Counting self-dual codes over finite rings

Fidel Nemenzo

Institute of Mathematics, University of the Philippines

Algebra and Computation 2007, Tokyo
5 December 2007
Recent results are based on joint work with **Hideo Wada** (Sophia University) and **Kiyoshi Nagata** (Daito Bunka University).
Coding theory: Background

Errors occur during the transmission of information.

Coding theory deals with mathematical methods used to package information so that transmission errors are detected and corrected.

The goals of coding theory are:

1) the efficient transmission of information
2) the integrity of information transmitted.
Errors occur during the transmission of information.

Coding theory deals with mathematical methods used to package information so that transmission errors are detected and corrected.

The goals of coding theory are:

1) the efficient transmission of information
2) the integrity of information transmitted.
Coding theory: Background

Errors occur during the transmission of information.

Coding theory deals with mathematical methods used to package information so that transmission errors are detected and corrected.

The goals of coding theory are:

1) the efficient transmission of information
2) the integrity of information transmitted.
Errors occur during the transmission of information.

Coding theory deals with mathematical methods used to package information so that transmission errors are detected and corrected.

The goals of coding theory are:

1) the efficient transmission of information
2) the integrity of information transmitted.
From its origins in engineering and information science, coding theory has also developed as an area of discrete mathematics, combining algebra, combinatorics, number theory and even geometry.
Coding theory: Background

Let A be a set of symbols, $n \in \mathbb{N}$

$$A^n := \{(a_0, a_1, \ldots, a_{n-1}) \mid a_i \in A\}, \text{ the set of } n\text{-tuples over } A$$

code of length n over A: a subset of A^n

codeword: element of a code

A distance function is usually defined on A^n

Example: Hamming distance between two n-tuples $a = (a_0, a_1, \ldots, a_{n-1})$ and $b = (b_0, b_1, \ldots, b_{n-1})$:

$$d_H(a, b) := \#\{i \mid a_i \neq b_i\}$$
Let A be a set of symbols, $n \in \mathbb{N}$

$$A^n := \{(a_0, a_1, \ldots, a_{n-1}) \mid a_i \in A\},$$ the set of n-tuples over A

code of length n over A: a subset of A^n

codeword: element of a code

A distance function is usually defined on A^n

Example: Hamming distance between two n-tuples $a = (a_0, a_1, \ldots, a_{n-1})$ and $b = (b_0, b_1, \ldots, b_{n-1})$:

$$d_H(a, b) := \#\{i \mid a_i \neq b_i\}$$
Let A be a set of symbols, $n \in \mathbb{N}$

$$A^n := \{(a_0, a_1, \ldots, a_{n-1}) | a_i \in A\},$$
the set of n-tuples over A

code of length n over A: a subset of A^n

codeword: element of a code

A distance function is usually defined on A^n

Example: Hamming distance between two n-tuples $a = (a_0, a_1, \ldots, a_{n-1})$ and $b = (b_0, b_1, \ldots, b_{n-1})$:

$$d_H(a, b) := \#\{i | a_i \neq b_i\}$$
Let A be a set of symbols, $n \in \mathbb{N}$

$A^n := \{(a_0, a_1, \ldots, a_{n-1}) | a_i \in A\}$, the set of n-tuples over A

code of length n over A: a subset of A^n

codeword: element of a code

A distance function is usually defined on A^n

Example: Hamming distance between two n-tuples $a = (a_0, a_1, \ldots, a_{n-1})$ and $b = (b_0, b_1, \ldots, b_{n-1})$:

$$d_H(a, b) := \#\{i | a_i \neq b_i\}$$
Coding theory: Background

Let A be a set of symbols, $n \in \mathbb{N}$

$A^n := \{(a_0, a_1, \ldots, a_{n-1}) | a_i \in A\}$, the set of n-tuples over A

code of length n over A: a subset of A^n

codeword: element of a code

A distance function is usually defined on A^n

Example: Hamming distance between two n-tuples $a = (a_0, a_1, \ldots, a_{n-1})$ and $b = (b_0, b_1, \ldots, b_{n-1})$:

$$d_H(a, b) := \# \{i | a_i \neq b_i\}$$
Coding theory: Background

Let A be a set of symbols, $n \in \mathbb{N}$

$A^n := \{(a_0, a_1, \ldots, a_{n-1}) \mid a_i \in A\}$, the set of n-tuples over A

code of length n over A: a subset of A^n

codeword: element of a code

A distance function is usually defined on A^n

Example: Hamming distance between two n-tuples $a = (a_0, a_1, \ldots, a_{n-1})$ and $b = (b_0, b_1, \ldots, b_{n-1})$:

$$d_H(a, b) := \#\{i \mid a_i \neq b_i\}$$
Coding theory: Background

Parameters of a code: An \((n, k, d)_A\)-code is a code over \(A\) with
- length \(n\)
- size \(k\)
- minimum distance \(d\)

The goal of coding theory in engineering is the construction of codes with
- small \(n\)
- large \(k\)
- large \(d\)

These are incompatible goals!
Parameters of a code: An \((n, k, d)_A\)-code is a code over \(A\) with
- length \(n\)
- size \(k\)
- minimum distance \(d\)

The goal of coding theory in engineering is the construction of codes with
- small \(n\)
- large \(k\)
- large \(d\)

These are incompatible goals!
Parameters of a code: An \((n, k, d)\)\(_A\)-code is a code over \(A\) with
- length \(n\)
- size \(k\)
- minimum distance \(d\)

The goal of coding theory in engineering is the construction of codes with
- small \(n\)
- large \(k\)
- large \(d\)

These are incompatible goals!
Parameters of a code: An \((n, k, d)_A\)-code is a code over \(A\) with
- length \(n\)
- size \(k\)
- minimum distance \(d\)

The goal of coding theory in engineering is the construction of codes with
- small \(n\)
- large \(k\)
- large \(d\)

These are incompatible goals!
Coding theory: Background

Parameters of a code: An \((n, k, d)_A\)-code is a code over \(A\) with
- length \(n\)
- size \(k\)
- minimum distance \(d\)

The goal of coding theory in engineering is the construction of codes with
- small \(n\)
- large \(k\)
- large \(d\)

These are incompatible goals!
Parameters of a code: An \((n, k, d)_A\)-code is a code over \(A\) with
- length \(n\)
- size \(k\)
- minimum distance \(d\)

The goal of coding theory in engineering is the construction of codes with
- small \(n\)
- large \(k\)
- large \(d\)

These are incompatible goals!
Codes over fields

The traditional setting for codes: Galois fields $\mathbb{F}_q := GF(q)$

A (linear) code of length n over \mathbb{F}_q: a subspace of \mathbb{F}_q^n

Examples: Binary codes
$(2^4, 2^{11}, 4)$ Reed-Muller
$(2^4, 2^8, 6)$ Nordstrom-Robinson (a non-linear binary code)
The traditional setting for codes: Galois fields $\mathbb{F}_q := GF(q)$

A (linear) code of length n over \mathbb{F}_q: a subspace of \mathbb{F}_q^n

Examples: Binary codes
$(2^4, 2^{11}, 4)$ Reed-Muller
$(2^4, 2^8, 6)$ Nordstrom-Robinson (a non-linear binary code)
The traditional setting for codes: Galois fields $\mathbb{F}_q := GF(q)$

A (linear) code of length n over \mathbb{F}_q: a subspace of \mathbb{F}_q^n

Examples: Binary codes
$(2^4, 2^{11}, 4)$ Reed-Muller
$(2^4, 2^8, 6)$ Nordstrom-Robinson (a non-linear binary code)
Codes over fields

The traditional setting for codes: Galois fields $\mathbb{F}_q := GF(q)$

A (linear) code of length n over \mathbb{F}_q: a subspace of \mathbb{F}_q^n

Examples: Binary codes
$(2^4, 2^{11}, 4)$ Reed-Muller
$(2^4, 2^8, 6)$ Nordstrom-Robinson (a non-linear binary code)
Codes over finite rings

Generalizations of Nordstrom-Robinson code: Preparata, Kerdock codes, etc.

