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.. Holonomic Gradient Method and Statistics

f (θ, t) : unnormalized probability distribution function with respect
to t = (t1, . . . , tn) where θ = (θ1, . . . , θm) is a parameter vector.

z(θ) =

∫
Ω
f (θ, t)dt

is the normalizing constant. f (t, θ)/z(θ) is a probability
distribution function on Ω. Evaluation of the N.C. z(θ) is a
fundamental problem in statistics.

Example: f (θ, t) = exp
(
−t2

2θ2

)
,

Ω = (−∞,+∞),
then z(θ) =

√
2πθ2.
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.. Holonomic Gradient Method and Statistics

An analytic function f (x) is called a holonomic function when it
satisifes n linear ODE’s

ri∑
j=0

aij(x)

(
∂

∂xi

)j

f , aij(x) ∈ C[x1, . . . , xn], i = 1, . . . , n.

.
Theorem (Zeilberger, 1990)
..

......

If f (x1, . . . , xn) is a holonomic function in x, then the integral∫
Ω f (x)dxn is a holonomic function in (x1, . . . , xn−1) (under some
conditions on the set Ω). [Use the theory of D-modules]

Holonomic Gradient Method [N3OST2; 2011]� �
When f (θ, t) is a holonomic function, the N.C. satisfies a system
of linear partial differential equations, which can be algorithmi-
cally constructed by Gröbner bases. Evaluate the N.C. and its
derivatives by the system with methods in numerical analysis.� �
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.. 3 Steps of Holonomic Gradient Method

...1 Construct a Pfaffian system (system of ODE’s) for z(θ). 1

...2 Evaluate numerically z(θ) and its derivatives at a point
θ = θ0.

...3 Apply numerical analysis methods for the Pfaffian system.

Example:

z(θ) =

∫
Ω
exp(θt)t1/2(1− t)1/2dt, Ω = [0, 1]

⇒ (θ∂2
θ + (3− θ)∂θ − 3/2)z = 0, ∂θ =

∂

∂θ

⇒ ∂

∂θ
Z = PZ ,

Z =

(
z
∂
∂θ z

)
,P =

(
0 1
3
2θ −3−θ

θ

)
1Oaku’s algorithm (1997) constructs it in general, but the complexity is

high.
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.. Example from directional statistics

Von-Mises distribution. f (θ, t) = exp(θ1t1 + θ2t2), (t1, t2) ∈ S1.

z(θ) =

∫
t21+t22=1

exp(θ1t1 + θ2t2)dt

θ1∂2 − θ2∂1,−∂2
2 − ∂2

1 + 1 ⇒ ?

F = (z , ∂1z)
T , ∂i = ∂/∂θi . The Pfaffian system is

∂F

∂θ1
=

(
0 1
θ21

θ21+θ22

θ22−θ21
θ1(θ21+θ22)

)
F

∂F

∂θ2
=

(
0 θ2/θ1

θ1θ2
θ21+θ22

−2θ2
θ21+θ22

)
F
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.. Application to Fisher’s maximal likelihood estimates

Ti ’s are data. Find θ such that∏
i

f (θ,Ti )

z(θ)

is maximal.

Figure : Wind directions at 9:00 AM from 2011-01-01 to 2011-01-14
(NA on 11). Data is taken at the height of 10000m of Sapporo.
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