1-2 Pfaffian System

1-2 Pfaffian System

æ

∄ ▶ ∢ ≣

1-2 Definition of Pfaffian System

A system of differential equations of the form

$$\frac{\partial F}{\partial x_i} = P_i F, \quad i = 1, \dots, n, \tag{1}$$

where P_i is an $r \times r$ square matrix whose entries are rational functions satisfying the integrability condition and F is an unknown vector valued function of size r, is called a Pfaffian system. Solving the Pfaffian system means to determine the vector valued function F under a given initial condition $F = F_0$ at x = a. Example 1 In case of n = 1, a Pfaffian system is a system of first order ordinary differential equations.

Example 2

$$\frac{\partial F}{\partial x} = \begin{pmatrix} 0 & y/x \\ -xy & 1/x \end{pmatrix} F, \ \frac{\partial F}{\partial y} = \begin{pmatrix} 0 & 1 \\ -x^2 & 0 \end{pmatrix} F.$$

 $F = (\cos(xy), -x\sin(xy))^T$ is a solution of the system

Singular locus, integrability condition

When the all P_i 's are non-sigular at x = a, the Pfaffian system is called non-sigular at x = a. If not, x = a is called the singular point of the Pfaffian system. The set of the singular points is called the singular locus. Example 2 (continued) The singular locus is x = 0. We assume that

$$\frac{\partial P_i}{\partial x_j} + P_i P_j = \frac{\partial P_j}{\partial x_i} + P_j P_i \tag{2}$$

holds for any i, j. The condition is called the integrability condition.

Theorem

If x = a is out of the singular locus, then there exist r linearly independent holomorphic solutions of the Pfaffian system.

Exercise 1.2.1 Derive the integrability condition by assuming the existence of *r*-linearly independent smooth solutions. Hint: we have $\partial_i \partial_j \bullet F = \partial_j \partial_i \bullet F$ for any smooth solution *F*.

From a left ideal I to a Pfaffian system

Assume n = 1 and a left ideal I is generated by $\partial^2 + a_1(x)\partial + a_0(x)$. $\{1, \partial\}$ is a base set of standard monomials. Then, we have

$$\partial \left(\begin{array}{c} 1\\ \partial \end{array}\right) = \left(\begin{array}{c} 0 & 1\\ -a_0 & -a_1 \end{array}\right) \left(\begin{array}{c} 1\\ \partial \end{array}\right) \mod I$$

The associated Pfaffian system is

$$\frac{\partial F}{\partial x} = \left(\begin{array}{cc} 0 & 1\\ -a_0 & -a_1 \end{array}\right) F$$

When f is a solution of I, $F = (1 \cdot f, \partial \cdot f)^T$ is a solution of the Pfaffian system We can make an analogous construction of a Pfaffian system for a Gröbner basis of I and a base set of standard monomials. $r = \dim_{C(x)} R_n / I$ is called the holonomic rank¹ of a left ideal I.

Theorem

Let r be the holonomic rank of a left ideal I in R. The set of $r \times r$ matrices P_i constructed by the method above satisfies the integrability condition.

 ${}^{1}R_{n}/I$ is regarded as **C**(x)-vector space.

Exercise

Exercise 1.2.2 Obtain the reduced Gröbner basis for the left ideal I generated by $\partial^4 - 1$ and $\partial^2 - 1$ in R_1 ($\partial = \partial_1$). How much is the holonomic rank of I? Give a base set of standard monomials and derive a Pfaffian sytem for I.

Exercise 1.2.3 Derive a Pfaffian system for the system of differential equations

$$g_1 = \underline{-x\partial_x} + y\partial_y + 1, g_2 = \underline{\partial_x\partial_y} - 1, g_3 = \underline{y\partial_y^2} + 2\partial_y - x.$$

It is already checked that $\{g_1, g_2, g_3\}$ is a Gröbner basis with the graded lexicographic order such that $\partial_x > \partial_y$. This is a system for the normalizing constant $z(x, y) = \int_0^{+\infty} \exp\left(-\frac{x}{t} - yt\right) dt$ where x, y > 0. Reference: Chapter 6 of "Edited by Hibi, Gröbner Bases: Statistics and Software Systems, Springer, 2014".