Goal of today: Integration functor and de Rham cohomology groups in one dimensional case.
Let K be \mathbf{C}. Let $f=\sum_{j=0}^{m} f_{j} x^{j}$ be a polynomial in one variable x. $m=\operatorname{ord}_{w}(f), w=(1)$.

$$
x^{i} f(x)=\sum_{j=0}^{m} f_{j} x^{j+i}
$$

$K[x]_{k}$ is the K vector space of the polynomials of which degree is less than or equal to k. Define a linear map (by the correspondence $e_{i} \Leftrightarrow x^{i}$)

$$
K[x]_{k-m} \simeq K^{k-m+1} \ni e_{i} \mapsto \sum_{j=0}^{m} f_{j} e_{j+i} \in K^{k+1} \simeq K[x]_{k} .
$$

The matrix representaion of this map is denoted by $M_{k}(f)$ called the Macaulay type matrix of the degree k.

Let $f=\sum_{j=0}^{m} f_{j} x^{j}$ be a polynomial in one variable x.

$$
x^{i} f(x)=\sum_{j=0}^{m} f_{j} x^{j+i}
$$

The correspondence $e_{i} \Leftrightarrow x^{i}$.

$$
K[x]_{k-m} \simeq K^{k-m+1} \ni e_{i} \mapsto \sum_{j=0}^{m} f_{j} e_{j+i} \in K^{k+1} \simeq K[x]_{k}
$$

Example B1: $f(x)=x^{2}+1$.

$$
\begin{aligned}
e_{0} & \mapsto 1 \cdot\left(x^{2}+1\right)=e_{2}+e_{0}, e_{1} \mapsto x \cdot\left(x^{2}+1\right)=e_{3}+e_{1} \\
M_{3}(f) & =\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \quad \text { Columns are indexed by } e_{0}, e_{1}, \ldots
\end{aligned}
$$

$$
D=K\langle x, \partial\rangle
$$

with the relation $\partial x=x \partial+1 . w=1, \operatorname{ord}_{(-w, w)}\left(x^{i} \partial^{j}\right)=j-i$. $f=\sum c_{i j} x^{i} \partial^{j}$ is called $(-w, w)$ homogeneous when $(j-i)$'s are the same value for all the terms.
Lemma B2: If we multiply two elements f and g in D which are $(-w, w)$ homogeneous, $f g$ are also $(-w, w)$ homogeneous. Proof(later). We have

$$
\partial^{p} x^{q}=x^{q} \partial^{p}+p q x^{q-1} \partial^{p-1}+\frac{p(p-1) q(q-1)}{2!} x^{q-2} \partial^{p-2}+\cdots
$$

Exercise B3: Prove it by induction. Since $\operatorname{ord}_{(-w, w)}\left(x^{q-i} \partial^{p-i}\right)=(p-i)-(q-i)=p-q$, the lemma is shown in case that $f=x^{p}, g=\partial^{q}$ from the formula above.
General cases are reduced to this case. Q.E.D.
We denote by F_{k} the K vector space spanned by $x^{i} \partial^{j}, j-i \leq k$ (the elements of which $(-w, w)$ order is less than or equal to k). Note that $F_{-1} \subseteq x D$.

Lemma B4: Let $g \in D$ be a differential operator of $(-w, w)$ order k. For $f \in F_{m} \cap D g$ and $m \geq k$, there exists $q \in F_{m-k}$ such that

$$
f=q g
$$

Proof(later). Since $f \in D g$ (a left ideal generated by g), there exists q^{\prime} such that $f=q^{\prime} g$. Suppose that $r=\operatorname{ord}_{(-w, w)}\left(q^{\prime}\right)>m-k$ and $q^{\prime}=q_{1}^{\prime}+q_{2}^{\prime}$ where q_{1}^{\prime} is $(-w, w)$ homogeneous with the order r and the order of q_{2}^{\prime} is less than r. We decompose g in the same way as $g=g_{1}+g_{2}$.
$q^{\prime} g=q_{1}^{\prime} g_{1}+q_{1}^{\prime} g_{2}+q_{2}^{\prime} g=f$. Since the top degree term is $q_{1}^{\prime} g_{1}$ which is $(-w, w)$ homogeneous, we have $q_{1}^{\prime} g_{1}=0$. Then $q_{1}^{\prime}=0$. It is a contradiction. Q.E.D.

