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Coding theory: Background

Errors occur during the transmission of information.

Coding theory deals with mathematical methods used to
package information so that transmission errors are detected
and corrected.

The goals of coding theory are:

1) the efficient transmission of information

2) the integrity of information transmitted.



Coding theory: Background

From its origins in engineering and information science, coding
theory has also developed as an area of discrete mathematics,
combining algebra, combinatorics, number theory and even

geometry.
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Coding theory: Background

Let Abe a set of symbols, n € N

A" .= {(ap, ai,...,an-1) | @ € A}, the set of n-tuples over A
code of length n over A: a subset of A”

codeword: element of a code

A distance function is usually defined on A”

Example: Hamming distance between two n-tuples
a=(ap,as,...,ap_1)and b= (bg, by,...,by_1):

du(a, b) == #{i| a; # b;}



Coding theory: Background

Parameters of a code: An (n, k, d)a-code is a code over A with
@ length n
@ size k
@ minimum distance d



Coding theory: Background

Parameters of a code: An (n, k, d)a-code is a code over A with
@ length n
@ size k
@ minimum distance d

The goal of coding theory in engineering is the construction of
codes with



Coding theory: Background

Parameters of a code: An (n, k, d)a-code is a code over A with
@ length n
@ size k
@ minimum distance d

The goal of coding theory in engineering is the construction of
codes with

@ small n



Coding theory: Background

Parameters of a code: An (n, k, d)a-code is a code over A with
@ length n
@ size k
@ minimum distance d

The goal of coding theory in engineering is the construction of
codes with

@ small n
@ large k



Coding theory: Background

Parameters of a code: An (n, k, d)a-code is a code over A with
@ length n
@ size k
@ minimum distance d

The goal of coding theory in engineering is the construction of
codes with

@ small n
@ large k
@ large d



Coding theory: Background

Parameters of a code: An (n, k, d)a-code is a code over A with
@ length n
@ size k
@ minimum distance d

The goal of coding theory in engineering is the construction of
codes with

@ small n
@ large k
@ large d

These are incompatible goals!
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Codes over fields

The traditional setting for codes: Galois fields Fy := GF(q)
A (linear) code of length n over IF4: a subspace of Fg
Examples: Binary codes

(24,2 4) Reed-Muller
(2%, 28, 6) Nordstrom-Robinson (a non-linear binary code)
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Codes over finite rings

Generalizations of Nordstrom-Robinson code: Preparata,
Kerdock codes, etc.

Recent interest in codes over rings is due to the discovery that
certain non-linear binary codes can be constructed as images
of codes over the finite ring Z4 := Z/4Z.

Definition. The Gray map ¢ : Z4 — ZS is given by
0—00,1+—01,2+— 11, 3+—— 10.

We can extend this to ¢ : Z] —— Z2".
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Codes over finite rings

Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé,
1992) Let (O) be the linear (2,256, 6)7, code with generator

matrix
33231000
G:30323100
30032310
3 00032 31

Then ¢((O) = Nordstrom-Robinson code. The non-linear
binary codes are Gray map images of linear codes over Zj.
There has been a lot of interest in codes over finite rings these

last 15 years.
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Codes over rings

Definition. Let R be a finite ring. (e.9. Zn := Z/mZ)

1) code: an R-submodule of R" := {(x1, X2, ..., Xn) | X; € R}
2) codeword: element of a code
3) Two vectors x = (x1,...,Xp) and y = (y4,...,¥n) are

orthogonal if their Euclidean inner product is zero. i.e.

X-y=>Y xyi=0
i
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Definition. Let C be a code over a ring R.
1) dual of C:

Ct:={yeR"|x-y=0,v¥xecC}
(Remark: C* is a code.)

2) IfC C C*, Cis self-orthogonal.
3)IfC =C*, Cis self-dual.
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Equivalent codes

Two codes of same length over Z,s are equivalent if one can be
obtained from the other by permutation of coordinates, possibly
followed by multiplication of some coordinates by —1.

Cq ~ Co <= 3 n x n matrix P such that
Ci =CoP := {CP ’ Cc Cg}

where P has exactly one entry +1 in every row and in every
column and all other entries are zero.
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Counting the number of codes

The number of codes equivalent to a code C of length nis

|Enl
[Aut(C)|’

where Ej, is the group of all sign-permutations and Aut(C) is the
automorphism group of C, i.e. the group of all
sign-permutations that send C to itself. Thus the number of
distinct self-dual codes over Zps of length nis given by

Nos (1 Z |Aut

where the sum runs over all inequivalent self-dual codes C. We
wish to find a more explicit formula for Nps(n). This is called the
mass formula.
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What is it for?

