Goal of today: Integration functor and de Rham cohomology groups in one dimensional case.

Let K be **C**. Let $f = \sum_{j=0}^{m} f_j x^j$ be a polynomial in one variable x. $m = \operatorname{ord}_w(f), w = (1)$.

$$x^{i}f(x) = \sum_{j=0}^{m} f_{j}x^{j+i}$$

 $K[x]_k$ is the K vector space of the polynomials of which degree is less than or equal to k. Define a linear map (by the correspondence $e_i \Leftrightarrow x^i$)

$$\mathcal{K}[x]_{k-m} \simeq \mathcal{K}^{k-m+1} \ni e_i \mapsto \sum_{j=0}^m f_j e_{j+i} \in \mathcal{K}^{k+1} \simeq \mathcal{K}[x]_k.$$

The matrix representation of this map is denoted by $M_k(f)$ called the Macaulay type matrix of the degree k. Let $f = \sum_{j=0}^{m} f_j x^j$ be a polynomial in one variable x.

$$x^{i}f(x) = \sum_{j=0}^{m} f_{j}x^{j+i}$$

The correspondence $e_i \Leftrightarrow x^i$.

$$\mathcal{K}[x]_{k-m} \simeq \mathcal{K}^{k-m+1} \ni e_i \mapsto \sum_{j=0}^m f_j e_{j+i} \in \mathcal{K}^{k+1} \simeq \mathcal{K}[x]_k.$$

Example B1: $f(x) = x^2 + 1$.

$$e_0 \mapsto 1 \cdot (x^2 + 1) = e_2 + e_0, e_1 \mapsto x \cdot (x^2 + 1) = e_3 + e_1$$

 $M_3(f) = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ Columns are indexed by e_0, e_1, \dots

$$D = K\langle x, \partial \rangle$$

with the relation $\partial x = x\partial + 1$. w = 1, $\operatorname{ord}_{(-w,w)}(x^i\partial^j) = j - i$. $f = \sum c_{ij}x^i\partial^j$ is called (-w, w) homogeneous when (j - i)'s are the same value for all the terms.

Lemma B2: If we multiply two elements f and g in D which are (-w, w) homogeneous, fg are also (-w, w) homogeneous. Proof(later). We have

$$\partial^{p} x^{q} = x^{q} \partial^{p} + pq x^{q-1} \partial^{p-1} + \frac{p(p-1)q(q-1)}{2!} x^{q-2} \partial^{p-2} + \cdots$$

Exercise B3: Prove it by induction. Since $\operatorname{ord}_{(-w,w)}(x^{q-i}\partial^{p-i}) = (p-i) - (q-i) = p - q$, the lemma is shown in case that $f = x^p$, $g = \partial^q$ from the formula above. General cases are reduced to this case. Q.E.D. We denote by F_k the K vector space spanned by $x^i\partial^j$, $j - i \le k$ (the elements of which (-w, w) order is less than or equal to k). Note that $F_{-1} \subseteq xD$. Lemma B4: Let $g \in D$ be a differential operator of (-w, w) order k. For $f \in F_m \cap Dg$ and $m \ge k$, there exists $q \in F_{m-k}$ such that

$$f = qg$$

Proof(later). Since $f \in Dg$ (a left ideal generated by g), there exists q' such that f = q'g. Suppose that $r = \operatorname{ord}_{(-w,w)}(q') > m - k$ and $q' = q'_1 + q'_2$ where q'_1 is (-w, w) homogeneous with the order r and the order of q'_2 is less than r. We decompose g in the same way as $g = g_1 + g_2$. $q'g = q'_1g_1 + q'_1g_2 + q'_2g = f$. Since the top degree term is q'_1g_1 which is (-w, w) homogeneous, we have $q'_1g_1 = 0$. Then $q'_1 = 0$. It is a contradiction. Q.E.D. For an element f of D, the expression as $\sum c_{ij}x^i\partial^j$ (∂ 's are collected to the right) is called the normally ordered expression and is denoted by : f:

Example. : $\partial x := x \partial_x + 1$.

