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Goal of today: Integration functor and de Rham cohomology
groups in one dimensional case.
Let K be C. Let f =

∑m
j=0 fjx

j be a polynomial in one variable x .
m = ordw (f ), w = (1).

x i f (x) =
m∑
j=0

fjx
j+i

K [x ]k is the K vector space of the polynomials of which degree is
less than or equal to k . Define a linear map (by the
correspondence ei ⇔ x i )

K [x ]k−m ≃ K k−m+1 ∋ ei 7→
m∑
j=0

fjej+i ∈ K k+1 ≃ K [x ]k .

The matrix representaion of this map is denoted by Mk(f ) called
the Macaulay type matrix of the degree k.



. . . . . .

Let f =
∑m

j=0 fjx
j be a polynomial in one variable x .

x i f (x) =
m∑
j=0

fjx
j+i

The correspondence ei ⇔ x i .

K [x ]k−m ≃ K k−m+1 ∋ ei 7→
m∑
j=0

fjej+i ∈ K k+1 ≃ K [x ]k .

Example B1: f (x) = x2 + 1.

e0 7→ 1 · (x2 + 1) = e2 + e0, e1 7→ x · (x2 + 1) = e3 + e1

M3(f ) =

(
1 0 1 0
0 1 0 1

)
Columns are indexed by e0, e1, ...
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D = K ⟨x , ∂⟩

with the relation ∂x = x∂ + 1. w = 1, ord(−w ,w)(x
i∂j) = j − i .

f =
∑

cijx
i∂j is called (−w ,w) homogeneous when (j − i)’s are

the same value for all the terms.
Lemma B2: If we multiply two elements f and g in D which are
(−w ,w) homogeneous, fg are also (−w ,w) homogeneous.
Proof(later). We have

∂pxq = xq∂p + pqxq−1∂p−1 +
p(p − 1)q(q − 1)

2!
xq−2∂p−2 + · · ·

Exercise B3: Prove it by induction. Since
ord(−w ,w)(x

q−i∂p−i ) = (p − i)− (q − i) = p − q, the lemma is
shown in case that f = xp, g = ∂q from the formula above.
General cases are reduced to this case. Q.E.D.
We denote by Fk the K vector space spanned by x i∂j , j − i ≤ k
(the elements of which (−w ,w) order is less than or equal to k).
Note that F−1 ⊆ xD.
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Lemma B4: Let g ∈ D be a differential operator of (−w ,w) order
k. For f ∈ Fm ∩ Dg and m ≥ k, there exists q ∈ Fm−k such that

f = qg

Proof(later). Since f ∈ Dg (a left ideal generated by g), there
exists q′ such that f = q′g . Suppose that
r = ord(−w ,w)(q

′) > m − k and q′ = q′1 + q′2 where q′1 is (−w ,w)
homogeneous with the order r and the order of q′2 is less than r .
We decompose g in the same way as g = g1 + g2.
q′g = q′1g1 + q′1g2 + q′2g = f . Since the top degree term is q′1g1
which is (−w ,w) homogeneous, we have q′1g1 = 0. Then q′1 = 0.
It is a contradiction. Q.E.D.
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For an element f of D, the expression as
∑

cijx
i∂j (∂’s are

collected to the right) is called the normally ordered expression and
is denoted by : f :
Example. : ∂x := x∂x + 1.
Fix a natural number k. For g ∈ D, ord(−w ,w)(g) = j , the
operator g induces a linear map

K [∂]k−j ∋ ∂i 7→: ∂ ig : |x=0 ∈ K [∂]k

The matrix representation of this map is called the Macaulay type
matrix for restriction of degree k and is denoted by Mk(g).
Example B5: g = x∂2 + x∂, k = 2.

1 7→ : x∂2 + x∂ : |x=0 = 0

∂ 7→ : ∂g : |x=0 = x∂3 + ∂2 + x∂2 + ∂ |x=0 = ∂2 + ∂

M2(g) =

(
0 0 0
0 1 1

)
K [∂]k−1 is regarded as row vectors.
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C • : 0
φm+1→ Kbm φm→ Kbm−1

φm−1→ · · · → Kb1 φ1→ Kb0 φ0→ 0

where φi ’s are K -linear maps is called a complex of vector spaces
when φi ◦ φi+1 = 0 holds. Define

H i (C •) =
Kerφi

Imφi+1

which is a K -vector space.
Example B6: g = x∂2 + x∂.