The mass formula

_ |En|
Npe(n) = zc: JAUt(C)[’

is important for the computation of the number of inequivalent
classes of self-dual codes over Zps and the classification of
such codes,...

... and hence, of codes over Zn.
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Mass formulas for Zs

@ In 1993, Conway and Sloane classified all self-dual codes
over Z4 up to length n = 9, without the aid of a mass
formula.

@ Mass formula for self-dual codes over Z4 ( Gaborit. IEEE
Transactions Information Theory, 1996)

@ Classification of all self-dual Z4-codes with n < 15 (Fields,

Gaborit, Leon, Pless. IEEE Transactions Information
Theory, 1998)
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Mass formulas for Zs

@ Mass formula for self-dual codes over Z ., odd prime p:
Balmaceda, Betty, Nemenzo. Discrete Mathematics (to
appear).

Theorem. Let p be an odd prime. If Nz(n) is the number
of distinct self-dual codes over Z. of length n then

k(k—1)
Np2(n) = E op(nk)p 2,
osk<|g]

where o,(n, k) is the number of distinct self-orthogonal
codes over F, of dimension k.

@ Classification of all self-dual codes over Zg (for lengths
n < 8for Zg, n < 7 for Zos and n < 6 for Zg)
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How is classification done?

To count the number of inequivalent codes of given length n:
©Q SetSUM =0
© Find a self-dual code C; of length n
© Compute |Aut(Cy)|, SUM = SUM + 220,

Q Foreveryj=2,3,...,find a self-dual code C;, not
equivalent to C, . ..,Cj_1, and compute |Aut(C;)|, and

27|
SUM = SUM + ;2

© Compare SUM to mass formula. If SUM < mass formula,
go to step (4); if SUM = mass formula, done.
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An example

Classify self-dual codes of length n = 8 over Zg:
k(k 1)
No(8) = > 03(8.K)3
0<k<4
= 1+ 1120 4 36400 - 3 + 44800 - 3> + 2240 - 3°

= 2952881
We can also compute
288|
Z AUt = 1+ 224 + 4480 + 20160 + 26880 + 1680

+896 + 8960 + 53760 + 215040 + 40320
+322560 + 645120 + 645120 + 322560 + 645120
= 2952881

Therefore there are 16 inequivalent self-dual codes of length 8
over Zg.
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Codes over Z:, for primes p

A code C of length nover Z 3 has a “generator matrix" which

can be written as
Ik A Az Ay A
O pli pBs pBy | =| pB

0 0 pPln P?Cy p*C

G:

liz i x iidentity matrix

Az = Asp + PAs;

By = Byo + pBas

Ay = Ago + PAst + PP As2

Az, B3, C4, Aj and Bj have entries from {0,1,...,p -1}
Columns have sizes k, I, mand h, withn=k 4+ 1+ m+ h.
C has p3f+2+m codewords.
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Self-dual codes over Z

The dual code C* is of type {h, m, I} and has p3+2m+/
codewords.

Thus: wheneverC =Ct, k =hand [ = m.

A self-dual code then is of even length n = 2(k + /).
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Self-dual codes over Z

We can characterize self-dual codes:

Proposition. Let C be a code over Z . Then C is a self-dual
code if and only if kK = h, | = m and the following hold:

AA! = 0 (mod p®) (1)
AB! = 0 (mod p?) 2)
BB' = 0 (mod p) 3)
AC! = 0 (mod p) (4)

(We shall examine conditions (1)-(4) further, in terms of the
matrices over Zp.)
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can be induced from a self-dual code Cy over Zp; there are
pk(z=") self-dual codes over Z,s corresponding to each
subspace of C4 of dimension k (0 < k < 7).
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Constructing self-dual codes from below

Proposition. Let p be an odd prime. A self-dual code over Z s
can be induced from a self-dual code Cy over Zp; there are
pk(z=") self-dual codes over Z,s corresponding to each
subspace of C4 of dimension k (0 < k < 7).