Recent interest in codes over rings is due to the discovery that certain non-linear binary codes can be constructed as images of codes over the finite ring $\mathbb{Z}_4 := \mathbb{Z}/4\mathbb{Z}$.

Definition. The *Gray map* $\phi : \mathbb{Z}_4 \rightarrow \mathbb{Z}_2^2$ is given by

\[
\begin{align*}
0 & \mapsto 00, \quad 1 \mapsto 01, \quad 2 \mapsto 11, \quad 3 \mapsto 10.
\end{align*}
\]

We can extend this to $\phi : \mathbb{Z}_4^n \rightarrow \mathbb{Z}_2^{2n}$.
Codes over finite rings

Generalizations of Nordstrom-Robinson code: Preparata, Kerdock codes, etc.

Recent interest in codes over **rings** is due to the discovery that certain non-linear binary codes can be constructed as images of codes over the finite ring \(\mathbb{Z}_4 := \mathbb{Z}/4\mathbb{Z} \).

Definition. The *Gray map* \(\phi : \mathbb{Z}_4 \rightarrow \mathbb{Z}_2^2 \) is given by

\[
0 \mapsto 00, \quad 1 \mapsto 01, \quad 2 \mapsto 11, \quad 3 \mapsto 10.
\]

We can extend this to \(\phi : \mathbb{Z}_4^n \rightarrow \mathbb{Z}_2^{2n} \).
Generalizations of Nordstrom-Robinson code: Preparata, Kerdock codes, etc.

Recent interest in codes over rings is due to the discovery that certain non-linear binary codes can be constructed as images of codes over the finite ring \(\mathbb{Z}_4 := \mathbb{Z}/4\mathbb{Z} \).

Definition. The *Gray map* \(\phi : \mathbb{Z}_4 \rightarrow \mathbb{Z}_2^{2n} \) is given by

\[
0 \mapsto 00, \quad 1 \mapsto 01, \quad 2 \mapsto 11, \quad 3 \mapsto 10.
\]

We can extend this to \(\phi : \mathbb{Z}_4^n \mapsto \mathbb{Z}_2^{2n} \).
Codes over finite rings

Generalizations of Nordstrom-Robinson code: Preparata, Kerdock codes, etc.

Recent interest in codes over rings is due to the discovery that certain non-linear binary codes can be constructed as images of codes over the finite ring $\mathbb{Z}_4 := \mathbb{Z}/4\mathbb{Z}$.

Definition. The *Gray map* $\phi : \mathbb{Z}_4 \rightarrow \mathbb{Z}_2^2$ is given by

\[
0 \mapsto 00, \quad 1 \mapsto 01, \quad 2 \mapsto 11, \quad 3 \mapsto 10.
\]

We can extend this to $\phi : \mathbb{Z}_4^n \rightarrow \mathbb{Z}_2^{2n}$.
Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé, 1992) Let \mathcal{O} be the linear $(2, 256, 6)_{\mathbb{Z}_4}$ code with generator matrix

$$G = \begin{bmatrix}
3 & 3 & 2 & 3 & 1 & 0 & 0 & 0 \\
3 & 0 & 3 & 2 & 3 & 1 & 0 & 0 \\
3 & 0 & 0 & 3 & 2 & 3 & 1 & 0 \\
3 & 0 & 0 & 0 & 3 & 2 & 3 & 1
\end{bmatrix}.$$

Then $\phi(\mathcal{O}) =$ Nordstrom-Robinson code. The non-linear binary codes are Gray map images of linear codes over \mathbb{Z}_4. There has been a lot of interest in codes over finite rings these last 15 years.
Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé, 1992) Let (\mathcal{O}) be the linear $(2, 256, 6)_{\mathbb{Z}_4}$ code with generator matrix

$$G = \begin{bmatrix}
3 & 3 & 2 & 3 & 1 & 0 & 0 & 0 \\
3 & 0 & 3 & 2 & 3 & 1 & 0 & 0 \\
3 & 0 & 0 & 3 & 2 & 3 & 1 & 0 \\
3 & 0 & 0 & 0 & 3 & 2 & 3 & 1 \\
\end{bmatrix}.$$

Then $\phi((\mathcal{O}) = \text{Nordstrom-Robinson code}$. The non-linear binary codes are Gray map images of linear codes over \mathbb{Z}_4. There has been a lot of interest in codes over finite rings these last 15 years.
Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé, 1992) Let C be the linear $(2, 256, 6)_{\mathbb{Z}_4}$ code with generator matrix
\[
G = \begin{bmatrix}
3 & 3 & 2 & 3 & 1 & 0 & 0 & 0 \\
3 & 0 & 3 & 2 & 3 & 1 & 0 & 0 \\
3 & 0 & 0 & 3 & 2 & 3 & 1 & 0 \\
3 & 0 & 0 & 0 & 3 & 2 & 3 & 1 \\
\end{bmatrix}.
\]

Then $\phi(C) = \text{Nordstrom-Robinson code}$. The non-linear binary codes are Gray map images of linear codes over \mathbb{Z}_4. There has been a lot of interest in codes over finite rings these last 15 years.
Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé, 1992) Let \((\mathcal{O})\) be the linear \((2, 256, 6)_{\mathbb{Z}_4}\) code with generator matrix
\[
G = \begin{bmatrix}
3 & 3 & 2 & 3 & 1 & 0 & 0 & 0 \\
3 & 0 & 3 & 2 & 3 & 1 & 0 & 0 \\
3 & 0 & 0 & 3 & 2 & 3 & 1 & 0 \\
3 & 0 & 0 & 0 & 3 & 2 & 3 & 1 \\
\end{bmatrix}.
\]
Then \(\phi(\mathcal{O}) = \text{Nordstrom-Robinson code}\). The non-linear binary codes are Gray map images of linear codes over \(\mathbb{Z}_4\). There has been a lot of interest in codes over finite rings these last 15 years.
Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé, 1992) Let (O) be the linear $(2, 256, 6)_{\mathbb{Z}_4}$ code with generator matrix

$$G = \begin{bmatrix} 3 & 3 & 2 & 3 & 1 & 0 & 0 & 0 \\ 3 & 0 & 3 & 2 & 3 & 1 & 0 & 0 \\ 3 & 0 & 0 & 3 & 2 & 3 & 1 & 0 \\ 3 & 0 & 0 & 0 & 3 & 2 & 3 & 1 \end{bmatrix}.$$

