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Coding theory: Background

Errors occur during the transmission of information.

Coding theory deals with mathematical methods used to
package information so that transmission errors are detected
and corrected.

The goals of coding theory are:

1) the efficient transmission of information

2) the integrity of information transmitted.
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Coding theory: Background

From its origins in engineering and information science, coding
theory has also developed as an area of discrete mathematics,
combining algebra, combinatorics, number theory and even
geometry.
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Let A be a set of symbols, n ∈ N

An := {(a0, a1, . . . , an−1) | ai ∈ A}, the set of n-tuples over A

code of length n over A: a subset of An

codeword: element of a code

A distance function is usually defined on An

Example: Hamming distance between two n-tuples
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dH(a, b) := #{i | ai 6= bi}
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Parameters of a code: An (n, k , d)A-code is a code over A with
length n
size k
minimum distance d

The goal of coding theory in engineering is the construction of
codes with

small n
large k
large d

These are incompatible goals!
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Codes over fields

The traditional setting for codes: Galois fields Fq := GF (q)

A (linear) code of length n over Fq: a subspace of Fn
q

Examples: Binary codes
(24, 211, 4) Reed-Muller
(24, 28, 6) Nordstrom-Robinson (a non-linear binary code)
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Codes over finite rings

Generalizations of Nordstrom-Robinson code: Preparata,
Kerdock codes, etc.

Recent interest in codes over rings is due to the discovery that
certain non-linear binary codes can be constructed as images
of codes over the finite ring Z4 := Z/4Z.

Definition. The Gray map φ : Z4 −→ Z2
2 is given by

0 7−→ 00, 1 7−→ 01, 2 7−→ 11, 3 7−→ 10.

We can extend this to φ : Zn
4 7−→−→ Z2n

2 .
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Codes over finite rings

Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé,
1992) Let (O) be the linear (2, 256, 6)Z4 code with generator
matrix

G =


3 3 2 3 1 0 0 0
3 0 3 2 3 1 0 0
3 0 0 3 2 3 1 0
3 0 0 0 3 2 3 1

 .

Then φ((O) = Nordstrom-Robinson code. The non-linear
binary codes are Gray map images of linear codes over Z4.
There has been a lot of interest in codes over finite rings these

last 15 years.
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Definition. Let R be a finite ring. (e.g. Zm := Z/mZ)
1) code: an R-submodule of Rn := {(x1, x2, . . . , xn) | xi ∈ R}
2) codeword: element of a code
3) Two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) are
orthogonal if their Euclidean inner product is zero. i.e.

x · y =
∑

i

xiyi = 0
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Definition. Let C be a code over a ring R.

1) dual of C:

C⊥ := {y ∈ Rn | x · y = 0,∀x ∈ C}

(Remark: C⊥ is a code.)

2) If C ⊆ C⊥, C is self-orthogonal.
3) If C = C⊥, C is self-dual.



Self-dual codes

Definition. Let C be a code over a ring R.

1) dual of C:

C⊥ := {y ∈ Rn | x · y = 0,∀x ∈ C}

(Remark: C⊥ is a code.)

2) If C ⊆ C⊥, C is self-orthogonal.
3) If C = C⊥, C is self-dual.



Self-dual codes

Definition. Let C be a code over a ring R.

1) dual of C:

C⊥ := {y ∈ Rn | x · y = 0,∀x ∈ C}

(Remark: C⊥ is a code.)

2) If C ⊆ C⊥, C is self-orthogonal.
3) If C = C⊥, C is self-dual.



Self-dual codes

Definition. Let C be a code over a ring R.

1) dual of C:

C⊥ := {y ∈ Rn | x · y = 0,∀x ∈ C}

(Remark: C⊥ is a code.)

2) If C ⊆ C⊥, C is self-orthogonal.
3) If C = C⊥, C is self-dual.



Self-dual codes

Definition. Let C be a code over a ring R.

1) dual of C:

C⊥ := {y ∈ Rn | x · y = 0,∀x ∈ C}

(Remark: C⊥ is a code.)

2) If C ⊆ C⊥, C is self-orthogonal.
3) If C = C⊥, C is self-dual.



Self-dual codes

Definition. Let C be a code over a ring R.

1) dual of C:

C⊥ := {y ∈ Rn | x · y = 0,∀x ∈ C}

(Remark: C⊥ is a code.)

2) If C ⊆ C⊥, C is self-orthogonal.
3) If C = C⊥, C is self-dual.



Equivalent codes

Two codes of same length over Zps are equivalent if one can be
obtained from the other by permutation of coordinates, possibly
followed by multiplication of some coordinates by −1.