Fix a natural number k. For $g \in D$, $\operatorname{ord}_{(-w,w)}(g) = j$, the operator g induces a linear map

$$\mathcal{K}[\partial]_{k-j} \ni \partial^i \mapsto : \partial^i g : |_{x=0} \in \mathcal{K}[\partial]_k$$

The matrix representation of this map is called the Macaulay type matrix for restriction of degree k and is denoted by $M_k(g)$. Example B5: $g = x\partial^2 + x\partial$, k = 2.

$$1 \mapsto : x\partial^2 + x\partial : |_{x=0} = 0$$

$$\partial \mapsto : \partial g : |_{x=0} = x\partial^3 + \partial^2 + x\partial^2 + \partial |_{x=0} = \partial^2 + \partial$$

$$M_2(g) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

 $K[\partial]_{k-1}$ is regarded as row vectors.

$$C^{\bullet} : 0 \stackrel{\varphi_{m+1}}{\to} K^{b_m} \stackrel{\varphi_m}{\to} K^{b_{m-1}} \stackrel{\varphi_{m-1}}{\to} \cdots \to K^{b_1} \stackrel{\varphi_1}{\to} K^{b_0} \stackrel{\varphi_0}{\to} 0$$

where φ_i 's are K-linear maps is called a complex of vector spaces when $\varphi_i \circ \varphi_{i+1} = 0$ holds. Define

$$H^{i}(C^{\bullet}) = \frac{\operatorname{Ker} \varphi_{i}}{\operatorname{Im} \varphi_{i+1}}$$

which is a *K*-vector space. Example B6: $g = x\partial^2 + x\partial$.

$$C^{ullet}: 0
ightarrow K^2 \stackrel{M_2(g)}{\longrightarrow} K^3
ightarrow 0$$

 $H^0(C^{\bullet}) \simeq K^2$, $H^1(C^{\bullet}) \simeq K$. Let p(x) be a rational function. The action \bullet of D to p is defined by

$$x^{i}\partial^{j} \bullet p = x^{i}\frac{\partial^{j}p}{\partial x^{j}}$$

The formal Fourier transform of $x^i \partial^j$ is defined by $(-\partial)^i x^j$. It can be extended on D.

Theorem B7: Let p(x) be a square free polynomial and suppose that $\operatorname{Ann} \frac{1}{p} = \{f \in D \mid f \bullet (1/p) = 0\}$ is generated by $\hat{g} \in D$. Let g be the formal Fourier transform of \hat{g} and k_0 be the minimal integral root of the indicial polynomial (b-function) of g. For $k \ge k_0$, define the complex of vector spaces by

$$C^{\bullet}$$
: $0 \to K^{k+1-\operatorname{ord}_{(-w,w)}(g)} \xrightarrow{M_k(g)} K^{k+1} \to 0$

Then, we have $H^i(C^{\bullet}) = H^{1-i}(\mathbf{C} \setminus V(p), \mathbf{C})$. Example B8: p(x) = x(1-x). g is the g of our running example B5, B6 and $k_0 = 1$. Exercise B9: Compute $H^i(\mathbf{C} \setminus V(p))$ when p(x) = x and p(x) = x(x-1)(x-2). M2 codes in the last page. Proof. The complex of K-vector spaces

$$0 \to D/xD \otimes_D D \xrightarrow{1 \otimes g} D/xD \otimes_D D \to 0$$

is rewritten as

$$G^{ullet}$$
 : $0 \to D/xD \ni f \stackrel{\varphi}{\mapsto}$: fg : $|_{x=0} \in D/xD \simeq K[\partial] \to 0$

