性あり。 |
CMO 形式におけるデータ構造は次のような構造をもつ. |
%%古いバージョン。差し替えの必要あり。 |
|
|
\begin{tabular}{|c|c|} \hline |
|
ヘッダ & \hspace{10mm} ボディ \hspace{10mm} \\ \hline |
|
\end{tabular} |
|
|
|
ヘッダは4バイトである. ボディの長さはそれぞれのデータによって異なるが, |
|
0でもよい. |
|
|
|
メッセージと同様にヘッダは4バイト単位に管理される. すなわち, CMO ではヘッ |
|
ダは一つだけの情報を含む. この4バイトのヘッダのことをタグともいう. さて, |
|
CMO では, タグによってボディの論理的構造が決定する. すなわち, タグはそれ |
|
ぞれのデータ構造と1対1に対応する識別子である. それぞれの論理的構造は |
|
\cite{OpenXM-1999} に詳述されている. 現在の OpenXM 規約では以下の CMO が |
|
定義されている. |
|
|
\begin{verbatim} |
\begin{verbatim} |
[ [199901160,"ox_asir"], |
#define CMO_ERROR2 0x7f000002 |
[276,275,258,262,263,266,267,268,274 |
#define CMO_NULL 1 |
,269,272,265,264,273,300,270,271], |
#define CMO_INT32 2 |
[ [514,[1,2,3,4,5,2130706433,2130706434 |
#define CMO_DATUM 3 |
,17,19,20,21,22,24,25,26,31,27,33,60]], |
#define CMO_STRING 4 |
[2144202544,[0,1]] |
#define CMO_MATHCAP 5 |
] |
|
] |
#define CMO_START_SIGNATURE 0x7fabcd03 |
|
#define CMO_ARRAY 16 |
|
#define CMO_LIST 17 |
|
#define CMO_ATOM 18 |
|
#define CMO_MONOMIAL32 19 |
|
#define CMO_ZZ 20 |
|
#define CMO_QQ 21 |
|
#define CMO_ZERO 22 |
|
#define CMO_DMS_GENERIC 24 |
|
#define CMO_DMS_OF_N_VARIABLES 25 |
|
#define CMO_RING_BY_NAME 26 |
|
#define CMO_RECURSIVE_POLYNOMIAL 27 |
|
#define CMO_LIST_R 28 |
|
|
|
#define CMO_INT32COEFF 30 |
|
#define CMO_DISTRIBUTED_POLYNOMIAL 31 |
|
#define CMO_POLYNOMIAL_IN_ONE_VARIABLE 33 |
|
#define CMO_RATIONAL 34 |
|
|
|
#define CMO_64BIT_MACHINE_DOUBLE 40 |
|
#define CMO_ARRAY_OF_64BIT_MACHINE_DOUBLE 41 |
|
#define CMO_128BIT_MACHINE_DOUBLE 42 |
|
#define CMO_ARRAY_OF_128BIT_MACHINE_DOUBLE 43 |
|
|
|
#define CMO_BIGFLOAT 50 |
|
#define CMO_IEEE_DOUBLE_FLOAT 51 |
|
|
|
#define CMO_INDETERMINATE 60 |
|
#define CMO_TREE 61 |
|
#define CMO_LAMBDA 62 |
\end{verbatim} |
\end{verbatim} |
|
|
この MathCap データのリスト構造は大きく分けて 3 つの部分に分かれる。 |
この中で CMO\_ERROR2, CMO\_NULL, CMO\_INT32, CMO\_DATUM, CMO\_STRING, |
最初の {\tt [199901160,"ox\_asir"]} の部分にはサーバの情報が入っている。 |
CMO\_MATHCAP, CMO\_LIST で識別されるオブジェクトは最も基本的なオブジェ |
%この最初の要素がまたリスト構造となっており、 |
クトであって, すべての OpenXM 対応システムに実装されていなければならない. |
最初の要素はバージョンナンバーを、次の要素はサーバの名前を表している。 |