Proposition. Define ¢ as follows: 1) if T, € Aand 8 | n, then
e=1;2)if 1, ¢ A, then ¢ = 0. Any self-dual code over Zs is
induced from a self-dual code C; over Z,. There are 2K-+k*+<
self-dual codes over Z,s corresponding to each subspace of
dimension k (0 < k < 2) of C4.
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The number of underlying self-dual codes over Z,

Lemma. (Pless, 1965) Let p be an odd prime and o,(n, k) the
number of self-orthogonal codes of even length n and
dimension k over Zp. Then :

Q If (—1)2 is a square,

n—k _ pn/2—k n/2 _ k—=1/n-2i _
[T (o' — 1)

@ If (—1)2 is not a square ,

n—k n/2—k _ n/2 k—1/,n-2i
NGRS DI E 2 -1 .,

Hi:1(P'_1)




The number of subspaces

Lemma. Let V be an n-dimensional vector space over the
integers modulo p. The number p(n, k) of subspaces T C V of
dimension k < nis given by

(" = 1)(p" - p)..(p" — P¥ )
A = (o ) ) P
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Theorem. Let Ns(n) denote the number of distinct self-dual
codes of even length n over Z s

1. If pis odd then

n_1
_1ﬂ 2 n2/_1 n,_1 R
Ns(n) = (1+ () F) [T Z5—~ EZ( . >pk<z-1>.
i=1

n
2
k=0



Theorem. Let Ns(n) denote the number of distinct self-dual
codes of even length nover Z ;.

1. If pis odd then

51 i 3 /k—1 i
B —1.n 2 pn 2/_1 2 pn—1_1 K(2—1)
Nps(n)(1+(p)z)i1} = §<f_opk_i‘1>p 5-1),

2.1fn=2,6 (mod 8) then

21 /k=1 pn 22 272 5n 0j 2
2n—=l—= 1 2 -1 kn
Ng(n) = (H oI _ q ) ( Diti—k _ { ) 2%.
k=0 \i=0 i=k



3. Ifn=4 (mod 8) then

31 /k—1 gp_oj_ i 5-2 _, oi
on 2/2722/172 2 on 2/271 P
Ng(n) = <H 2it1 _ 1 ) ( Dit1—k _q 2%,

k=0 \i=0



3. Ifn=4 (mod 8) then

n
2

&
S
I
g

2T — 1

! <k1_f on-2i-2 _ pf—i-1 _ 2) (

>
Il

0

=

27T 1

2

—1 (k—1 on—2i—2 _|_2g_i—1 _ 2)
i=0

k= i=0

3 (k—2 on-2i-3 | of
1

2T — 1

—i—2_1>
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@ n = 2. There is only one self-dual code over Zg of length 2.



A (partial) classification of self-dual codes over Zg
and Zg by Gulliver, et.al.

Dougherty, Gulliver and Wong. Self-dual codes over Zg and Zg.
Designs, Codes and Cryptography 41 (Nov 2006):

@ n = 2. There is only one self-dual code over Zg of length 2.

@ n = 4. There is only one self-dual code over Zg of length 4.

200 2
0220
Gi=109 0 4 0
000 4



A (partial) classification of self-dual codes over Zg
and Zg by Gulliver, et.al.

Dougherty, Gulliver and Wong. Self-dual codes over Zg and Zsg.
Designs, Codes and Cryptography 41 (Nov 2006):

@ n = 6. One self-dual code over Zg of length 6.

2 00002
020020
Gy = 002200
0 00 400
0 00O040
0 00OO0OAH4



Example: self-dual codes over Zg with n =6, k = 2,
[ =1.

We start with a self-dual binary code
101110
[g] =011 10 1
001100

1 1 10
A2=<1)7A302<1>,A4o=(0 1)-

with



self-dual codes over Zg with n =6, k = 2,

10 1 1+2x 14+2y+4z 2+47
c_ 01 1 3-2x 2+4(Z+y+Yy) 1+2y +42"
|10 0 2 2 4(1 — x) 4x ’
0 00 4 4 4

where x, y, y/, z, Z/, and Z” are arbitrary elements of F».



self-dual codes over Zg with n =6, k = 2,

10 1 1+2x 14+2y+4z 2+47
c_ 01 1 3-2x 2+4(Z+y+Yy) 1+2y +42"
|10 0 2 2 4(1 — x) 4x ’
0 00 4 4 4

where x, y, y/, z, Z/, and Z” are arbitrary elements of F».

The code C is self-dual over Zg.
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@ Classification for Z,s codes of moderate lengths; develop
efficient methods for computing automorphism groups

@ Generalize to Zps

@ Explore other rings: Galois rings, finite chain rings,
Frobenius rings

@ another track: Generalization of Hammons, et. al. result for
other ring settings



Thank you.