We will prove that $H^{j}(G^{\bullet}) \simeq H^{j}(C^{\bullet})$. Consider the case j = 0. Take non-zero element $f = \partial^{j} + \sum_{j < i} c_{j}\partial^{j}$ of $K[\partial]_{k}/\operatorname{Im} M_{k}(g)$ where $i \leq k$. If $f \in Dg + xD$ and $i \geq r = \operatorname{ord}_{(-w,w)}(g)$, then by the Lemma B4, there exists $q \in F_{i-r}$, $q' \in F_{i+1}$ such that f - xq' = qg. Therefore, we have $f =: qg :\in \operatorname{Im} M_{k}(g)$. It is a contraction, then we have $f \notin Dg + xD$ and consequently it is not in : $K[\partial]g$:. Therefore, the canonical K-linear map from $H^{0}(C^{\bullet})$ to $H^{0}(G^{\bullet})$ is injective. Let b(s) be the indicial polynomial for g. Suppose that $b(x\partial) \equiv x^r g \mod F_{-1}$. Suppose $k > k_0$. (This k is not k in the theorem statement in this paragraph.) Applying ∂^k to the both sides, we have $b(k)\partial^k + x(\cdots) \equiv \partial^k x^r g \mod F_{-1+k}$. Then, we have $b(k)\partial^k \equiv 0 \mod F_{-1+k} + Dg + xD$. It implies the surjectivity.

We prove that the canonical K-linear map from Ker $M_k(g)$ to Ker φ is isomorphism. Let $\sum_{i \le k-r} c_i \partial^i \neq 0$ belongs to the kernel of $M_k(g)$. In other words, we have $: (\sum c_i \partial^i)g : |_{x=0} = 0$. It implies that $\sum c_i \partial^i$ is a non-zero element of D/xD which belongs to the kernel of φ . Then, it is injective. The case r < 0 can be shown analogously. In order prove the surjectivity, we suppose that the highest (-w, w) order terms of g is $\sum_{i=0}^{m} c_i x^i \partial^{r+i}$. Applying ∂^j to this sum, we have

$$\partial^j g = \sum_{i=0}^m c_i j(j-1) \cdots (j-i+1) \partial^{r+j} \mod F_{j+r-1} + xD$$

Suppose that $a\partial^j + \cdots$ belongs to the kernel of φ . We have

$$: (a\partial^j + \cdots)g : |_{x=0} = a(\sum_{i=0}^m c_i j(j-1) \cdots (j-i+1)))\partial^{r+j} + \cdots$$

On the other hand, b-function of g is equal to

$$x^r \sum c_i x^i \partial^{r+i} = \sum c_i \theta(\theta-1) \cdots (\theta-r-i+1)$$

When j > k - r, we have $(j + r) \cdots (j + 1) (\sum_{i=0}^{m} c_i j (j - 1) \cdots (j - i + 1))) \neq 0$. Therefore, a = 0, which yields the surjectivity.

It follows from the Grothendieck comparison theorem (algebraic de Rham vs analytic de Rham) that we have

$$H^{i}(\mathbf{C} \setminus V(p)) \simeq H^{1-i}(F^{\bullet}), \quad F^{\bullet} : 0 \to K[x, \frac{1}{p}] \stackrel{d}{\longrightarrow} K[x, \frac{1}{p}] \to 0$$

Here, K[x, 1/p] is regarded as a left *D*-module by the action \bullet of ∂ . Finally, we will show $H^i(G^{\bullet}) \simeq H(F^{\bullet})$. The two complexes are border complexes of a double complex presented in the blackboard. Then, by the standard theorem of homology algebra (e.g., Kawada, Homology Algebra, Th 2.10 or Th 3.16), we obtain the conclusion. Q.E.D.

```
Inputs for Macaulav 2 (M2)
load "Dmodules m2"
R=QQ[x,dx,Wey1Algebra=>{x=>dx}]
g = x * (1 - x)
\tilde{I} = RatAnn(g)
Dintegration(I,{1})
rr=Dresolution(I)
rr.dd
p=rr.dd_1
р 0 0
QQ[x]
g = x * (1 - x)
deRham(g)
QQ[x,y]
I = ideal(x*v-1,x^2-v^2,v^3-x)
syz gens I
res I
```

Exercise B10: Compute $H^i(\mathbb{C}^n \setminus V(p), \mathbb{C})$ by M2 for a polynomial p, e.g., p = xy, n = 2. Is the result compatible with geometric conclusion?

Note: (twisted) cohomology groups are used to derive several formulas for normalzing constants, which lie in holonomic *D*-modules, in statistics. Quiver *D*-modules (arxiv:0510451) may help to study it.