|
|
|
次の {\tt [276,275,$\cdots$,271]} の部分は |
これらについての解説を行う前に記法について, 少し説明しておく. |
サーバに対する動作に対応した理解可能なデータの種類を表している。 |
この論文では, 大文字で CMO\_INT32 と書いた場合には, 上記で定義した識別子 |
サーバの動作に対するデータはすべて 32 bit の整数で表しており、 |
を表わす. また CMO\_INT32 で識別されるオブジェクトのクラス(あるいはデー |
このリストは理解可能なデータに対応する 32 bit 整数のリストとなっている。 |
タ構造)を cmo\_int32 と小文字で表わすことにする. |
|
|
最後の {\tt [ [514,[1,2,3,$\cdots$,60]],[2144202544,[0,1]] ]} の部分は |
さて cmo を表現するための一つの記法を導入する. この記法は CMO expression |
理解可能なデータの形式を表している。 |
と呼ばれている. その正確な形式的定義は \cite{OpenXM-1999} を参照すること. |
この部分はさらに {\tt [514,[1,2,3,$\cdots$,60]]} と |
|
{\tt [2144202544,[0,1]]} にの部分に分けることができ、 |
|
それぞれが一つのデータ形式についての情報となっている。 |
|
どのデータ形式についての情報かは最初の要素にある整数値をみれば |
|
分かるようになっている。 |
|
この整数値は CMO 形式では 514 となっている。 |
|
最初のデータ形式を区別する整数値以後の要素は |
|
各データ形式によってどのように使われるか定まっている。 |
|
CMO 形式では理解可能なデータの tag がリストの中に収まっている。 |
|
前節で CMO 形式では多倍長整数を表す tag が 20 であることを述べたが、 |
|
このリストに 20 が含まれているので、 |
|
ox\_asir は CMO 形式の多倍長整数を受け取れることがわかる。 |
|
|
|
%%このリストの要素はまたリストとなっており、 |
まず CMO expssion は Lisp 風表現の一種で, cmo を括弧で囲んだリストとし |
%この最後の部分もまたリストとなっており、 |
て表現する. それぞれの要素はカンマで区切る. |
%あるデータ形式で理解可能なものを表現したリストを要素としている。 |
例えば, |
%{\tt [514,[1, 2, $\cdots$]]} の最初の 514 はこのリストが CMO 形式 |
\begin{quote} |
%での理解可能なデータを表していることを示しており、 |
(17, {\sl int32}, (CMO\_NULL), (2, {\sl int32} $n$)) |
%その後のリストでは CMO 層で定義されているデータのうち、 |
\end{quote} |
%理解可能なデータの tag が並んでいる。 |
は CMO expression である. ここで, 小文字の斜体で表された``{\sl int32}'' |
|
は 4バイトの任意のデータを表す記号であり, ``{\sl int32} $n$'' は同じく 4 |
|
バイトのデータであるが以下の説明で $n$ と表すことを示す. また数字 17, 2 |
|
などは 4バイトのデータで整数値としてみたときの値を意味する. CMO\_NULL は |
|
識別子(すなわち数字 1 と等価)である. この記法から上記のデータは 20 バイ |
|
トの大きさのデータであることが分かる. なお, CMO expression は単なる表記 |
|
法であることに特に注意してほしい. |
|
|
なお、データが受け取れることと、 |
さて, この記法のもとで cmo\_int32 を次のデータ構造であると定義する. |
データの論理構造が理解できることとはまったく別物であるので |
\begin{quote} |
注意する必要がある。 |
cmo\_int32 := (CMO\_INT32, {\sl int32}) |
|
\end{quote} |
|
同様に, cmo\_null, cmo\_string, cmo\_list, cmo\_mathcap のシンタッ |
|
クスは次のように定義される. |
|
\begin{quote} |
|
cmo\_null := (CMO\_NULL) \\ |
|
cmo\_string := (CMO\_STRING, {\sl int32} $n$, {\sl string} $s$) \\ |
|
cmo\_list := (CMO\_LIST, {\sl int32} $m$, {\sl cmo} $c_1$, $\ldots$, |