For an element f of D, the expression as $\sum c_{i j} x^{i} \partial^{j}\left(\partial^{\prime} s\right.$ are collected to the right) is called the normally ordered expression and is denoted by: f :
Example. : $\partial x:=x \partial_{x}+1$.
Fix a natural number k. For $g \in D, \operatorname{ord}_{(-w, w)}(g)=j$, the operator g induces a linear map

$$
K[\partial]_{k-j} \ni \partial^{i} \mapsto: \partial^{i} g:\left.\right|_{x=0} \in K[\partial]_{k}
$$

The matrix representation of this map is called the Macaulay type matrix for restriction of degree k and is denoted by $M_{k}(g)$.
Example B5: $g=x \partial^{2}+x \partial, k=2$.

$$
\begin{gathered}
1 \mapsto: x \partial^{2}+x \partial:\left.\right|_{x=0}=0 \\
\partial \mapsto: \partial g:\left.\right|_{x=0}=x \partial^{3}+\partial^{2}+x \partial^{2}+\left.\partial\right|_{x=0}=\partial^{2}+\partial \\
M_{2}(g)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
\end{gathered}
$$

$K[\partial]_{k-1}$ is regarded as row vectors.

$$
C^{\bullet}: 0^{\varphi_{m+1}} K^{b_{m} \xrightarrow{\varphi_{m}}} K^{b_{m-1}} \xrightarrow{\varphi_{m-1}} \cdots \rightarrow K^{b_{1}} \xrightarrow{\varphi_{1}} K^{b_{0}} \xrightarrow{\varphi_{0}} 0
$$

where φ_{i} 's are K-linear maps is called a complex of vector spaces when $\varphi_{i} \circ \varphi_{i+1}=0$ holds. Define

$$
H^{i}\left(C^{\bullet}\right)=\frac{\operatorname{Ker} \varphi_{i}}{\operatorname{Im} \varphi_{i+1}}
$$

which is a K-vector space.
Example B6: $g=x \partial^{2}+x \partial$.

$$
C^{\bullet}: 0 \rightarrow K^{2} \xrightarrow{M_{2}(g)} K^{3} \rightarrow 0
$$

$H^{0}\left(C^{\bullet}\right) \simeq K^{2}, H^{1}\left(C^{\bullet}\right) \simeq K$.
Let $p(x)$ be a rational function. The action - of D to p is defined by

$$
x^{i} \partial^{j} \bullet p=x^{i} \frac{\partial^{j} p}{\partial x^{j}}
$$

The formal Fourier transform of $x^{i} \partial^{j}$ is defined by $(-\partial)^{i} x^{j}$. It can be extended on D.
Theorem B7: Let $p(x)$ be a square free polynomial and suppose that Ann $\frac{1}{p}=\{f \in D \mid f \bullet(1 / p)=0\}$ is generated by $\hat{g} \in D$. Let g be the formal Fourier transform of \hat{g} and k_{0} be the minimal integral root of the indicial polynomial (b-function) of g. For $k \geq k_{0}$, define the complex of vector spaces by

Then, we have $H^{i}\left(C^{\bullet}\right)=H^{1-i}(\mathbf{C} \backslash V(p), \mathbf{C})$.
Example B8: $p(x)=x(1-x)$. g is the g of our running example $\mathrm{B} 5, \mathrm{~B} 6$ and $k_{0}=1$.
Exercise B9: Compute $H^{i}(\mathbf{C} \backslash V(p))$ when $p(x)=x$ and $p(x)=x(x-1)(x-2)$. M2 codes in the last page.

Proof. The complex of K-vector spaces

$$
0 \rightarrow D / x D \otimes_{D} D \xrightarrow{1 \otimes g} D / x D \otimes_{D} D \rightarrow 0
$$

is rewritten as

$$
G^{\bullet}: 0 \rightarrow D / x D \ni f \stackrel{\varphi}{\mapsto}: f g:\left.\right|_{x=0} \in D / x D \simeq K[\partial] \rightarrow 0
$$

We will prove that $H^{j}\left(G^{\bullet}\right) \simeq H^{j}\left(C^{\bullet}\right)$. Consider the case $j=0$. Take non-zero element $f=\partial^{i}+\sum_{j<i} c_{j} \partial^{j}$ of $K[\partial]_{k} / \operatorname{Im} M_{k}(g)$ where $i \leq k$. If $f \in D g+x D$ and $i \geq r=\operatorname{ord}_{(-w, w)}(g)$, then by the Lemma B4, there exists $q \in F_{i-r}, q^{\prime} \in F_{i+1}$ such that $f-x q^{\prime}=q g$. Therefore, we have $f=: q g: \in \operatorname{Im} M_{k}(g)$. It is a contraction, then we have $f \notin D g+x D$ and consequently it is not in : $K[\partial] g$:. Therefore, the canonical K-linear map from $H^{0}\left(C^{\bullet}\right)$ to $H^{0}\left(G^{\bullet}\right)$ is injective.