Then $\phi((O)) = \text{Nordstrom-Robinson code.}$ The non-linear binary codes are Gray map images of linear codes over \mathbb{Z}_4. There has been a lot of interest in codes over finite rings these last 15 years.
Definition. Let R be a finite ring. (e.g. $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$)

1) code: an R-submodule of $R^n := \{(x_1, x_2, \ldots, x_n) \mid x_i \in R\}$
2) codeword: element of a code
3) Two vectors $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ are orthogonal if their Euclidean inner product is zero. i.e.

$$x \cdot y = \sum_i x_i y_i = 0$$
Definition. Let R be a finite ring. (e.g. $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$)

1) code: an R-submodule of $R^n := \{(x_1, x_2, \ldots, x_n) \mid x_i \in R\}$

2) codeword: element of a code

3) Two vectors $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ are orthogonal if their Euclidean inner product is zero. i.e.

$$x \cdot y = \sum_i x_i y_i = 0$$
Codes over rings

Definition. Let R be a finite ring. (e.g. $\mathbb{Z}_m := \mathbb{Z} / m\mathbb{Z}$)

1) *code*: an R-submodule of $R^n := \{(x_1, x_2, \ldots, x_n) \mid x_i \in R\}$

2) *codeword*: element of a code

3) Two vectors $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ are orthogonal if their Euclidean inner product is zero. i.e.

$$x \cdot y = \sum_i x_i y_i = 0$$
Definition. Let R be a finite ring. (e.g. $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$)

1) **code**: an R-submodule of $R^n := \{(x_1, x_2, \ldots, x_n) \mid x_i \in R\}$

2) **codeword**: element of a code

3) Two vectors $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ are **orthogonal** if their Euclidean inner product is zero. i.e.

$$x \cdot y = \sum_{i} x_i y_i = 0$$
Self-dual codes

Definition. Let C be a code over a ring R.

1) *dual* of C:

\[C^\perp := \{ y \in R^n \mid x \cdot y = 0, \forall x \in C \} \]

(Remark: C^\perp is a code.)

2) If $C \subseteq C^\perp$, C is *self-orthogonal*.

3) If $C = C^\perp$, C is *self-dual*.
Definition. Let C be a code over a ring R.

1) *dual of C:*

$$C^\perp := \{y \in R^n \mid x \cdot y = 0, \forall x \in C\}$$

(Remark: C^\perp is a code.)

2) If $C \subseteq C^\perp$, C is *self-orthogonal*.
3) If $C = C^\perp$, C is *self-dual.*
Definition. Let C be a code over a ring R.

1) dual of C:

$$C^\perp := \{ y \in R^n \mid x \cdot y = 0, \forall x \in C \}$$

(Remark: C^\perp is a code.)

2) If $C \subseteq C^\perp$, C is self-orthogonal.
3) If $C = C^\perp$, C is self-dual.
Definition. Let C be a code over a ring R.

1) *dual* of C:

$$C^\perp := \{ y \in R^n \mid x \cdot y = 0, \forall x \in C \}$$

(Remark: C^\perp is a code.)

2) If $C \subseteq C^\perp$, C is *self-orthogonal*.

3) If $C = C^\perp$, C is *self-dual*.
Definition. Let C be a code over a ring R.

1) *dual* of C:

$$C^\perp := \{ y \in R^n \mid x \cdot y = 0, \forall x \in C \}$$

(Remark: C^\perp is a code.)

2) If $C \subseteq C^\perp$, C is *self-orthogonal*.

3) If $C = C^\perp$, C is *self-dual*.
Definition. Let C be a code over a ring R.

1) *dual* of C:

$$C^\perp := \{ y \in R^n \mid x \cdot y = 0, \forall x \in C \}$$

(Remark: C^\perp is a code.)

2) If $C \subseteq C^\perp$, C is **self-orthogonal**.

3) If $C = C^\perp$, C is **self-dual**.
Equivalent codes

Two codes of same length over \mathbb{Z}_p^s are equivalent if one can be obtained from the other by permutation of coordinates, possibly followed by multiplication of some coordinates by -1.

$$C_1 \approx C_2 \iff \exists \text{ } n \times n \text{ matrix } P \text{ such that }$$

$$C_1 = C_2 P := \{ cP \mid c \in C_2 \}$$

where P has exactly one entry ± 1 in every row and in every column and all other entries are zero.
Equivalent codes

Two codes of same length over \mathbb{Z}_p^s are equivalent if one can be obtained from the other by permutation of coordinates, possibly followed by multiplication of some coordinates by -1.

$$C_1 \approx C_2 \iff \exists \; n \times n \text{ matrix } P \text{ such that}$$

$$C_1 = C_2 P := \{ cP \mid c \in C_2 \}$$

where P has exactly one entry ± 1 in every row and in every column and all other entries are zero.
Counting the number of codes

The number of codes *equivalent* to a code C of length n is

$$\frac{|E_n|}{|\text{Aut}(C)|},$$

where E_n is the group of all sign-permutations and $\text{Aut}(C)$ is the automorphism group of C, i.e. the group of all sign-permutations that send C to itself. Thus the number of *distinct* self-dual codes over \mathbb{Z}_p^s of length n is given by

$$N_{ps}(n) = \sum_{c} \frac{2^n n!}{|\text{Aut}(C)|},$$

where the sum runs over all inequivalent self-dual codes C. We wish to find a more explicit formula for $N_{ps}(n)$. This is called the mass formula.
Counting the number of codes

The number of codes equivalent to a code C of length n is

$$\frac{|E_n|}{|Aut(C)|},$$

where E_n is the group of all sign-permutations and $Aut(C)$ is the automorphism group of C, i.e. the group of all sign-permutations that send C to itself. Thus the number of distinct self-dual codes over \mathbb{Z}_p of length n is given by

$$N_{p^s}(n) = \sum_c \frac{2^n n!}{|Aut(C)|},$$

where the sum runs over all inequivalent self-dual codes C. We wish to find a more explicit formula for $N_{p^s}(n)$. This is called the mass formula.
Counting the number of codes

The number of codes equivalent to a code \mathcal{C} of length n is

$$\frac{|E_n|}{|\text{Aut}(\mathcal{C})|},$$

where E_n is the group of all sign-permutations and $\text{Aut}(\mathcal{C})$ is the automorphism group of \mathcal{C}, i.e. the group of all sign-permutations that send \mathcal{C} to itself. Thus the number of distinct self-dual codes over \mathbb{Z}_{p^s} of length n is given by

$$N_{p^s}(n) = \sum_{\mathcal{C}} \frac{2^n n!}{|\text{Aut}(\mathcal{C})|},$$

where the sum runs over all inequivalent self-dual codes \mathcal{C}. We wish to find a more explicit formula for $N_{p^s}(n)$. This is called the mass formula.
Counting the number of codes

The number of codes equivalent to a code C of length n is

$$\frac{|E_n|}{|\text{Aut}(C)|},$$

where E_n is the group of all sign-permutations and $\text{Aut}(C)$ is the automorphism group of C, i.e. the group of all sign-permutations that send C to itself. Thus the number of distinct self-dual codes over \mathbb{Z}_{p^s} of length n is given by

$$N_{p^s}(n) = \sum_C \frac{2^n n!}{|\text{Aut}(C)|},$$

where the sum runs over all inequivalent self-dual codes C. We wish to find a more explicit formula for $N_{p^s}(n)$. This is called the mass formula.
Counting the number of codes

The number of codes equivalent to a code C of length n is

$$\frac{|E_n|}{|Aut(C)|},$$

where E_n is the group of all sign-permutations and $Aut(C)$ is the automorphism group of C, i.e. the group of all sign-permutations that send C to itself. Thus the number of distinct self-dual codes over \mathbb{Z}_{p^s} of length n is given by

$$N_{p^s}(n) = \sum_{C} \frac{2^n n!}{|Aut(C)|},$$

where the sum runs over all inequivalent self-dual codes C. We wish to find a more explicit formula for $N_{p^s}(n)$. This is called the mass formula.
The mass formula

$$N_{p^s}(n) = \sum_{c} \frac{|E_n|}{|\text{Aut}(C)|},$$

is important for the computation of the number of inequivalent classes of self-dual codes over \mathbb{Z}_{p^s} and the classification of such codes,...