|
{\sl cmo} $c_m$) \\ |
|
cmo\_mathcap := (CMO\_MATHCAP, {\sl cmo\_list}) |
|
\end{quote} |
|
ただし, {\sl string}は適当な長さのバイト列を表す. $s$ のバイト長は $n$ |
|
と一致することが要求される. |
|
|
|
\section{mathcap について} |
|
|
\section{セキュリティ対策} |
OpenXM 規約では, 通信時に用いられるメッセージの種類を各ソフトウェアが制 |
|
限する方法を用意している. これは各ソフトウェアの実装によってはすべてのメッ |
|
セージをサポートするのが困難な場合があるからである. また, 各ソフトウェア |
|
でメッセージの種類を拡張したい場合にも有効である. この制限(あるいは拡張) |
|
は mathcap と呼ばれるデータ構造によって行われる. この節では mathcap のデー |
|
タ構造と, 具体的なメッセージの制限の手続きについて説明する. |
|
|
OpenXM では幾らかのセキュリティ対策を考えている。 |
では, 手続きについて説明しよう. |
OpenXM に対応したソフトウェアをクラックしても |
|
大した利点はないと思えるが、それは設計上の話であって、 |
|
予期せぬ手段で攻撃を受けた場合にどのような事態を |
|
招くかは想像し難い。 |
|
|
|
そこで、 OpenXM では侵入者に攻撃の機会を |
第一にサーバの機能を制限するには次のようにする. クライアントが mathcap |
できるだけ与えないようにしている。 |
オブジェクトをサーバへ送ると, サーバは受け取ったmathcap をスタックに積む. |
具体的には、接続が必要になった時のみ接続を待つようにし、 |
次にクライアントが命令 SM\_setMathCap を送ると, サーバはスタックの最上位 |
常に接続に関与するといったことは避けている。 |
に積まれている mathcap オブジェクトを取り出し, mathcap で設定されていな |
|
いメッセージをクライアントへ送らないように制限を行う. |
|
|
しかし、これだけでは侵入者が接続を行なう一瞬のすきを |
第二にクライアントを制限するには次のようにする. クライアントがサーバに命令 \\ |
狙ってくる可能性もある。 |
SM\_mathcap を送ると, サーバは mathcap オブジェクトをスタックに積む. |
そこで接続を行なう時に、 |
さらに命令 SM\_popCMO を送ると, サーバはスタックの最上位のオブジェクト |
接続を待つ port 番号をランダムに決めている。 |
(すなわち mathcap オブジェクト)をボディとするメッセージをクライアントに |
こうすることで、特定の port 番号を狙って接続を行なう |
送付する. クライアントはそのオブジェクトを解析して, 制限をかける. |
瞬間を待つ手口を幾らか防ぐことができる。 |
|
|
|
さらにもう一段安全性を高めるために、 |
次に mathcap のデータ構造について説明する. |
接続時に 1 回だけ使用可能なパスワードを作成し、 |
mathcap は cmo の一種であるので, すでに説明したように |
そのパスワードを使って認証を行なう。 |
\begin{quote} |
このパスワードは一旦使用されれば無効にするので、 |
cmo\_mathcap := (CMO\_MATHCAP, {\sl cmo\_list}) |
もし仮になんらかの手段でパスワードが洩れたとしても安全である。 |
\end{quote} |
|
の構造をもつ(\ref{sec:cmo} 節を参照のこと). |
|
ボディは cmo\_list オブジェクトでなければならない. |
|
|
なお、上記の port 番号とパスワードは安全な手段で送られて |
さて, mathcap オブジェクトのボディの cmo\_list オブジェクトは以下の条件 |
いると仮定している。 |
を満たすことを要求される. まず, その cmo\_list オブジェクトは少なくとも |
また、同一のコンピュータ上に悪意のあるユーザはいないと仮定している |
リスト長が 3 以上でなければならない. |
ことに注意しなければならない。 |
\begin{quote} |
なぜなら、現在の実装ではサーバ、およびクライアントの動作している |
(CMO\_LIST, {\sl int32}, {\sl cmo} $a$, {\sl cmo} $b$, {\sl cmo} $c$, $\ldots$) |
コンピュータ上ではこの port 番号とパスワードがわかってしまうためである。 |