C1 ≈ C2 ⇐⇒ ∃ n × n matrix P such that

C1 = C2P := {cP | c ∈ C2}

where P has exactly one entry ±1 in every row and in every
column and all other entries are zero.
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Counting the number of codes

The number of codes equivalent to a code C of length n is

|En|
|Aut(C)|

,

where En is the group of all sign-permutations and Aut(C) is the
automorphism group of C, i.e. the group of all
sign-permutations that send C to itself. Thus the number of
distinct self-dual codes over Zps of length n is given by

Nps(n) =
∑
C

2nn!

|Aut(C)|
,

where the sum runs over all inequivalent self-dual codes C. We
wish to find a more explicit formula for Nps(n). This is called the
mass formula.
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The mass formula

Nps(n) =
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C
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|Aut(C)|

,

is important for the computation of the number of inequivalent
classes of self-dual codes over Zps and the classification of
such codes,...
... and hence, of codes over Zm.
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Mass formulas for Zps

In 1993, Conway and Sloane classified all self-dual codes
over Z4 up to length n = 9, without the aid of a mass
formula.
Mass formula for self-dual codes over Z4 ( Gaborit. IEEE
Transactions Information Theory, 1996)
Classification of all self-dual Z4-codes with n ≤ 15 (Fields,
Gaborit, Leon, Pless. IEEE Transactions Information
Theory, 1998)
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Mass formulas for Zps

Mass formula for self-dual codes over Zp2 , odd prime p:
Balmaceda, Betty, Nemenzo. Discrete Mathematics (to
appear).
Theorem. Let p be an odd prime. If Np2(n) is the number
of distinct self-dual codes over Zp2 of length n then

Np2(n) =
∑

0≤k≤b n
2c

σp(n, k) p
k(k−1)

2 ,

where σp(n, k) is the number of distinct self-orthogonal
codes over Fp of dimension k .

Classification of all self-dual codes over Z9 (for lengths
n ≤ 8 for Z9, n ≤ 7 for Z25 and n ≤ 6 for Z49)
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How is classification done?

To count the number of inequivalent codes of given length n:
1 Set SUM = 0
2 Find a self-dual code C1 of length n
3 Compute |Aut(C1)|, SUM = SUM + 2nn!

|Aut(C1)|
4 For every j = 2, 3, . . ., find a self-dual code Cj , not

equivalent to C1, . . . , Cj−1, and compute |Aut(Cj)|, and
SUM = SUM + 2nn!

|Aut(C1)|
5 Compare SUM to mass formula. If SUM < mass formula,

go to step (4); if SUM = mass formula, done.
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An example

Classify self-dual codes of length n = 8 over Z9:

N9(8) =
∑

0≤k≤4

σ3(8, k)3
k(k−1)

2

= 1 + 1120 + 36400 · 3 + 44800 · 33 + 2240 · 36

= 2952881

We can also compute∑ 288!

|Aut(C)|
= 1 + 224 + 4480 + 20160 + 26880 + 1680

+896 + 8960 + 53760 + 215040 + 40320
+322560 + 645120 + 645120 + 322560 + 645120

= 2952881

Therefore there are 16 inequivalent self-dual codes of length 8
over Z9.
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Codes over Zp3, for primes p

A code C of length n over Zp3 has a “generator matrix" which
can be written as

G =

 Ik A2 A3 A4
0 pIl pB3 pB4
0 0 p2Im p2C4

 =

 A
pB
p2C


Ii : i × i identity matrix
A3 = A30 + pA31
B4 = B40 + pB41
A4 = A40 + pA41 + p2A42
A2, B3, C4, Aij and Bij have entries from {0, 1, . . . , p − 1}
Columns have sizes k , l , m and h, with n = k + l + m + h.
C has p3k+2l+m codewords.
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Self-dual codes over Zp3

The dual code C⊥ is of type {h, m, l} and has p3h+2m+l

codewords.
Thus: whenever C = C⊥, k = h and l = m.
A self-dual code then is of even length n = 2(k + l).
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Self-dual codes over Zp3

We can characterize self-dual codes:

Proposition. Let C be a code over Zp3 . Then C is a self-dual
code if and only if k = h, l = m and the following hold:

AAt ≡ 0 (mod p3) (1)
ABt ≡ 0 (mod p2) (2)
BBt ≡ 0 (mod p) (3)
ACt ≡ 0 (mod p). (4)

(We shall examine conditions (1)-(4) further, in terms of the
matrices over Zp.)
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Constructing self-dual codes from below

Proposition. Let p be an odd prime. A self-dual code over Zp3

can be induced from a self-dual code C1 over Zp; there are
pk( n

2−1) self-dual codes over Zp3 corresponding to each
subspace of C1 of dimension k (0 ≤ k ≤ n

2).