... and hence, of codes over \mathbb{Z}_m.
The mass formula

$$N_{ps}(n) = \sum_c \frac{|E_n|}{|\text{Aut}(C)|},$$

is important for the computation of the number of inequivalent classes of self-dual codes over \mathbb{Z}_{ps} and the classification of such codes,...

... and hence, of codes over \mathbb{Z}_m.
In 1993, Conway and Sloane classified all self-dual codes over \mathbb{Z}_4 up to length $n = 9$, without the aid of a mass formula.

Classification of all self-dual \mathbb{Z}_4-codes with $n \leq 15$ (Fields, Gaborit, Leon, Pless. IEEE Transactions Information Theory, 1998)
In 1993, Conway and Sloane classified all self-dual codes over \mathbb{Z}_4 up to length $n = 9$, without the aid of a mass formula.

Classification of all self-dual \mathbb{Z}_4-codes with $n \leq 15$ (Fields, Gaborit, Leon, Pless. *IEEE Transactions Information Theory*, 1998)
Mass formulas for \mathbb{Z}_p:

- In 1993, Conway and Sloane classified all self-dual codes over \mathbb{Z}_4 up to length $n = 9$, without the aid of a mass formula.
- Classification of all self-dual \mathbb{Z}_4-codes with $n \leq 15$ (Fields, Gaborit, Leon, Pless. *IEEE Transactions Information Theory*, 1998)
Mass formulas for \mathbb{Z}_{p^s}

Theorem. Let p be an odd prime. If $N_{p^2}(n)$ is the number of distinct self-dual codes over \mathbb{Z}_{p^2} of length n then

$$N_{p^2}(n) = \sum_{0 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor} \sigma_p(n, k) p^{\frac{k(k-1)}{2}},$$

where $\sigma_p(n, k)$ is the number of distinct self-orthogonal codes over \mathbb{F}_p of dimension k.

- Classification of all self-dual codes over \mathbb{Z}_9 (for lengths $n \leq 8$ for \mathbb{Z}_9, $n \leq 7$ for \mathbb{Z}_{25} and $n \leq 6$ for \mathbb{Z}_{49})
Mass formulas for \mathbb{Z}_{p^s}

Theorem. Let p be an odd prime. If $N_{p^2}(n)$ is the number of distinct self-dual codes over \mathbb{Z}_{p^2} of length n then

$$N_{p^2}(n) = \sum_{0 \leq k \leq \lfloor \frac{n}{2} \rfloor} \sigma_p(n, k) p^{ \frac{k(k-1)}{2} },$$

where $\sigma_p(n, k)$ is the number of distinct self-orthogonal codes over \mathbb{F}_p of dimension k.

- Classification of all self-dual codes over \mathbb{Z}_9 (for lengths $n \leq 8$ for \mathbb{Z}_9, $n \leq 7$ for \mathbb{Z}_{25} and $n \leq 6$ for \mathbb{Z}_{49})
Mass formulas for \mathbb{Z}_p^s

Theorem. Let p be an odd prime. If $N_{p^2}(n)$ is the number of distinct self-dual codes over \mathbb{Z}_{p^2} of length n then

$$N_{p^2}(n) = \sum_{0 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor} \sigma_p(n, k) p^{\frac{k(k-1)}{2}},$$

where $\sigma_p(n, k)$ is the number of distinct self-orthogonal codes over \mathbb{F}_p of dimension k.

- Classification of all self-dual codes over \mathbb{Z}_9 (for lengths $n \leq 8$ for \mathbb{Z}_9, $n \leq 7$ for \mathbb{Z}_{25} and $n \leq 6$ for \mathbb{Z}_{49})
Mass formulas for \mathbb{Z}_p^s

Theorem. Let p be an odd prime. If $N_{p^2}(n)$ is the number of distinct self-dual codes over \mathbb{Z}_p^2 of length n then

$$N_{p^2}(n) = \sum_{0 \leq k \leq \lfloor n^2 \rfloor} \sigma_p(n, k) p^{\frac{k(k-1)}{2}},$$

where $\sigma_p(n, k)$ is the number of distinct self-orthogonal codes over \mathbb{F}_p of dimension k.

- Classification of all self-dual codes over \mathbb{Z}_9 (for lengths $n \leq 8$ for \mathbb{Z}_9, $n \leq 7$ for \mathbb{Z}_{25} and $n \leq 6$ for \mathbb{Z}_{49})
How is classification done?

To count the number of inequivalent codes of given length n:

1. Set $SUM = 0$
2. Find a self-dual code C_1 of length n
3. Compute $|Aut(C_1)|$, $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
4. For every $j = 2, 3, \ldots$, find a self-dual code C_j, not equivalent to C_1, \ldots, C_{j-1}, and compute $|Aut(C_j)|$, and $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
5. Compare SUM to mass formula. If $SUM <$ mass formula, go to step (4); if $SUM =$ mass formula, done.
How is classification done?

To count the number of inequivalent codes of given length n:

1. Set $SUM = 0$
2. Find a self-dual code C_1 of length n
3. Compute $|Aut(C_1)|$, $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
4. For every $j = 2, 3, \ldots$, find a self-dual code C_j, not equivalent to C_1, \ldots, C_{j-1}, and compute $|Aut(C_j)|$, and $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
5. Compare SUM to mass formula. If $SUM <$ mass formula, go to step (4); if $SUM = $ mass formula, done.
How is classification done?

To count the number of inequivalent codes of given length n:

1. Set $SUM = 0$
2. Find a self-dual code C_1 of length n
3. Compute $|Aut(C_1)|$, $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
4. For every $j = 2, 3, \ldots$, find a self-dual code C_j, not equivalent to C_1, \ldots, C_{j-1}, and compute $|Aut(C_j)|$, and $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
5. Compare SUM to mass formula. If $SUM < \text{mass formula}$, go to step (4); if $SUM = \text{mass formula}$, done.
How is classification done?