\end{quote} |
|
|
なお、接続が確立した後のメッセージの送受信に関しては、 |
第一要素 $a$ はまた cmo\_list であり, リスト長は 4 以上, $a_1$ は |
特に暗号化などの処置が行なわれているわけではない。 |
cmo\_int32 でバージョンを表す, $a_2$, $a_3$, $a_4$ は cmo\_string であり, |
もし必要があれば、通信路の暗号化を行なう機能がある |
それぞれシステムの名前, バージョン, HOSTTYPE を表すことになっている. |
ソフトウェアを使うことを考えている。 |
\begin{quote} |
|
(CMO\_LIST, {\sl int32}, |
|
{\sl cmo\_int32} $a_1$, {\sl cmo\_string} $a_2$, {\sl cmo\_string} |
|
$a_3$, {\sl cmo\_string} $a_4$, $\ldots$) |
|
\end{quote} |
|
|
|
第二要素 $b$ の部分は次のようなリスト構造をしている. |
|
この $b_1$, $b_2$, $\ldots$, $b_n$ はすべて cmo\_int32 である. |
|
\ref{sec:oxsm} 節で説明したが, |
|
スタックマシンへの命令はすべて {\sl int32} で表されていたことに注意しよ |
|
う. 各 $b_i$ は利用可能な命令をボディとした cmo\_int32 となっている. |
|
\begin{quote} |
|
(CMO\_LIST, {\sl int32} $n$, |
|
{\sl cmo\_int32} $b_1$, {\sl cmo\_int32} $b_2$, |
|
$\ldots$, {\sl cmo\_int32} $b_n$) |
|
\end{quote} |
|
|
\section{他のプロジェクト} |
第三要素 $c$ は以下のようなリスト構造をしている. |
|
\begin{quote} |
|
(CMO\_LIST, {\sl int32} $m$, \\ |
|
\hspace{10mm} (CMO\_LIST, {\sl int32} $l_1$, {\sl cmo\_int32} $c_{11}$, |
|
{\sl cmo} $c_{12}$, $\ldots$, {\sl cmo} $c_{1l_1}$), \\ |
|
\hspace{10mm} (CMO\_LIST, {\sl int32} $l_2$, {\sl cmo\_int32} $c_{21}$, |
|
{\sl cmo} $c_{22}$, $\ldots$, {\sl cmo} $c_{1l_2}$), \\ |
|
\hspace{10mm} $\ldots$ \\ |
|
\hspace{10mm} (CMO\_LIST, {\sl int32} $l_m$, {\sl cmo\_int32} $c_{m1}$, |
|
{\sl cmo} $c_{m2}$, $\ldots$, {\sl cmo} $c_{1l_m}$)) |
|
\end{quote} |
|
{\Large 以下、全然説明が分かりません。} |
|
どの $c_{i1}$ にも cmo\_int32 が入っており, |
|
OX\_COMMAND 以外の, 受け取れるメッセージの識別子が入っている. |
|
$c_{i2}$ 以降については最初の $c_{i1}$ の値によってそれぞれ異なる. |
|
ここでは, OX\_DATA の場合についてのみ説明する. |
|
この $c_{i1}$ が OX\_DATA の場合, |
|
$c_{i1}$, $c_{i2}$, $\ldots$, $c_{il_i}$ を要素とする cmo\_list は |
|
CMO 形式についての情報を表しており, $l_i=2$ と決められている. |
|
$c_{i1}$ にはもちろんのこと OX\_DATA が入っており, |
|
$c_{i2}$ は以下の図のような cmo\_list になっている. |
|
各要素は cmo\_int32 であり, |
|
受け取ることが可能な CMO 形式のタグが入る. |
|
\begin{quote} |
|
(CMO\_LIST, {\sl int32} $k$, |
|
{\sl cmo\_int32} $c_{i21}$, {\sl cmo\_int32} $c_{i22}$, |
|
$\ldots$, {\sl cmo\_int32} $c_{i2k}$) |
|
\end{quote} |
|
|
他のプロジェクトについても触れておこう。 |
具体的な mathcap の例をあげよう. 名前が ``ox\_test'', バージョンナンバー |