C • : 0 → K 2 M2(g)−→ K 3→0

H0(C •) ≃ K 2, H1(C •) ≃ K .
Let p(x) be a rational function. The action • of D to p is defined
by

x i∂j • p = x i
∂jp

∂x j
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The formal Fourier transform of x i∂j is defined by (−∂)ix j . It can
be extended on D.
Theorem B7: Let p(x) be a square free polynomial and suppose
that Ann 1

p = {f ∈ D | f • (1/p) = 0} is generated by ĝ ∈ D. Let
g be the formal Fourier transform of ĝ and k0 be the minimal
integral root of the indicial polynomial (b-function) of g . For
k ≥ k0, define the complex of vector spaces by

C • : 0 → K k+1−ord(−w,w)(g)
Mk(g)−→ K k+1→0

Then, we have H i (C •) = H1−i (C \ V (p),C).
Example B8: p(x) = x(1− x). g is the g of our running example
B5, B6 and k0 = 1.
Exercise B9: Compute H i (C \ V (p)) when p(x) = x and

p(x) = x(x − 1)(x − 2). M2 codes in the last page.
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Proof. The complex of K -vector spaces

0 → D/xD ⊗D D
1⊗g−→ D/xD ⊗D D → 0

is rewritten as

G • : 0 → D/xD ∋ f
φ7→: fg : |x=0 ∈ D/xD ≃ K [∂] → 0

We will prove that H j(G •) ≃ H j(C •). Consider the case j = 0.
Take non-zero element f = ∂ i +

∑
j<i cj∂

j of K [∂]k/ImMk(g)
where i ≤ k. If f ∈ Dg + xD and i ≥ r = ord(−w ,w)(g), then by
the Lemma B4, there exists q ∈ Fi−r , q

′ ∈ Fi+1 such that
f − xq′ = qg . Therefore, we have f =: qg :∈ ImMk(g). It is a
contraction, then we have f ̸∈ Dg + xD and consequently it is not
in : K [∂]g :. Therefore, the canonical K -linear map from H0(C •)
to H0(G •) is injective.
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Let b(s) be the indicial polynomial for g . Suppose that
b(x∂) ≡ x rg modF−1. Suppose k > k0. (This k is not k in the
theorem statement in this paragraph.) Applying ∂k to the both
sides, we have b(k)∂k + x(· · · ) ≡ ∂kx rg modF−1+k . Then, we
have b(k)∂k ≡ 0 modF−1+k +Dg + xD. It implies the surjectivity.

We prove that the canonical K -linear map from KerMk(g) to
Kerφ is isomorphism. Let

∑
i≤k−r ci∂

i ̸= 0 belongs to the kernel

of Mk(g). In other words, we have : (
∑

ci∂
i )g : |x=0 = 0. It

implies that
∑

ci∂
i is a non-zero element of D/xD which belongs

to the kernel of φ. Then, it is injective.
The case r < 0 can be shown analogously.
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In order prove the surjectivity, we suppose that the highest
(−w ,w) order terms of g is

∑m
i=0 cix

i∂r+i . Applying ∂j to this
sum, we have

∂jg =
m∑
i=0

ci j(j − 1) · · · (j − i + 1)∂r+j modFj+r−1 + xD

Suppose that a∂j + · · · belongs to the kernel of φ. We have

: (a∂j + · · · )g : |x=0 = a(
m∑
i=0

ci j(j − 1) · · · (j − i + 1)))∂r+j + · · · .

On the other hand, b-function of g is equal to

x r
∑

cix
i∂r+i =

∑
ciθ(θ − 1) · · · (θ − r − i + 1)

When j > k − r , we have
(j + r) · · · (j + 1)(

∑m
i=0 ci j(j − 1) · · · (j − i + 1))) ̸= 0. Therefore,

a = 0, which yields the surjectivity.
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It follows from the Grothendieck comparison theorem (algebraic de
Rham vs analytic de Rham) that we have

H i (C \ V (p)) ≃ H1−i (F •), F • : 0 → K [x ,
1

p
]

d−→ K [x ,
1

p
] → 0

Here, K [x , 1/p] is regarded as a left D-module by the action • of
∂. Finally, we will show H i (G •) ≃ H(F •). The two complexes are
border complexes of a double complex presented in the blackboard.
Then, by the standard theorem of homology algebra (e.g., Kawada,
Homology Algebra, Th 2.10 or Th 3.16), we obtain the conclusion.
Q.E.D.
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Inputs for Macaulay 2 (M2)

load "Dmodules.m2"

R=QQ[x,dx,WeylAlgebra=>{x=>dx}]

g = x*(1-x)

I = RatAnn(g)

Dintegration(I,{1})

rr=Dresolution(I)

rr.dd

p=rr.dd_1

p_0_0

QQ[x]

g=x*(1-x)

deRham(g)

QQ[x,y]

I = ideal(x*y-1,x^2-y^2,y^3-x)

syz gens I

res I

Exercise B10: Compute H i (Cn \ V (p),C) by M2 for a polynomial
p, e.g., p = xy , n = 2. Is the result compatible with geometric
conclusion?
Note: (twisted) cohomology groups are used to derive several
formulas for normalzing constants, which lie in holonomic
D-modules, in statistics. Quiver D-modules (arxiv:0510451) may
help to study it.