Proposition. Define ε as follows: 1) if ~1n ∈ A and 8 | n, then
ε = 1; 2) if ~1n 6∈ A, then ε = 0. Any self-dual code over Z23 is
induced from a self-dual code C1 over Z2. There are 2kl+k2+ε

self-dual codes over Z23 corresponding to each subspace of
dimension k (0 ≤ k ≤ n

2) of C1.
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The number of underlying self-dual codes over Zp

Lemma. (Pless, 1965) Let p be an odd prime and σp(n, k) the
number of self-orthogonal codes of even length n and
dimension k over Zp. Then :

1 If (−1)
n
2 is a square,

σp(n, k) =
(pn−k − pn/2−k + pn/2 − 1)

∏k−1
i=1 (pn−2i − 1)∏k

i=1(p i − 1)
, k ≥ 1.

2 If (−1)
n
2 is not a square ,

σp(n, k) =
(pn−k + pn/2−k − pn/2 − 1)

∏k−1
i=1 (pn−2i − 1)∏k

i=1(p i − 1)
, k ≥ 1.
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The number of subspaces

Lemma. Let V be an n-dimensional vector space over the
integers modulo p. The number ρ(n, k) of subspaces T ⊂ V of
dimension k ≤ n is given by

ρ(n, k) =
(pn − 1)(pn − p)...(pn − pk−1)

(pk − 1)(pk − p)...(pk − pk−1)
.



Main results

Theorem. Let Np3(n) denote the number of distinct self-dual
codes of even length n over Zp3 .

1. If p is odd then

Np3(n) =
(

1 +
(−1

p
) n

2
) n

2−1∏
i=1

pn−2i − 1
pi − 1

n
2∑

k=0

(
k−1∏
i=0

pn−i − 1
pk−i − 1

)
pk( n

2−1).

2. If n ≡ 2, 6 (mod 8) then

N8(n) =

n
2−1∑
k=0

(
k−1∏
i=0

2n−2i−2 − 1
2i+1 − 1

) n
2−2∏
i=k

2n−2i−2 − 1
2i+1−k − 1

2
kn
2 .
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Main results

3. If n ≡ 4 (mod 8) then

N8(n) =

n
2−1∑
k=0
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k−1∏
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A (partial) classification of self-dual codes over Z8

and Z9 by Gulliver, et.al.

Dougherty, Gulliver and Wong. Self-dual codes over Z8 and Z9.
Designs, Codes and Cryptography 41 (Nov 2006):

n = 2. There is only one self-dual code over Z8 of length 2.

G2 =

(
2 2
0 4

)
n = 4. There is only one self-dual code over Z8 of length 4.

G4 =


2 0 0 2
0 2 2 0
0 0 4 0
0 0 0 4


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A (partial) classification of self-dual codes over Z8

and Z9 by Gulliver, et.al.

Dougherty, Gulliver and Wong. Self-dual codes over Z8 and Z9.
Designs, Codes and Cryptography 41 (Nov 2006):

n = 6. One self-dual code over Z8 of length 6.

G4 =



2 0 0 0 0 2
0 2 0 0 2 0
0 0 2 2 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4





Example: self-dual codes over Z8 with n = 6, k = 2,
l = 1.

We start with a self-dual binary code

[
A
B

]
=

1 0 1 1 1 0
0 1 1 1 0 1
0 0 1 1 0 0


with

A2 =

(
1
1

)
, A30 =

(
1
1

)
, A40 =

(
1 0
0 1

)
.



Example: self-dual codes over Z8 with n = 6, k = 2,
l = 1.

C =


1 0 1 1 + 2x 1 + 2y + 4z 2 + 4z ′

0 1 1 3− 2x 2 + 4(z ′ + y + y ′) 1 + 2y ′ + 4z ′′

0 0 2 2 4(1− x) 4x
0 0 0 4 4 4

 ,

where x , y , y ′, z, z ′, and z ′′ are arbitrary elements of F2.

The code C is self-dual over Z8.
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what next

Classification for Zp3 codes of moderate lengths; develop
efficient methods for computing automorphism groups
Generalize to Zps

Explore other rings: Galois rings, finite chain rings,
Frobenius rings
another track: Generalization of Hammons, et. al. result for
other ring settings
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Thank you.