To count the number of inequivalent codes of given length n:

1. Set $SUM = 0$
2. Find a self-dual code C_1 of length n
3. Compute $|Aut(C_1)|$, $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
4. For every $j = 2, 3, \ldots$, find a self-dual code C_j, not equivalent to C_1, \ldots, C_{j-1}, and compute $|Aut(C_j)|$, and $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
5. Compare SUM to mass formula. If $SUM <$ mass formula, go to step (4); if $SUM =$ mass formula, done.
To count the number of inequivalent codes of given length n:

1. Set $SUM = 0$
2. Find a self-dual code C_1 of length n
3. Compute $|Aut(C_1)|$, $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
4. For every $j = 2, 3, \ldots$, find a self-dual code C_j, not equivalent to C_1, \ldots, C_{j-1}, and compute $|Aut(C_j)|$, and $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
5. Compare SUM to mass formula. If $SUM < \text{mass formula}$, go to step (4); if $SUM = \text{mass formula}$, done.
To count the number of inequivalent codes of given length n:

1. Set $SUM = 0$
2. Find a self-dual code C_1 of length n
3. Compute $|Aut(C_1)|$, $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
4. For every $j = 2, 3, \ldots$, find a self-dual code C_j, not equivalent to C_1, \ldots, C_{j-1}, and compute $|Aut(C_j)|$, and $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
5. Compare SUM to mass formula. If $SUM < $ mass formula, go to step (4); if $SUM = $ mass formula, done.
An example

Classify self-dual codes of length \(n = 8 \) over \(\mathbb{Z}_9 \):

\[
N_9(8) = \sum_{0 \leq k \leq 4} \sigma_3(8, k) 3^{\frac{k(k-1)}{2}}
= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^3 + 2240 \cdot 3^6
= 2952881
\]

We can also compute

\[
\sum \frac{2^8 8!}{|Aut(C)|} = 1 + 224 + 4480 + 20160 + 26880 + 1680
+ 896 + 8960 + 53760 + 215040 + 40320
+ 322560 + 645120 + 645120 + 322560 + 645120
= 2952881
\]

Therefore there are 16 inequivalent self-dual codes of length 8 over \(\mathbb{Z}_9 \).
An example

Classify self-dual codes of length $n = 8$ over \mathbb{Z}_9:

$$N_9(8) = \sum_{0 \leq k \leq 4} \sigma_3(8, k) 3^{k(k-1)/2}$$

$$= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^3 + 2240 \cdot 3^6$$

$$= 2952881$$

We can also compute

$$\sum \frac{2^8 8!}{|\operatorname{Aut}(C)|} = 1 + 224 + 4480 + 20160 + 26880 + 1680$$

$$+ 896 + 8960 + 53760 + 215040 + 40320$$

$$+ 322560 + 645120 + 645120 + 322560 + 645120$$

$$= 2952881$$

Therefore there are 16 inequivalent self-dual codes of length 8 over \mathbb{Z}_9.

An example

Classify self-dual codes of length \(n = 8 \) over \(\mathbb{Z}_9 \):

\[
N_9(8) = \sum_{0 \leq k \leq 4} \sigma_3(8, k) 3^{k(k-1)/2}
\]

\[
= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^3 + 2240 \cdot 3^6
\]

\[
= 2952881
\]

We can also compute

\[
\sum \frac{2^8 8!}{|\text{Aut}(C)|} = 1 + 224 + 4480 + 20160 + 26880 + 1680 + 896 + 8960 + 53760 + 215040 + 40320 + 322560 + 645120 + 645120 + 322560 + 645120
\]

\[
= 2952881
\]

Therefore there are 16 inequivalent self-dual codes of length 8 over \(\mathbb{Z}_9 \).
An example

Classify self-dual codes of length $n = 8$ over \mathbb{Z}_9:

$$N_9(8) = \sum_{0 \leq k \leq 4} \sigma_3(8, k) 3^{k(k-1)/2}$$

$$= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^3 + 2240 \cdot 3^6$$

$$= 2952881$$

We can also compute

$$\sum \frac{2^8 8!}{|\text{Aut}(C)|} = 1 + 224 + 4480 + 20160 + 26880 + 1680$$

$$+ 896 + 8960 + 53760 + 215040 + 40320$$

$$+ 322560 + 645120 + 645120 + 322560 + 645120$$

$$= 2952881$$

Therefore there are 16 inequivalent self-dual codes of length 8 over \mathbb{Z}_9.
An example

Classify self-dual codes of length \(n = 8 \) over \(\mathbb{Z}_9 \):

\[
N_9(8) = \sum_{0 \leq k \leq 4} \sigma_3(8, k)3^{\frac{k(k-1)}{2}}
\]

\[
= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^3 + 2240 \cdot 3^6
\]

\[
= 2952881
\]

We can also compute

\[
\sum \frac{2^8 8!}{|\text{Aut}(C)|} = 1 + 224 + 4480 + 20160 + 26880 + 1680
\]

\[
+ 896 + 8960 + 53760 + 215040 + 40320
\]

\[
+ 322560 + 645120 + 645120 + 322560 + 645120
\]

\[
= 2952881
\]

Therefore there are 16 inequivalent self-dual codes of length 8 over \(\mathbb{Z}_9 \).
An example

Classify self-dual codes of length $n = 8$ over \mathbb{Z}_9:

$$N_9(8) = \sum_{0 \leq k \leq 4} \sigma_3(8, k) 3^{\frac{k(k-1)}{2}}$$

$$= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^3 + 2240 \cdot 3^6$$

$$= 2952881$$

We can also compute

$$\sum \frac{2^8 8!}{|\text{Aut}(C)|} = 1 + 224 + 4480 + 20160 + 26880 + 1680$$

$$+ 896 + 8960 + 53760 + 215040 + 40320$$

$$+ 322560 + 645120 + 645120 + 322560 + 645120$$

$$= 2952881$$

Therefore there are 16 inequivalent self-dual codes of length 8 over \mathbb{Z}_9.
An example

Classify self-dual codes of length $n = 8$ over \mathbb{Z}_9:

$$N_9(8) = \sum_{0 \leq k \leq 4} \sigma_3(8, k) 3^{k(k-1)/2}$$

$$= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^3 + 2240 \cdot 3^6$$

$$= 2952881$$

We can also compute

$$\sum \frac{2^8 8!}{|Aut(C)|} = 1 + 224 + 4480 + 20160 + 26880 + 1680$$

$$+ 896 + 8960 + 53760 + 215040 + 40320$$

$$+ 322560 + 645120 + 645120 + 322560 + 645120$$

$$= 2952881$$

Therefore there are 16 inequivalent self-dual codes of length 8 over \mathbb{Z}_9.
Codes over \mathbb{Z}_p^3, for primes p

A code C of length n over \mathbb{Z}_p^3 has a “generator matrix" which can be written as

$$G = \begin{bmatrix}
l_k & A_2 & A_3 & A_4 \\
0 & pl_l & pB_3 & pB_4 \\
0 & 0 & p^2 l_m & p^2 C_4 \\
\end{bmatrix} \begin{bmatrix}
A \\
pB \\
p^2 C \\
\end{bmatrix}$$

l_i: $i \times i$ identity matrix

$A_3 = A_{30} + pA_{31}$

$B_4 = B_{40} + pB_{41}$

$A_4 = A_{40} + pA_{41} + p^2 A_{42}$

A_2, B_3, C_4, A_{ij} and B_{ij} have entries from $\{0, 1, \ldots, p - 1\}$

Columns have sizes k, l, m and h, with $n = k + l + m + h$.