|
が 199911250 のサーバで, PC-UNIX 上で動いていれば, $a$ の部分は |
|
\begin{quote} |
|
(CMO\_LIST, 4, (CMO\_INT32, $199911250$), (CMO\_STRING, 7, "ox\_test"), \\ |
|
\ \ (CMO\_STRING, 9, "199911250"), (CMO\_STRING, 4, "i386")) |
|
\end{quote} |
|
となる. |
|
|
OpenMath プロジェクトは数学的なオブジェクトを |
さらに, このサーバのスタックマシンが命令 SM\_popCMO, SM\_popString, |
コンピュータ上で表現する方法を決定している。 |
SM\_mathcap, SM\_executeStringByLocalParser を利用可能であれば, $b$ の部 |
各ソフトウェア間でオブジェクトを交換する際の |
分を |
オブジェクトの変換手順についても述べられている。 |
\begin{quote} |
表現方法は一つだけでなく、 XML 表現や binary 表現などが |
(CMO\_LIST, $5$, |
用意されている。 |
(CMO\_INT32, SM\_popCMO), \\ |
詳細は |
\ \ (CMO\_INT32, SM\_popString), (CMO\_INT32, SM\_mathcap), \\ |
|
\ \ (CMO\_INT32, SM\_executeStringByLocalParser)) |
|
\end{quote} |
|
にし, cmo\_int32, cmo\_string, cmo\_mathcap, cmo\_list のみに制限したい |
|
ときは$c$ の部分を |
|
\begin{quote} |
|
(CMO\_LIST, $1$, \\ |
|
\ \ (CMO\_LIST, $2$, (CMO\_INT32, OX\_DATA), \\ |
|
\ \ \ \ (CMO\_LIST, $4$, (CMO\_INT32, CMO\_INT32), \\ |
|
\ \ \ \ \ \ (CMO\_INT32, CMO\_STRING), (CMO\_INT32, CMO\_MATHCAP), \\ |
|
\ \ \ \ \ \ (CMO\_INT32, CMO\_LIST)))) |
|
\end{quote} |
|
にする. |
|
|
http://www.openmath.org/omsoc/index.html A.M.Cohen |
|
|
|
|
\section{セキュリティ対策} |
|
|
以下は書いてる途中。 |
OpenXM 規約は TCP/IP を用いて通信を行うことを考慮している. ネットワーク |
|
によって接続される現代の多くのソフトウェアと同様, OpenXM 規約もまた通信 |
|
時のセキュリティについて注意している. 以下, このことについて説明しよう. |
|
|
NetSolve |
第一に OpenXM では侵入者に攻撃の機会をできるだけ与えないようにするため, |
|
サーバは接続が必要になった時のみ起動している. しかし, これだけでは接続 |
|
を行なう一瞬のすきを狙われる可能性もある. そこで接続を行なう時に, 接続 |
|
を行なうポート番号を毎回変えている. こうすることで, 特定のポート番号を |
|
狙って接続を行なう手口を防ぐことができる. |
|
|
|
さらにもう一段安全性を高めるために, 接続時に一時パスワードをクライアント |
|
が作成し, そのパスワードを使って認証を行なう. このパスワードは一旦使用 |
|
されれば無効になるので, もし仮になんらかの手段でパスワードが洩れたとして |
|
も安全である. |
|
|
|
なお, メッセージ自体には特に暗号化などの処置を行っていないので, そのまま |
|
ではパケット盗聴などを受ける可能性がある. 現在の実装では, 必要ならば |
|
ssh を利用して対応している. |
|
|
|
|
|
\section{他のプロジェクト} |
|
|
|
他のプロジェクトについても触れておこう. |
|
|
|
\begin{itemize} |
|
\item ESPRIT OpenMath Project |
|
|
|
http://www.openmath.org/omsoc/ |
|
|
|
数学的対象のSGML的表記の標準化を目指した大規模なプロジェクト. 異なる種 |
|
類の数式処理システムの間で情報を交換するときに, OpenMath で定義された表 |
|
現を利用することができる. 実際の情報交換の手続きにはいろいろなものが考 |