Let $b(s)$ be the indicial polynomial for g. Suppose that $b(x \partial) \equiv x^{r} g \bmod F_{-1}$. Suppose $k>k_{0}$. (This k is not k in the theorem statement in this paragraph.) Applying ∂^{k} to the both sides, we have $b(k) \partial^{k}+x(\cdots) \equiv \partial^{k} x^{r} g \bmod F_{-1+k}$. Then, we have $b(k) \partial^{k} \equiv 0 \bmod F_{-1+k}+D g+x D$. It implies the surjectivity.

We prove that the canonical K-linear map from $\operatorname{Ker} M_{k}(g)$ to $\operatorname{Ker} \varphi$ is isomorphism. Let $\sum_{i \leq k-r} c_{i} \partial^{i} \neq 0$ belongs to the kernel of $M_{k}(g)$. In other words, we have : $\left(\sum c_{i} \partial^{i}\right) g:\left.\right|_{x=0}=0$. It implies that $\sum c_{i} \partial^{i}$ is a non-zero element of $D / x D$ which belongs to the kernel of φ. Then, it is injective.
The case $r<0$ can be shown analogously.

In order prove the surjectivity, we suppose that the highest $(-w, w)$ order terms of g is $\sum_{i=0}^{m} c_{i} x^{i} \partial^{r+i}$. Applying ∂^{j} to this sum, we have

$$
\partial^{j} g=\sum_{i=0}^{m} c_{i} j(j-1) \cdots(j-i+1) \partial^{r+j} \bmod F_{j+r-1}+x D
$$

Suppose that $a \partial^{j}+\cdots$ belongs to the kernel of φ. We have
$\left.:\left(a \partial^{j}+\cdots\right) g:\left.\right|_{x=0}=a\left(\sum_{i=0}^{m} c_{i} j(j-1) \cdots(j-i+1)\right)\right) \partial^{r+j}+\cdots$.
On the other hand, b-function of g is equal to

$$
x^{r} \sum c_{i} x^{i} \partial^{r+i}=\sum c_{i} \theta(\theta-1) \cdots(\theta-r-i+1)
$$

When $j>k-r$, we have $\left.(j+r) \cdots(j+1)\left(\sum_{i=0}^{m} c_{i} j(j-1) \cdots(j-i+1)\right)\right) \neq 0$. Therefore, $a=0$, which yields the surjectivity.

It follows from the Grothendieck comparison theorem (algebraic de Rham vs analytic de Rham) that we have
$H^{i}(\mathbf{C} \backslash V(p)) \simeq H^{1-i}\left(F^{\bullet}\right), \quad F^{\bullet}: 0 \rightarrow K\left[x, \frac{1}{p}\right] \xrightarrow{d} K\left[x, \frac{1}{p}\right] \rightarrow 0$
Here, $K[x, 1 / p]$ is regarded as a left D-module by the action - of ∂. Finally, we will show $H^{i}\left(G^{\bullet}\right) \simeq H\left(F^{\bullet}\right)$. The two complexes are border complexes of a double complex presented in the blackboard. Then, by the standard theorem of homology algebra (e.g., Kawada, Homology Algebra, Th 2.10 or Th 3.16), we obtain the conclusion. Q.E.D.

```
load "Dmodules.m2"
R=QQ[x,dx, WeylAlgebra=>{x=>dx}]
g = x*(1-x)
I = RatAnn(g)
Dintegration(I,{1})
rr=Dresolution(I)
rr.dd
p=rr.dd_1
p_0_0
QQ[x]
g=x*(1-x)
deRham(g)
QQ[x,y]
I = ideal ( }\textrm{x}*\textrm{y}-1,\mp@subsup{x}{}{\wedge}2-\mp@subsup{y}{}{\wedge}2,\mp@subsup{y}{}{\wedge}3-x
syz gens I
res I
```

Exercise B10: Compute $H^{i}\left(\mathbf{C}^{n} \backslash V(p), \mathbf{C}\right)$ by M 2 for a polynomial p, e.g., $p=x y, n=2$. Is the result compatible with geometric conclusion?
Note: (twisted) cohomology groups are used to derive several formulas for normalzing constants, which lie in holonomic D-modules, in statistics. Quiver D-modules (arxiv:0510451) may help to study it.