C has $p^{3k+2l+m}$ codewords.
A code C of length n over \mathbb{Z}_{p^3} has a “generator matrix” which can be written as

$$G = \begin{bmatrix} I_k & A_2 & A_3 & A_4 \\ 0 & pI_l & pB_3 & pB_4 \\ 0 & 0 & p^2l_m & p^2C_4 \end{bmatrix} = \begin{bmatrix} A \\ pB \\ p^2C \end{bmatrix}$$

l_i: identity matrix

$A_3 = A_{30} + pA_{31}$

$B_4 = B_{40} + pB_{41}$

$A_4 = A_{40} + pA_{41} + p^2A_{42}$

A_2, B_3, C_4, A_{ij} and B_{ij} have entries from $\{0, 1, \ldots, p - 1\}$

Columns have sizes k, l, m and h, with $n = k + l + m + h$.

C has $p^{3k+2l+m}$ codewords.
A code C of length n over \mathbb{Z}_{p^3} has a “generator matrix" which can be written as

$$G = \begin{bmatrix} I_k & A_2 & A_3 & A_4 \\ 0 & pl_l & pB_3 & pB_4 \\ 0 & 0 & p^2 l_m & p^2 C_4 \end{bmatrix} = \begin{bmatrix} A \\ pB \\ p^2 C \end{bmatrix}$$

l_i: $i \times i$ identity matrix

$A_3 = A_{30} + pA_{31}$

$B_4 = B_{40} + pB_{41}$

$A_4 = A_{40} + pA_{41} + p^2 A_{42}$

A_2, B_3, C_4, A_{ij} and B_{ij} have entries from $\{0, 1, \ldots, p - 1\}$

Columns have sizes k, l, m and h, with $n = k + l + m + h$. C has $p^{3k+2l+m}$ codewords.
Codes over \mathbb{Z}_{p^3}, for primes p

A code C of length n over \mathbb{Z}_{p^3} has a “generator matrix" which can be written as

$$G = \begin{bmatrix} I_k & A_2 & A_3 & A_4 \\ 0 & pI_l & pB_3 & pB_4 \\ 0 & 0 & p^2I_m & p^2C_4 \end{bmatrix} = \begin{bmatrix} A \\ pB \\ p^2C \end{bmatrix}$$

l_i: $i \times i$ identity matrix

$A_3 = A_{30} + pA_{31}$

$B_4 = B_{40} + pB_{41}$

$A_4 = A_{40} + pA_{41} + p^2A_{42}$

A_2, B_3, C_4, A_{ij} and B_{ij} have entries from $\{0, 1, \ldots, p - 1\}$

Columns have sizes k, l, m and h, with $n = k + l + m + h$.

C has $p^{3k+2l+m}$ codewords.
A code C of length n over \mathbb{Z}_{p^3} has a “generator matrix” which can be written as

$$G = \begin{bmatrix} I_k & A_2 & A_3 & A_4 \\ 0 & pl_i & pB_3 & pB_4 \\ 0 & 0 & p^2l_m & p^2C_4 \end{bmatrix} = \begin{bmatrix} A \\ pB \\ p^2C \end{bmatrix}$$

l_i: $i \times i$ identity matrix

$A_3 = A_{30} + pA_{31}$

$B_4 = B_{40} + pB_{41}$

$A_4 = A_{40} + pA_{41} + p^2A_{42}$

A_2, B_3, C_4, A_{ij} and B_{ij} have entries from $\{0, 1, \ldots, p - 1\}$

Columns have sizes k, l, m and h, with $n = k + l + m + h$.

C has $p^{3k+2l+m}$ codewords.
The dual code C^\perp is of type $\{h, m, l\}$ and has $p^{3h+2m+l}$ codewords.

Thus: whenever $C = C^\perp$, $k = h$ and $l = m$.
A self-dual code then is of even length $n = 2(k + l)$.
The dual code C^\perp is of type $\{h, m, l\}$ and has $p^{3h+2m+l}$ codewords. Thus: whenever $C = C^\perp$, $k = h$ and $l = m$. A self-dual code then is of even length $n = 2(k + l)$.
The dual code C^\perp is of type $\{h, m, l\}$ and has $p^{3h+2m+l}$ codewords.
Thus: whenever $C = C^\perp$, $k = h$ and $l = m$.
A self-dual code then is of even length $n = 2(k + l)$.
We can characterize self-dual codes:

Proposition. Let C be a code over \mathbb{Z}_{p^3}. Then C is a self-dual code if and only if $k = h$, $l = m$ and the following hold:

\begin{align*}
AA^t &\equiv 0 \pmod{p^3} \quad (1) \\
AB^t &\equiv 0 \pmod{p^2} \quad (2) \\
BB^t &\equiv 0 \pmod{p} \quad (3) \\
AC^t &\equiv 0 \pmod{p}. \quad (4)
\end{align*}

(We shall examine conditions (1)-(4) further, in terms of the matrices over \mathbb{Z}_p.)
We can characterize self-dual codes:

Proposition. Let C be a code over \mathbb{Z}_{p^3}. Then C is a self-dual code if and only if $k = h$, $l = m$ and the following hold:

\[
\begin{align*}
AA^t & \equiv 0 \pmod{p^3} \quad (1) \\
AB^t & \equiv 0 \pmod{p^2} \quad (2) \\
BB^t & \equiv 0 \pmod{p} \quad (3) \\
AC^t & \equiv 0 \pmod{p}. \quad (4)
\end{align*}
\]

(We shall examine conditions (1)-(4) further, in terms of the matrices over \mathbb{Z}_p.)
Proposition. Let p be an odd prime. A self-dual code over \mathbb{Z}_{p^3} can be induced from a self-dual code C_1 over \mathbb{Z}_p; there are $p^{k\left(\frac{n}{2}-1\right)}$ self-dual codes over \mathbb{Z}_{p^3} corresponding to each subspace of C_1 of dimension k ($0 \leq k \leq \frac{n}{2}$).

Proposition. Define ε as follows: 1) if $\vec{1}_n \in A$ and $8 \mid n$, then $\varepsilon = 1$; 2) if $\vec{1}_n \notin A$, then $\varepsilon = 0$. Any self-dual code over \mathbb{Z}_{2^3} is induced from a self-dual code C_1 over \mathbb{Z}_2. There are $2^{kl+k^2+\varepsilon}$ self-dual codes over \mathbb{Z}_{2^3} corresponding to each subspace of dimension k ($0 \leq k \leq \frac{n}{2}$) of C_1.
Proposition. Let p be an odd prime. A self-dual code over \mathbb{Z}_p^3 can be induced from a self-dual code C_1 over \mathbb{Z}_p; there are $p^{k\left(\frac{n}{2}-1\right)}$ self-dual codes over \mathbb{Z}_p^3 corresponding to each subspace of C_1 of dimension k ($0 \leq k \leq \frac{n}{2}$).