|
えられるが, 例えば MCP (Mathematical Computation Protocol) なる手続きが |
|
考案されている. MCP によって送信されるデータは, 本文に OpenMath 形式で |
|
数式を記述したテキストで, いささかメイルに似ていなくもない. 実際にこの |
|
方法でGAP とAxiomの間で通信が行われている. |
|
|
|
\item NetSolve |
|
|
http://www.cs.utk.edu/netsolve/ |
http://www.cs.utk.edu/netsolve/ |
|
|
|
NetSolve はクライアント・サーバ型の分散システムであり, 単なる計算システ |
|
ム以上のものを目指している. クライアントは必要に応じて, サーバを呼び出 |
|
して計算をさせる. NetSolve の特徴は, サーバの呼び出しに Agent というソ |
|
フトウェアを介在させることである. Agent は呼び出し先などを決定するデー |
|
タベース的役割を果たす. また Agent によって負荷分散が可能になる. 現在 |
|
の NetSolve は RPC を基礎にして実装されている. |
|
|
MP |
\item MP |
|
|
http://symbolicNet.mcs.kent.edu/SN/areas/protocols/mp.html |
http://symbolicNet.mcs.kent.edu/SN/areas/protocols/mp.html |
|
|
|
数学的なデータの効率的な交換のためのプロトコル. |
|
交換するデータの木構造について詳しい. |
|
|
MCP |
\item MCP |
|
|
http://horse.mcs.kent.edu/~pwang/ |
http://horse.mcs.kent.edu/~pwang/ |
|
|
|
HTTP プロトコルを用いて, リモートの計算機で計算を行なう. |
|
|
|
\end{itemize} |
|
|
|
|
\section{現在提供されているソフトウェア} |
\section{現在提供されているソフトウェア} |
|
|
現在 OpenXM 規格に対応しているクライアントには |
現在 OpenXM 規約に対応しているクライアントにはasir, sm1, Mathematica がある. |
asir, sm1, Mathematica がある。 |
これらのクライアントから OpenXM 規約に対応したサーバを呼び出すこと |
これらのクライアントから |
ができる. 現在 OpenXM 規約に対応しているサーバソフトウェアには, asir, |
OpenXM 規格に対応したサーバを呼び出すことができる。 |
sm1, gnuplot, Mathematica, PHC pack などがあり, |
現在 OpenXM 規約に対応しているサーバソフトウェアには、 |
それぞれ ox\_asir, ox\_sm1, ox\_sm1\_gnuplot, ox\_math, ox\_sm1\_phc |
asir, sm1, gnuplot, Mathematica などがあり、 |
という名前で提供されている. また, OpenMath |
それぞれ ox\_asir, ox\_sm1, ox\_math という名前で提供されている。 |
規約の XML 表現で表現されたオブジェクトと CMO 形式のオブジェクトを変換す |
また、 OpenMath 規格の XML 表現で表現されたデータと CMO 形式の |
るソフトウェアが JAVA によって実装されており, OMproxy という名前で提供さ |
データを変換するソフトウェアが JAVA によって実装されており、 |
れている. |
OMproxy という名前で提供されている。 |
|
|
|
|
\begin{thebibliography}{99} |
|
\bibitem{Ohara-Takayama-Noro-1999} |
|
小原功任, 高山信毅, 野呂正行: |
|
{Open asir 入門}, 1999, 数式処理, |
|
Vol 7, No 2, 2--17. (ISBN4-87243-086-7, SEG 出版, Tokyo). |
|
|
|
\bibitem{OpenXM-1999} |
|
野呂正行, 高山信毅: |
|
{Open XM の設計と実装 |
|
--- Open message eXchange protocol for Mathematics}, |
|
1999/11/22 |
|
\end{thebibliography} |
|
|
\end{document} |
\end{document} |