3-1 Bibliography and Recent Advances

Fisher-Bingham distribution and its MLE

\[z(\Theta, \theta) = \int_{S^n} \exp(t^T \Theta t + \theta t) |dt| \]

(1)

|dt|: the Haar measure on the hypersphere \(S^n \) over which \(t \) runs.
\(\Theta \): \((n+1) \times (n+1) \) real symmetric matrix. \(\theta \): real vector of the length \(n+1 \).

The rank of differential equations is \(2n + 2 \).

3. T. Sei, A. Kume, Calculating the normalising constant of the Bingham distribution on the sphere using the holonomic gradient method, Statistics and Computing (2013, online). [Degenerated cases need independent discussions.]

3-1 Bibliography and Recent Advances
X, Θ: 3 × 3 real matrices. Θᵀ: the transpose of Θ. µ: the invariant measure on SO(3).

\[z(Θ) = \int_{SO(3)} \exp(\text{Tr}(Θ^T X)) \, dµ(X). \]

Th The rank of differential equations is 4.

The cumulative distribution function for the first eigenvalue of Wishart matrices

Matrix hypergeometric integral \(_1F_1 \)

\[X : m \times m \text{ real matrix.} \]

\[\int_{0 < X < I_m} \exp(\text{Tr} XY)|X|^{a-(m+1)/2}|I_m - X|^{c-a-(m+1)/2} dX, \]

0 < \(X < I_m \) means that \(X \) and \(I_m - X \) are positive definite symmetric matrix. \(dX = \prod_{i \leq j} dx_{ij}. \) Th The rank of differential equations is \(2^m. \)

\[m = 10, n = 12, \beta = (1, 2, \ldots, 10) \]

Orthant probability

\[z(\tau, \theta) = \int_0^\infty \cdots \int_0^\infty \exp \left(\sum_{i=1}^m \theta_i x_i + \sum_{i,j=1}^m x_i x_j \tau_{ij} \right) \, dx \]

\[dx = dx_1 \cdots dx_m. \]

The rank of differential equations is \(2^m \).

1. L. Schläfli, On the multiple integral \(\int^n dx dy \cdots dz \) whose limits are \(p_1 = a_1 x + b_1 y + \cdots + h_1 z > 0, \quad p_2 > 0, \ldots, p_n > 0 \) and \(x^2 + y^2 + \cdots + z^2 < 1 \), Quart. J. Pure Appl. Math. 2, 269–301; 3, 54–68, 97–108, 1858.

\[z(\theta) = \int_C \exp\left(\sum_{j=1}^{n} \theta_j t^a_j \right) \prod_{i=1}^{d} t_i^{-b_i-1} dt, \quad dt = dt_1 \cdots dt_d \]

\(A = (a_{ij}) \): \(n \times d \) integer matrix. \(b_i \): real number. \(a_j \): the \(j \)-th column vector of the matrix \(A \). \(t^a_j = \prod_{i=1}^{d} t_i^{a_{ij}} \). Th The (holonomic) rank of the N.C. of the \(A \)-distribution associated to order polytopes has polynomial complexity.

Mathematical byproduct: construction of a basis of twisted or rapid decay cohomology groups for complement of the zero set of a generic polynomial is reduced to a question in combinatorial commutative algebra.

More research topics will be in this conference!