Proposition. Define ε as follows: 1) if $\vec{1}_n \in A$ and $8 \mid n$, then $\varepsilon = 1$; 2) if $\vec{1}_n \not\in A$, then $\varepsilon = 0$. Any self-dual code over \mathbb{Z}_{2^3} is induced from a self-dual code C_1 over \mathbb{Z}_2. There are $2^{kl+k^2+\varepsilon}$ self-dual codes over \mathbb{Z}_{2^3} corresponding to each subspace of dimension k ($0 \leq k \leq \frac{n}{2}$) of C_1.
Proposition. Let p be an odd prime. A self-dual code over \mathbb{Z}_p^3 can be induced from a self-dual code C_1 over \mathbb{Z}_p; there are $p^{k(\frac{n}{2}-1)}$ self-dual codes over \mathbb{Z}_p^3 corresponding to each subspace of C_1 of dimension k ($0 \leq k \leq \frac{n}{2}$).

Proposition. Define ε as follows: 1) if $\vec{1}_n \in A$ and $8 \mid n$, then $\varepsilon = 1$; 2) if $\vec{1}_n \notin A$, then $\varepsilon = 0$. Any self-dual code over \mathbb{Z}_2^3 is induced from a self-dual code C_1 over \mathbb{Z}_2. There are $2^{kl+k^2+\varepsilon}$ self-dual codes over \mathbb{Z}_2^3 corresponding to each subspace of dimension k ($0 \leq k \leq \frac{n}{2}$) of C_1.
The number of underlying self-dual codes over \mathbb{Z}_p

Lemma. (Pless, 1965) Let p be an odd prime and $\sigma_p(n, k)$ the number of self-orthogonal codes of even length n and dimension k over \mathbb{Z}_p. Then:

1. If $(-1)^{n/2}$ is a square,

$$\sigma_p(n, k) = \frac{(p^{n-k} - p^{n/2-k} + p^{n/2} - 1) \prod_{i=1}^{k-1} (p^{n-2i} - 1)}{\prod_{i=1}^{k} (p^i - 1)}, \quad k \geq 1.$$

2. If $(-1)^{n/2}$ is not a square,

$$\sigma_p(n, k) = \frac{(p^{n-k} + p^{n/2-k} - p^{n/2} - 1) \prod_{i=1}^{k-1} (p^{n-2i} - 1)}{\prod_{i=1}^{k} (p^i - 1)}, \quad k \geq 1.$$

Lemma. (Pless, 1965) Let \(p \) be an odd prime and \(\sigma_p(n, k) \) the number of self-orthogonal codes of even length \(n \) and dimension \(k \) over \(\mathbb{Z}_p \). Then:

1. If \((-1)^{\frac{n}{2}}\) is a square,

\[
\sigma_p(n, k) = \frac{(p^{n-k} - p^{n/2-k} + p^{n/2} - 1) \prod_{i=1}^{k-1}(p^{n-2i} - 1)}{\prod_{i=1}^{k}(p^i - 1)}, \quad k \geq 1.
\]

2. If \((-1)^{\frac{n}{2}}\) is not a square,

\[
\sigma_p(n, k) = \frac{(p^{n-k} + p^{n/2-k} - p^{n/2} - 1) \prod_{i=1}^{k-1}(p^{n-2i} - 1)}{\prod_{i=1}^{k}(p^i - 1)}, \quad k \geq 1.
\]
The number of subspaces

Lemma. Let V be an n-dimensional vector space over the integers modulo p. The number $\rho(n, k)$ of subspaces $T \subset V$ of dimension $k \leq n$ is given by

$$\rho(n, k) = \frac{(p^n - 1)(p^n - p)\ldots(p^n - p^{k-1})}{(p^k - 1)(p^k - p)\ldots(p^k - p^{k-1})}. $$
Main results

Theorem. Let $N_{p^3}(n)$ denote the number of distinct self-dual codes of even length n over \mathbb{Z}_{p^3}.

1. If p is odd then

$$N_{p^3}(n) = \left(1 + \left(-\frac{1}{p}\right)^{\frac{n}{2}}\right) \prod_{i=1}^{\frac{n}{2}-1} \frac{p^{n-2i} - 1}{p^i - 1} \sum_{k=0}^{\frac{n}{2}} \left(\prod_{i=0}^{k-1} \frac{p^{n-i} - 1}{p^{k-i} - 1}\right) p^{k(n^{2}-1)}.$$

2. If $n \equiv 2, 6 \pmod{8}$ then

$$N_8(n) = \sum_{k=0}^{\frac{n}{2}-1} \left(\prod_{i=0}^{k-1} \frac{2^{n-2i-2} - 1}{2^{i+1} - 1}\right) \left(\prod_{i=k}^{\frac{n}{2}-2} \frac{2^{n-2i-2} - 1}{2^{i+1-k} - 1}\right) 2^{kn^{2}}.$$
Main results

Theorem. Let $N_{p^3}(n)$ denote the number of distinct self-dual codes of even length n over \mathbb{Z}_{p^3}.

1. If p is odd then

$$N_{p^3}(n) = \left(1 + \left(-\frac{1}{p}\right)^{\frac{n}{2}}\right) \prod_{i=1}^{\frac{n}{2}-1} \frac{p^{n-2i} - 1}{p^i - 1} \sum_{k=0}^{\frac{n}{2}} \left(\prod_{i=0}^{k-1} \frac{p^{n-i} - 1}{p^{k-i} - 1}\right) p^{k\left(\frac{n}{2} - 1\right)}.$$

2. If $n \equiv 2, 6 \pmod{8}$ then

$$N_{8}(n) = \sum_{k=0}^{\frac{n}{2}-1} \left(\prod_{i=0}^{k-1} \frac{2^{n-2i-2} - 1}{2^{i+1} - 1}\right) \left(\prod_{i=k}^{\frac{n-2}{2}} \frac{2^{n-2i-2} - 1}{2^{i+1-k} - 1}\right) 2^{\frac{kn}{2}}.$$
Main results

Theorem. Let $N_{p^3}(n)$ denote the number of distinct self-dual codes of even length n over \mathbb{Z}_{p^3}.

1. If p is odd then

$$N_{p^3}(n) = \left(1 + \left(-\frac{1}{p}\right)^{\frac{n}{2}}\right) \prod_{i=1}^{\frac{n-1}{2}} \frac{p^{n-2i} - 1}{p^i - 1} \sum_{k=0}^{\frac{n}{2}} \left(\prod_{i=0}^{k-1} \frac{p^{n-i} - 1}{p^{k-i} - 1}\right) p^{k\left(\frac{n}{2} - 1\right)}.$$

2. If $n \equiv 2, 6 \pmod{8}$ then

$$N_8(n) = \sum_{k=0}^{\frac{n-1}{2}} \left(\prod_{i=0}^{k-1} \frac{2^{n-2i} - 1}{2^{i+1} - 1}\right) \left(\prod_{i=k}^{\frac{n-2}{2}} \frac{2^{n-2i-2} - 1}{2^{i+1-k} - 1}\right) 2^{\frac{kn}{2}}.$$
Main results

3. If \(n \equiv 4 \pmod{8} \) then

\[
N_8(n) = \sum_{k=0}^{\frac{n}{2}-1} \left(\prod_{i=0}^{k-1} \frac{2^{n-2i-2} - 2^{\frac{n}{2}-i-1} - 2}{2i+1 - 1} \right) \left(\prod_{i=k}^{\frac{n}{2}-2} \frac{2^{n-2i-2} - 1}{2i+1-k - 1} \right) 2^{\frac{kn}{2}}.
\]

4. If \(n \equiv 0 \pmod{8} \) then

\[
N_8(n) = \sum_{k=0}^{\frac{n}{2}-1} \left(\prod_{i=0}^{k-1} \frac{2^{n-2i-2} + 2^{\frac{n}{2}-i-1} - 2}{2i+1 - 1} \right) \left(\prod_{i=k}^{\frac{n}{2}-2} \frac{2^{n-2i-2} - 1}{2i+1-k - 1} \right) 2^{\frac{kn}{2}}
\]

\[+ \sum_{k=1}^{\frac{n}{2}} \left(\prod_{i=0}^{k-2} \frac{2^{n-2i-3} + 2^{\frac{n}{2}-i-2} - 1}{2i+1 - 1} \right) \left(\prod_{i=k}^{\frac{n}{2}-1} \frac{2^{n-2i} - 1}{2i+1-k - 1} \right) 2^{\frac{kn}{2}+1}.\]
Main results

3. If \(n \equiv 4 \pmod{8} \) then

\[
N_8(n) = \sum_{k=0}^{\frac{n}{2}-1} \left(\prod_{i=0}^{k-1} \frac{2^{n-2i-2} - 2^{\frac{n}{2}-i-1} - 2}{2^{i+1} - 1} \right) \left(\prod_{i=k}^{\frac{n}{2}-2} \frac{2^{n-2i-2} - 1}{2^{i+1-k} - 1} \right) 2^{\frac{kn}{2}}.
\]

4. If \(n \equiv 0 \pmod{8} \) then

\[
N_8(n) = \sum_{k=0}^{\frac{n}{2}-1} \left(\prod_{i=0}^{k-1} \frac{2^{n-2i-2} + 2^{\frac{n}{2}-i-1} - 2}{2^{i+1} - 1} \right) \left(\prod_{i=k}^{\frac{n}{2}-2} \frac{2^{n-2i-2} - 1}{2^{i+1-k} - 1} \right) 2^{\frac{kn}{2}}
+ \sum_{k=1}^{\frac{n}{2}} \left(\prod_{i=0}^{k-2} \frac{2^{n-2i-3} + 2^{\frac{n}{2}-i-2} - 1}{2^{i+1} - 1} \right) \left(\prod_{i=k}^{\frac{n}{2}-1} \frac{2^{n-2i} - 1}{2^{i+1-k} - 1} \right) 2^{\frac{kn}{2}+1}.
\]
A (partial) classification of self-dual codes over \mathbb{Z}_8 and \mathbb{Z}_9 by Gulliver, et.al.

Dougherty, Gulliver and Wong. *Self-dual codes over \mathbb{Z}_8 and \mathbb{Z}_9.* Designs, Codes and Cryptography 41 (Nov 2006):

- $n = 2$. There is only one self-dual code over \mathbb{Z}_8 of length 2.

$$G_2 = \begin{pmatrix} 2 & 2 \\ 0 & 4 \end{pmatrix}$$

- $n = 4$. There is only one self-dual code over \mathbb{Z}_8 of length 4.

$$G_4 = \begin{pmatrix} 2 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$
A (partial) classification of self-dual codes over \mathbb{Z}_8 and \mathbb{Z}_9 by Gulliver, et.al.

Dougherty, Gulliver and Wong. *Self-dual codes over \mathbb{Z}_8 and \mathbb{Z}_9.* Designs, Codes and Cryptography 41 (Nov 2006):

- $n = 2$. There is only one self-dual code over \mathbb{Z}_8 of length 2.

$$G_2 = \begin{pmatrix} 2 & 2 \\ 0 & 4 \end{pmatrix}$$

- $n = 4$. There is only one self-dual code over \mathbb{Z}_8 of length 4.

$$G_4 = \begin{pmatrix} 2 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$
A (partial) classification of self-dual codes over \mathbb{Z}_8 and \mathbb{Z}_9 by Gulliver, et.al.

Dougherty, Gulliver and Wong. *Self-dual codes over \mathbb{Z}_8 and \mathbb{Z}_9*. Designs, Codes and Cryptography 41 (Nov 2006):

- $n = 6$. One self-dual code over \mathbb{Z}_8 of length 6.

$$G_4 = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 2 \\ 0 & 2 & 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$
Example: self-dual codes over \mathbb{Z}_8 with $n = 6$, $k = 2$, $\lambda = 1$.

We start with a self-dual binary code

$$
\begin{bmatrix}
A \\
B
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{bmatrix}
$$

with

$$A_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} , \quad A_{30} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} , \quad A_{40} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
Example: self-dual codes over \mathbb{Z}_8 with $n = 6$, $k = 2$, $l = 1$.

\[
C = \begin{bmatrix}
1 & 0 & 1 & 1 + 2x & 1 + 2y + 4z & 2 + 4z' \\
0 & 1 & 1 & 3 - 2x & 2 + 4(z' + y + y') & 1 + 2y' + 4z'' \\
0 & 0 & 2 & 2 & 4(1 - x) & 4x \\
0 & 0 & 0 & 4 & 4 & 4
\end{bmatrix},
\]

where x, y, y', z, z', z'' are arbitrary elements of \mathbb{F}_2.

The code C is self-dual over \mathbb{Z}_8.
Example: self-dual codes over \mathbb{Z}_8 with $n = 6$, $k = 2$, $l = 1$.

The code C is self-dual over \mathbb{Z}_8.

\[
C = \begin{bmatrix}
1 & 0 & 1 & 1 + 2x & 1 + 2y + 4z & 2 + 4z' \\
0 & 1 & 1 & 3 - 2x & 2 + 4(z' + y + y') & 1 + 2y' + 4z'' \\
0 & 0 & 2 & 2 & 4(1 - x) & 4x \\
0 & 0 & 0 & 4 & 4 & 4 \\
\end{bmatrix},
\]

where $x, y, y', z, z', \text{ and } z''$ are arbitrary elements of \mathbb{F}_2.

The code C is self-dual over \mathbb{Z}_8.

what next

- Classification for \mathbb{Z}_{p^3} codes of moderate lengths; develop efficient methods for computing automorphism groups

- Generalize to \mathbb{Z}_{p^s}

- Explore other rings: Galois rings, finite chain rings, Frobenius rings

- another track: Generalization of Hammons, et. al. result for other ring settings
what next

- Classification for \mathbb{Z}_{p^3} codes of moderate lengths; develop efficient methods for computing automorphism groups
- Generalize to \mathbb{Z}_{p^s}
 - Explore other rings: Galois rings, finite chain rings, Frobenius rings
- another track: Generalization of Hammons, et. al. result for other ring settings
what next

- Classification for \mathbb{Z}_{p^3} codes of moderate lengths; develop efficient methods for computing automorphism groups
- Generalize to \mathbb{Z}_{p^s}
- Explore other rings: Galois rings, finite chain rings, Frobenius rings
- another track: Generalization of Hammons, et. al. result for other ring settings
what next

- Classification for \mathbb{Z}_{p^3} codes of moderate lengths; develop efficient methods for computing automorphism groups
- Generalize to \mathbb{Z}_{p^s}
- Explore other rings: Galois rings, finite chain rings, Frobenius rings
- another track: Generalization of Hammons, et. al. result for other ring settings
Thank you.